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Abstract The focus of this paper is on the treatment of a
reentrant and flexible flow shop problem in which the pro-
cessing times of the jobs at some stage may depend on
the decisions made for the jobs at stages before and after
the current stage, that is, they may depend on the machine
sequence the jobs take in the processing flow. The problem
was encountered in a cutting stock application embedded in
the context of a virtual organisation. A mathematical model
capturing the issues of reentrancy and machine sequence
dependency is given. Solution procedures using a mixed-
integer programming (MIP) solver and two metaheuristics,
simulated annealing and tabu search are presented. The fea-
sibility of the approach is established by computational tests
with 30 randomly generated problem instances. The optimal
results were obtained for all instances up to ten clients and
five service providers and one instance with 15 clients and
five service providers. The rest of the results were within the
limits provided by the MIP solver.

Keywords Production · Flexible reentrant flow shop ·
Machine sequence dependency · MIP · Simulated
annealing · Tabu search

1 Introduction

The production process implemented in the form of a con-
ventional flow shop consists of a sequence of operations that
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have to be executed on every job in the same order. This
means that the jobs are processed at successive stages. Usu-
ally, only one machine is available at each stage. The buffers
between the stages may have an unlimited capacity or they
may accept only a limited number of waiting jobs.

A flexible (or hybrid) flow shop may have more than one
machine (server) available for each stage, and the machines
at each stage may be identical, uniform or unrelated. As
showed in Gupta [19], the flowshop problem with multiple
processors (FSMP) at each stage and with only two stages
is NP-Hard, even when one of the two stages contains a sin-
gle machine. Since the FSMP problem can be considered
as a specific case of the flexible flowshop, it can be con-
cluded that the latter problem is also NP-Hard, Ruiz and
Maroto [36]. In this work, we assume that the machines are
unrelated and that the buffers between stages have unlimited
capacities.

The recirculation of a job means that the job may return
to a machine, which already processed one of its previous
operations. In the flexible flow shop context, a job need not
return to the same machine but to one of the machines of a
previous stage. This means from the machine viewpoint that
some machines are able to process operations of different
stages. The flow shop problem with recirculation is often
designated as a reentrant flow shop problem.

Related to the sequence-dependent processing times, it
is assumed that the processing time of a job on a machine
at a stage may depend on the machines selected for that
job at the previous and next stages. This assumption, which
may sound less natural in the manufacturing context, was
motivated by the treatment of transportation stages in the
cutting stock application considered by Ahonen et al. [2]
and will be described in Section 3. Now, the viewpoint is
that of a job, since it is considered what happened to the job
before the current stage and what will happen after it. This
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is different from the machine viewpoint, as in the case of
setup times, in which the completion time of a job depends
on the previous job on the machine. For our knowledge, this
kind of dependency has not yet been treated in the literature.

In Ahonen et al. [2], a cutting stock application was
embedded in a virtual organisation context so that multi-
ple machines (servers) were selected for each processing
stage, that is, for determining the layout of the pieces on the
plate, for supplying the material to be cut, for transporting
the material to the cutters, for executing the cutting and for
transporting the final product to a client. As will be seen
in Section 3, the application gives rise to a reentrant flex-
ible flow shop problem with machine sequence-dependent
processing times.

The mathematical model and computational experiments
in Ahonen et al. [2] were restricted to the basic case in which
recirculation and sequence dependencies were not consid-
ered. In this paper, we remove these limitations by extending
the basic model to contemplate recirculation and sequence
dependencies as well.

The paper is organised as follows. A literature review of
the related research is provided in Section 2. Section 3 con-
tains a short description of the scheduling problem related
to the cutting stock application considered. A mathematical
model for the problem is presented in Section 4. The algo-
rithms implemented in this work are explained in Section 5.
The results of the computational experiments are given in
Section 6. Finally, the conclusions are drawn in Section 7.

2 Related research

In this section, a review of the literature related to the prob-
lems involved is given. Two subsections are presented, one
treating the flexible or hybrid flow shop scheduling problem
and the other related to the recirculation of jobs.

2.1 The flexible/hybrid flow shop scheduling problem

A number of research has been developed for different
forms of the flow shop problem. Weng et al. [41] considered
the dynamic hybrid flow shop. They developed several rout-
ing strategies which can with the help of dispatching rules
realise a just-in-time completion of jobs arriving dynam-
ically in the production environment. A fuzzy approach
combining hybrid genetic algorithm and data mining was
proposed by Zare and Fakhrzad [42] for the flexible flow
shop problem.

Ruiz et al. [35] worked with a hybrid flow shop schedul-
ing problem considering several restrictions and characteris-
tics: release dates, unrelated parallel machines at each stage,
sequence-dependent setup times, machine eligibility, time
lags on operations and precedence constraints among jobs.

Lee [25] analysed two-stage hybrid flowshops with
dynamic order arrivals and presented methods for estimat-
ing the flowtimes of orders, where a flowtime was defined
as the interval between the arrival and the completion of an
order. Pan et al. [32] proposed an effective discrete artificial
bee colony algorithm based on a hybrid representation of the
solutions and a combination of forward/backward decoding
methods for solving the hybrid flow shop scheduling prob-
lem with the objective of minimising the makespan. The
numerical results showed that the proposed algorithm per-
forms better than the best ones encountered in the literature.
A hybrid variable neighbourhood search algorithm for solv-
ing the hybrid flow shop scheduling problem was proposed
in [26].

Bozorgirad and Logendran [7] considered a group
scheduling problem in a hybrid flow shop environment
and developed a mixed-integer linear programming model
to the problem. They proposed a two-level tabu search
procedure, which firstly identifies the best sequence of
groups and then searches for the best sequence of jobs
within each group. A specific hybrid flow shop scheduling
problem inspired by a real microelectronic manufactur-
ing environment was treated by Costa et al. [13] with a
development of an optimisation approach based on a meta-
heuristic algorithm powered by a dual search mechanism
based on two different problem encodings. Wang and Lin
[40] analysed a two-stage no-wait hybrid flow shop having
a single machine at stage one and multiple parallel identical
machines at stage two and with the objective of makespan
minimisation. A genetic algorithm to solve the problem was
developed.

Sequence-dependent setup times in a hybrid flow shop
were treated in Naderi et al. [31] with a novel simulated
annealing algorithm to minimise makespan and maximum
tardiness, and in Naderi et al. [30], where two algorithms,
a dynamic dispatching rule heuristic and an iterated local
search metaheuristic, were presented. Joo et al. [21] consid-
ered a three-stage dynamic flexible flow shop problem, in
which jobs of multiple types arrive dynamically over time.
A scheduling algorithm based on the general dispatching
rule-based scheduling procedure was presented to solve the
problem. Allahverdi et al. [4] give an extensive survey of
scheduling problems with setup times.

Surveys on the flexible (hybrid) flow shop problem,
in general, can be found in Linn and Zhang [28], Wang
[39], Kis and Pesch [23], Quadt and Kuhn [33], Ruiz and
Vázquez-Rodrı́guez [37] and Ribas et al. [34].

2.2 Recirculation of jobs

Bertel and Billaut [5] proposed a genetic algorithm for solv-
ing a hybrid flow shop problem, in which recirculation,
release times and due dates of the jobs were considered and
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the objective was to minimise the weighted number of tardy
jobs.

A multi-objective approach was applied to the reentrant
hybrid flow shop scheduling problem in Dugardin et al.
[16]. Several heuristic procedures for the m-machine reen-
trant flow shop problem with makespan minimisation were
presented in Choi and Kim [12]. Jing et al. [20] considered
reentrant flow shop scheduling problems with the objec-
tive of minimising total completion time and proposed a
heuristic algorithm, in which an effective k-insertion tech-
nique was introduced as an improvement strategy at each
iteration.

Kang et al. [22] developed a tabu search procedure for the
reentrant flow shop problem with sequence-dependent setup
times to minimise the total weighted tardiness in the appli-
cation context of a semiconductor manufacture process. A
real-time scheduling procedure with a case study on a thin
film transistor-liquid crystal display (TFT-LCD) manufac-
turing was presented in Choi et al. [11]. A brief review of
the scheduling techniques developed for this application can
be found in Gupta and Sivakumar [18].

A review on the current practice of what have been
done for the integration of dispatching rules and evolution-
ary algorithms on semiconductor manufacturing scheduling
was given in [10]. A hybrid tabu search and a hybrid genetic
algorithm for the reentrant flow shop scheduling problem
were proposed by Chen et al. [8, 9], respectively.

A unified treatment of several managerial issues for a
family of reentrant flow lines was considered in Bispo and
Tayur [6]. These issues include capacity allocation, inven-
tory management and production control. Demirkol and
Uzsoy [14] proposed a decomposition method for minimis-
ing the maximum lateness in the context of the reentrant
flow shop problem with sequence-dependent setup times.

The problem of minimising the cycle time or the
makespan in m-machine reentrant robotic cells was con-
sidered by Steiner and Xue [38]. It was shown in the
two-machine case that both the cycle time and the makespan
can be minimised in polynomial time.

A general survey for different reentrant scheduling envi-
ronments was presented by Middendorf and Timkovsky
[29]. Lin and Lee [27] gave a comprehensive review of
the reentrant scheduling problem. The authors classified the
reentrant problems and analysed the optimisation methods
for the reentrant manufacturing scheduling.

3 A reentrant flow shop with machine
sequence-dependent processing times

The questions of reentrant operations and machine
sequence-dependent processing times were encountered in
a cutting stock production process in the context of a virtual
organisation as presented by Ahonen et al. [3] and further
analysed by Ahonen et al. [2]. The flexible production pro-
cess consists of several stages with multiple servers at each
stage. There are stages of automated layout design, supply
of the material to be cut and execution of the final cutting.
There is also a need of transportation at two stages of the
process, firstly, from a supplier to a cutter and, secondly,
from a cutter to the client. These two cases of transporta-
tion can be interpreted as stages of the resulting flow shop
problem, as shown in Fig. 1.

Now, since it is assumed that the same transporters can
take care of transportation tasks in both cases, the concept
of reentrant operations is needed.

Due to possibly different geographical locations, the trav-
els from suppliers to cutters may have different durations.
The same applies to the travels from cutters to clients.
Thus, the transport times of a task depend on the origin
and destination of the travel leading to the inclusion of
sequence-dependent processing times in the extended flow
shop model.

4 Mathematical model

The mathematical model for the generic flexible flow shop
discussed in this article is described in the following four
subsections. The first subsection gives definitions needed in
the later subsections. The basic model for a flexible flow
shop is described in the second subsection, while the exten-
sions for problems with sequence-dependent processing
times and recirculation are topics of the last two subsections.

4.1 Definitions

– Indices

– i: stage
– j : job
– k: server

Fig. 1 Processing stages of the
production process
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– Parametres

– s: number of stages Si , i = 1, 2, . . . , s

– n: number of jobs

–
(
O1

j , O2
j , . . . , Os

j

)
: operations of job j , j =

1, 2, . . . , n

– mi : number of servers Ri
k at each stage Si , i =

1, 2, . . . , s; k = 1, 2, . . . , mi; ms = 0 (the
last state is fictitious)

– pijk: processing time of operation Oi
j by

server k

– M: an integer larger than or equal to an upper
bound of the makespan of any schedule

The stages with respective servers are illustrated in
Fig. 2.

From now on, we identify a stage Si with a vector,
the elements of which are the servers of the stage, that
is, Si = (

Ri
1, R

i
2, . . . , R

i
mi

)
for i = 1, 2, . . . , s.

– Decision variables:

– tij : time instant at which operation Oi
j is

started.
– xijk: is equal to 1, if operation Oi

j is processed
by server k, and to 0, otherwise.

– yijj ′ : is equal to 1, if operation Oi
j is processed

by the same server before job j ′, j < j ′, and
to 0, otherwise.

– The objective function Cmax to be minimised: the
makespan of the jobs (i.e. the latest task completion
time at the last stage).

4.2 The basic model

The values of parametres pijk express the processing times
related to the service providers. The number of jobs, stages
and servers at each stage takes some fixed known values.
Thus, the decision variables of the problem consist of start
times tij , server selections xijk and precedences yijj ′ . An
integer linear programming model of the problem in its
basic form can be given as follows:

minimise Cmax (1)

subject to the following constraints:

Cmax ≥ tsj for j = 1, 2, . . . , n. (2)

mi∑
k=1

xijk = 1 for i = 1, 2, . . . , s − 1;

j = 1, 2, . . . , n. (3)

ti+1,j ≥ ti,j +
mi∑
k=1

pijkxijk

for i = 1, 2, . . . , s − 1; j = 1, 2, . . . , n. (4)

tij ′ ≥ tij + pijkxijk−M(1−yijj ′)−M(1−xijk)−M(1−xij ′k)

for i = 1, 2, . . . , s − 1; j = 1, 2, . . . , n − 1;
j ′ = j + 1, j + 2, . . . , n; k = 1, 2, . . . , mi. (5)

tij ≥ tij ′ + pij ′kxij ′k−Myijj ′ −M(1−xijk)−M(1−xij ′k)

for i = 1, 2, . . . , s − 1; j = 1, 2, . . . , n − 1;
j ′ = j + 1, j + 2, . . . , n; k = 1, 2, . . . , mi. (6)

xijk ∈ {0, 1} for i = 1, 2, . . . , s − 1; j = 1, 2, . . . , n;
k = 1, 2, . . . mi. (7)

yijj ′ ∈ {0, 1} for i =1, 2, . . . , s−1; j =1, 2, . . . , n−1;
j ′ = j + 1, 2, . . . , n. (8)

The inequalities (2) together with the minimisation
objective force the value of Cmax to be equal to the start time
of the last job reaching the fictitious stage. The constraints
(3) stipulate that exactly one server has to be selected for
each operation, while the constraints (4) state that an opera-
tion of a job can be started only after finishing the operation
of that job at the previous stage. Processing two operations
on a server at the same time is prevented by the restrictions
(5) and (6).

Fig. 2 Stages of a flexible flow
shop
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4.3 Sequence-dependent processing times

For the first extension, we assume that the system includes
special servers, say, transporters, with processing times that
depend not only on the jobs to be transported but also on
their origins and destinations. A stage having transporters
as its servers is called a transporter stage. The transporta-
tion of a job is defined as one of the job’s operations. We
assume that if there are more than one transporter stage, the
transporters are distinct. The case of related transporters in
distinct stages will be the subject of the next subsection. We
identify the origin and destination of a transport with servers
that process the job at stages immediately before and after
the transporter stage, respectively.

We define the following now:

– S T : the set of transporter stages
– pijk′kk′′ : transportation time from server Ri−1

k′ to server

Ri+1
k′′ needed by transporter Ri

k to complete operation
Oi

j

A new set of decision variables is needed:

– xijk′kk′′ : is equal to 1, if operation Oi
j is a transport oper-

ation processed by transporter Ri
k with origin Ri−1

k′ and

destination Ri+1
k′′ , and equal to 0, otherwise.

To shorten the presentation below, we define the follow-
ing for a transporter stage:

xijk =
mi−1∑
k′=1

mi+1∑
k′′=1

xijk′kk′′ . (9)

Now, the value xijk = 1 indicates that transporter Ri
k pro-

cesses the transportation operation Oi
j from some origin to

some destination. This is in concordance with the definition
of xijk given in the basic model, and the constraints (3) take
part in the current model, too.

The extension to the problem with sequence-dependent
processing times is now obtained from the basic model by
maintaining the constraints (4), (5) and (6) for the stages
not being transporter stages (i /∈ S T ) and by adding the
following expressions:

ti+1,j ≥ ti,j +
mi−1∑
k′=1

mi∑
k=1

mi+1∑
k′′=1

pijk′kk′′xijk′kk′′

for i ∈ S T ; j = 1, 2, . . . , n. (10)

tij ′ ≥ tij +
mi−1∑
k′=1

mi+1∑
k′′=1

pijk′kk′′xijk′kk′′ − M(1 − yijj ′)

−M(1 − xijk) − M(1 − xij ′k)

for i ∈ S T ; j = 1, 2, . . . , n − 1;
j ′ = j + 1, j + 2, . . . , n; k = 1, 2, . . . , mi. (11)

tij ≥ tij ′ +
mi−1∑
k′=1

mi+1∑
k′′=1

pijk′kk′′xijk′kk′′ − Myijj ′

−M(1 − xijk) − M(1 − xij ′k)

for i ∈ S T ; j = 1, 2, . . . , n − 1;
j ′ = j + 1, j + 2, . . . , n; k = 1, 2, . . . , mi. (12)

xijk′kk′′ ∈ {0, 1} for i ∈ S T ; j = 1, 2, . . . , n;
k′ = 1, 2, . . . mi−1; k = 1, 2, . . . mi;
k′′ = 1, 2, . . . mi+1. (13)

The interpretation of the constraints in (10), (11) and (12)
remains the same as the one given to constraints (4), (5)
and (6).

It is not difficult to see that the model can be extended to
include dependencies with longer sequences by modifying
the sum terms in it.

4.4 Recirculation

If two stages share some of their servers, this means that
a server may attend operations of jobs belonging to differ-
ent stages. This recirculation may happen with operations
of the same job, with operations of different jobs, with an
operation of an earlier stage first, or vice versa.

The central issue in the case of recirculation is to control
that there is no overlap in processing the operations. Again,
a new set of variables is needed:

– yiji′j ′ : is equal to 1, if operation Oi
j is processed before

operation Oi′
j ′ and equal to zero, otherwise.

In addition, let us denote by C the set of all pairs (i, i′)
for which there is a server R ∈ Si ∩ Si′ , that is, there are
indices k and k such that R = Ri

k = Ri′
k

.
The desired control is now achieved with a modification

of the constraints (5) and (6) in the basic model as follows:

ti′j ′ ≥ tij + pijkxijk − M(1 − yiji′j ′) − M(1 − xijk)

−M(1 − xi′j ′k)

for (i, i′) ∈ C ; j = 1, 2, . . . , n − 1;
j ′ = j + 1, j + 2, . . . , n

and for (k, k) with Ri
k = Ri′

k
. (14)



770 Int J Adv Manuf Technol (2017) 89:765–777

tij ≥ ti′j ′ + pi′j ′kxi′j ′k − Myiji′j ′ − M(1 − xijk)

−M(1 − xi′j ′k)

for (i, i′) ∈ C ; j = 1, 2, . . . , n − 1;
j ′ = j + 1, j + 2, . . . , n

and for (k, k) with Ri
k = Ri′

k
. (15)

Clearly, if the processing times are sequence-dependent,
the modifications of constraints (11) and (12) are analogous.

In addition, if for some pair (i, i′) ∈ C , Si = Si′ , then
we can take k = k in constraints (14) and (15). This is the
special case treated in Bertel and Billaut [5].

5 SA and TS algorithms

As indicated by the computational experiments described
in the following section, the mixed-integer programming
(MIP) solver was not able to solve the largest problem
instances up to optimality. For this, two metaheuristics, sim-
ulated annealing (SA) [24] and tabu search (TS) [17], were
implemented. It is thus possible to have more convincement
on the quality of the solutions in the situation in which com-
parisons with results in the literature are not possible. Our
objective is neither to propose novel techniques nor to con-
clude, which of the algorithms has better performance, but
to illustrate, how it is possible to apply a quantitative anal-
ysis to the largest instances, too. Thus, the SA and TS offer
a natural choice being well-known and reliable metaheuris-
tics, which have been used with success for a wide variety
of optimisation problems.

Both algorithms use the same neighbourhood structure
for generating new solutions. The structure is based on two
types of swap “moves”: (1) exchange of processing order of
two jobs on a given server and (2) reselection of a server for
a given job.

Each solution defines an allocation of the jobs to the
servers and their ordering on them. The cost calculation
uses this information by constructing the associated sched-
ule with the inclusion of the details of recirculation and
server-dependent processing times.

A local search algorithm was implemented and called by
both algorithms. It simply applies all moves to the current
solution, and if a better solution is found, it is nominated
to the new current solution. If, after the application of all
moves, a better solution has been found, the loop over the
moves is repeated, otherwise the algorithm stops.

The two metaheuristics and the local search algorithm
are adaptations to the current neighbourhood structure of the
algorithms described in [1].

5.1 SA algorithm

The following ‘basicSA’ procedure is called repeatedly by
the implementation of the SA algorithm.

The main algorithm, ‘Algorithm 1’, firstly determines the
initial temperature T0 by calling the procedure ‘reversedSA’,
which is essentially the same as procedure ‘basicSA’ with a
different stopping criterion (at line 2) and with the tempera-
ture update factor ReversedT empFactor greater than one,
so that the temperature is increased during the outer loop
iterations. The execution of the outer loop stops when the
acceptance rate in the inner loop reaches 100 %.
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5.2 TS algorithm

The procedure ‘pickNextSwap’ is used to update the current
TS solution with the help of non-tabu swap moves unless a
tabu move would lead to a new overall best solution. The
tabu status of a move is determined by its recency, that is, if
the move was applied at one of the last T abuT enure iter-
ations, it is declared tabu. A varying T abuT enure length
was implemented. If no overall best neighbour can be
found, the best non-tabu move is selected with respect to
a modified cost defined at line 13 of the procedure. In
case of large problems, not all neighbours are explored,
but only those with indices in the current index set. The
set of all indices is split into NIndexSets subsets des-
ignated as IndexSets. For example, if NIndexSets =
3 and the number of swap moves, Swaps.length =
12, the subsets would be {1, 4, 7, 10}, {2, 5, 8, 11} and
{3, 6, 9, 12}. These index sets are alternated during the TS
iterations.

‘Algorithm 2’ describes our implementation of tabu
search. The diversification step (procedure ‘diversify’) at
line 30 consists of alternating application of the least recent
or the least frequent swap moves.

6 Computational experiments

The computational experiments related to the cutting stock
application consist of tests with ten groups of randomly gen-
erated instances, with three instances in each group. The
instances within a group have the same problem size desig-
nated by the number of clients n and the number of service
providers at each stage m (selected to be the same number
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for all flow shop stages). The processing times of the service
providers were picked as integers from the uniform random
distribution at interval [5, 100].

All tests were conducted with a standard personal com-
puter equipped with a 2.83-GHz Intel(R) Core(TM) 2 Quad
processor and 4 GB of RAM under the Linux operating sys-
tem. The algorithms were implemented in Java and tested
on JVM 1.7.

The MIP package used was CPLEX 12.5.1.0.
We used a slightly modified objective function, in which

the sum of start times of the jobs multiplied a small factor
was added to makespan:

minimise Cmax + ε
∑
i,j

tij .

The value of ε was selected so small that the sum of the
start times always remains smaller than 0.1 ∗ ε−1. Thus, the

Table 1 MIP minimum makespan results for 30 instances

Obj. LB UB Gap Gap (%) Time

n=5 1 282 1.69 s

m=2 2 269 1.52 s

3 232 0.40 s

n=5 1 214 0.57 s

m=3 2 184 1.42 s

3 223 0.21 s

n=7 1 343 3.57 s

m=2 2 274 5.47 s

3 325 21.85 s

n=7 1 225 8.83 s

m=3 2 197 5.56 s

3 145 1.40 s

n=10 1 231 108.5 s

m=3 2 255 322.6 s

3 230 100.0 s

n=10 1 139 30.38 s

m=5 2 129 41.63 s

3 138 32.49 s

n=15 1 – 192 315 123 39.0 2 h

m=3 2 – 211 315 104 33.0 2 h

3 – 180 262 82 31.3 2 h

n=15 1 – 138 150 12 8.00 2 h

m=5 2 180 1993 s

3 – 160 175 15 8.57 2 h

n=20 1 – 150 178 28 15.7 2 h

m=5 2 – 124 186 62 33.3 2 h

3 – 132 177 45 25.42 2 h

n=20 1 – 112 120 8 6.67 2 h

m=7 2 – 124 126 2 1.59 2 h

3 – 111 123 12 9.76 2 h

jobs in the optimal solution are started as early as possi-
ble and the additional term has no influence on the minimal
makespan value.

Throughout the experiments, the following parametre
values were used for SA and TS, respectively:

SA:

InitialReversedT emp = 0.1/(m × n),

ReversedT empFactor = 0.999,

ReversedNInnerLoopI ters = m × n/2,

T empFactor = 1 − 1/(5000m × n),

F inalT emp = 1/(m × n),

NInnerLoopI ters = m × n,

NRestarts = 10.

Table 2 SA algorithm—makespan values for 30 instances

Objective values No. of evaluations (x1000)

Min. Max. Avg. S.D Min. Max. Avg. S.D

n=5 1 282 282 282.00 0.00 29,096 40,576 34,542 2955

m=2 2 269 269 269.00 0.00 27,038 32,714 30,099 1587

3 232 232 232.00 0.00 26,202 33,128 29,494 2140

n=5 1 214 214 214.00 0.00 7992 13,092 10,228 1284

m=3 2 184 184 184.00 0.00 11,943 17,268 14,888 1280

3 223 223 223.00 0.00 13,264 16,226 14,751 999

n=7 1 343 343 343.00 0.00 72,293 87,632 80,751 3599

m=2 2 274 279 274.50 1.53 76,359 85,266 81,344 2736

3 325 330 325.17 0.91 78,614 94,723 85,764 3946

n=7 1 225 225 225.00 0.00 24,623 30,520 27,948 1467

m=3 2 197 201 197.23 0.90 21,256 26,366 24,581 1281

3 145 145 145.00 0.00 22,479 26,387 24,521 981

n=10 1 231 235 232.67 1.06 38,815 48,988 44,017 2507

m=3 2 255 259 256.97 0.67 42,084 50,330 45,447 1834

3 230 230 230.00 0.00 38,643 46,447 43,537 2270

n=10 1 139 142 139.43 0.90 20,357 24,577 22,427 1180

m=5 2 129 131 129.70 0.84 20,588 24,519 22,240 1101

3 138 143 138.93 1.34 20,438 24,461 22,727 1021

n=15 1 288 299 293.37 3.17 85,742 96,912 91,062 2718

m=3 2 292 300 295.70 2.40 85,748 96,563 90,253 3268

3 244 250 246.10 1.95 82,722 94,568 89,683 2970

n=15 1 152 160 155.53 2.03 34,763 45,283 40,113 2048

m=5 2 180 181 180.13 0.35 37,916 45,894 43,575 2000

3 170 184 178.87 3.45 35,892 44,981 41,987 1964

n=20 1 171 185 177.90 2.99 58,651 70,995 66,293 2978

m=5 2 172 183 177.70 2.72 59,058 72,897 66,801 3273

3 174 186 179.60 3.09 58,306 71,952 66,906 3095

n=20 1 126 142 133.63 3.11 48,158 57,425 54,114 2403

m=7 2 135 144 139.53 2.28 48,518 57,967 53,364 2496

3 130 140 135.67 2.63 44,994 59,453 53,031 2983
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TS:

NMaxI ters = 100, 000,

DivInterval = 10, 000,

NDivSteps = 10,

MinT abuT enure = min{3, �0.1m × n�},
MaxT abuT enure = 2 × MinT abuT enure,

T abuFactor = 0.995.

The parametre values were determined with the help of
preliminary test runs.

As shown in Table 1, optimal makespan values were
obtained for all instances up to ten clients and five service
providers. The second instance of 15 clients and five service
providers was solved optimally, too. In fact, a preliminary

Table 3 TS algorithm—makespan values for 30 instances

Objective values No. of evaluations (x1000)

Min. Max. Avg. S.D Min. Max. Avg. S.D

n=5 1 282 282 282.00 0.00 17,262 17,299 17,279 11

m=2 2 269 269 269.00 0.00 16,995 17,049 17,021 11

3 232 232 232.00 0.00 17,305 17,340 17,322 9

n=5 1 214 214 214.00 0.00 22,589 22,631 22,609 10

m=3 2 184 184 184.00 0.00 22,277 22,342 22,311 17

3 223 223 223.00 0.00 22,360 22,401 22,376 11

n=7 1 343 343 343.00 0.00 33,849 33,932 33,893 22

m=2 2 274 279 274.33 1.27 33,019 33,194 33,103 46

3 325 325 325.00 0.00 33,820 33,874 33,852 15

n=7 1 225 225 225.00 0.00 42,655 42,795 42,733 34

m=3 2 197 197 197.00 0.00 42,577 42,739 42,655 39

3 145 145 145.00 0.00 42,434 42,508 42,463 20

n=10 1 231 233 232.73 0.69 84,925 85,146 85,045 59

m=3 2 255 257 256.50 0.82 84,133 84,342 84,247 46

3 230 230 230.00 0.00 84469 84645 84576 46

n=10 1 139 139 139.00 0.00 67,489 67,663 67,583 41

m=5 2 129 130 129.10 0.30 67,669 67,767 67,710 28

3 138 142 138.43 0.86 67,701 67,796 67,747 22

n=15 1 288 299 293.53 2.93 150,822 151,372 151,119 140

m=3 2 291 303 297.40 2.85 151,209 151,564 151,393 88

3 244 255 246.43 2.53 151,339 151,872 151,591 128

n=15 1 153 160 155.00 1.49 111,338 111,749 111,560 90

m=5 2 180 182 180.23 0.50 111,889 112,090 111,982 53

3 173 183 177.93 2.49 112,057 112,268 112,184 53

n=20 1 169 185 174.70 3.47 172,481 172,897 172,722 88

m=5 2 172 182 175.80 3.16 172,955 173,411 173,216 98

3 172 183 178.00 2.80 172,466 172,812 172,605 86

n=20 1 124 137 129.67 3.17 142,288 142,574 142,428 78

m=7 2 130 141 133.50 2.62 142,313 142,585 142,434 69

3 124 140 131.87 3.20 142,434 142,730 142,628 71

test with a longer processing time (5 h) gave the optimal
value 149 for the first instance in this group. Generally, the
maximum processing time used in the tests was 2 h.

The tests concerning the implementations of SA and
TS algorithms were organised as follows: Each one of the
30 instances was solved repeating the test for 30 times.
Randomly generated initial solutions were used. Each test
was terminated when no improvement took place dur-
ing 10,000 iterations. The minimum, maximum and aver-
age values of the makespan as well as their standard

Table 4 Results of the application of the Mann-Whitney-Wilcoxon
test

Sum-min z

n=7 2 SA 465.0 0.577

m=2 2 TS 435.0

n=10 1 SA 431.0

m=3 1 TS 469.0 0.661

2 SA 573.0 4.282**

2 TS 327.0

n=10 2 SA 625.5 3.974**

m=5 2 TS 274.5

3 SA 552.5 2.278*

3 TS 347.5

n=15 1 SA 448.0

m=3 1 TS 452.0 0.041

2 SA 296.0

2 TS 604.0 3.247**

3 SA 430.0

3 TS 470.0 0.422

n=15 1 SA 513.5 1.317

m=5 1 TS 386.5

2 SA 418.0

2 TS 482.0 0.954

3 SA 559.0 2.261*

3 TS 341.0

n=20 1 SA 702.5 5.237**

m=5 1 TS 197.5

2 SA 608.0 3.277**

2 TS 292.0

3 SA 576.5 2.623**

3 TS 323.5

n=20 1 SA 736.5 5.942**

m=7 1 TS 163.5

2 SA 853.0 8.358**

2 TS 47.0

3 SA 744.0 6.097**

3 TS 156.0

(*, **) indicate the significancy of the normalized difference z at levels
95 % and 99 %, respectively.
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deviations were computed. The results are shown in
Tables 2 and 3. It can be observed that the results obtained
by both algorithms are compatible with those shown in
Table 1.

Although the objective of this paper is not to com-
pare the two metaheuristics, Table 4 shows the results of
the Mann-Whitney-Wilcoxon test [15] in the case of the
instances for which the two metaheuristics produced non-
zero standard deviations. The values in the column “Sum-
min” consist of the rank sum of the concatenated SA-TS
results subtracted by the minimum rank sum, that is, the
sum 1 + 2+ ...+ 30 = 465. The results show that among 17
reported instances, only in one of them (n=15, m=3, instance
2) SA gave a significantly better result (at 99 % level). The
TS metaheuristic was better twice at 95 % level and eight
times at 99 %.

The CPU times are given in Tables 5 and 6. The right
hand sides of the tables show the CPU times needed to find
the best solution.

Tables 2 and 3 show that the makespan values remained
greater than the MIP upper bounds in the case of the first
instance with n = 15 and m = 5 and when n = 20 and m =
7. For this, we performed additional SA tests, in which new
types of restarts were introduced. Each time the final tem-
perature was achieved, the processing was restarted from
the current solution with a temperature equal to the final
temperature multiplied by ten. These restarts were repeated
ten times. The results and the CPU times are presented
in Tables 7 and 8. It can be observed that the makespan
values are now less than or equal to the upper bounds.
The average CPU times are between 18 and 170 min,
approximately.

Table 5 SA algorithm—CPU
times for 30 instances CPU times (ms) CPU times of best (ms)

Min. Max. Avg. S.D Min. Max. Avg. S.D

n=5 1 46,898 65,669 56,539 4981 1 12,770 2191 3450

m=2 2 42,736 52,021 48,199 2672 3 788 125 159

3 41,281 54,750 48,060 4013 11 569 126 123

n=5 1 20,143 33,548 26,350 3570 5 1178 302 332

m=3 2 30,842 45,284 39,139 3578 4 14539 2303 4039

3 34,054 43,161 38,971 2745 4 305 115 89

n=7 1 137,968 166,629 153,691 6715 2186 89,830 18,801 20,667

m=2 2 144,566 165,012 156,090 5945 1002 132,299 46,179 42,040

3 146,365 175,794 159,955 7537 2626 140,971 43,876 45,755

n=7 1 70,218 87,794 79,892 4544 2000 55,472 21,787 14,926

m=3 2 60,017 76,325 70,126 4241 2378 55,032 15,548 13,936

3 60,607 72,949 66,889 3229 89 24,141 3982 4852

n=10 1 119,350 150,872 134,638 7766 5935 124,677 52,073 35,985

m=3 2 137,869 164,610 147,894 6794 5999 133,111 41,436 37,304

3 121,435 151,709 141,429 7743 7078 70,837 30,753 20,940

n=10 1 112,866 145,438 128,687 8759 7178 118,703 41,378 34,159

m=5 2 112,882 138,423 125,655 7267 9122 127,685 53,120 34,088

3 110,838 140,326 127,392 6758 19,730 127,615 66,965 34,774

n=15 1 348,029 400,887 376,162 12,800 26,591 355,374 217,405 101,934

m=3 2 338,262 387,881 358,979 14,718 26,938 367,483 166,244 107,877

3 340,586 403,801 369,430 14,213 21,995 355,150 166,961 87,908

n=15 1 241,607 315,872 280,633 16,391 21,951 286,734 142,413 82,237

m=5 2 253,234 314,604 294,311 15,011 819 281,948 107,802 80,726

3 243,931 304,356 288,662 13,933 1364 297,415 133,638 83,180

n=20 1 495,149 604,085 550,247 25,891 51,035 507,250 257,876 158,949

m=5 2 478,893 581,231 539,434 28,457 49,322 552,428 268,551 140,355

3 484,167 578,469 540,064 25,439 54,111 559,852 261,537 162,999

n=20 1 554,610 661,257 618,761 28,257 3523 625,450 260,176 175,610

m=7 2 556,958 670,707 619,479 31,908 3606 652,873 283,266 177,613

3 508,413 697,097 621,675 39,209 4460 644,107 358,190 168,268
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Table 6 TS algorithm—CPU
times for 30 instances CPU times (ms) CPU times of best (ms)

Min. Max. Avg. S.D Min. Max. Avg. S.D

n=5 1 22,047 23,377 22,415 375 9 1839 691 497

m=2 2 21,386 22,770 21,896 344 4 574 115 144

3 21,325 23,970 21,812 565 5 179 56 51

n=5 1 34,348 36,314 34,729 365 13 2954 995 887

m=3 2 33,624 36,039 34,427 624 6 6269 1660 1156

3 33,561 35,447 34,195 578 10 2496 1606 930

n=7 1 52,258 55,476 53,013 638 148 12,572 4541 3069

m=2 2 51,270 53,388 51,820 499 649 45,792 12,241 12,438

3 52,610 54,461 53,376 490 263 41,993 12,229 12,431

n=7 1 76,025 84,299 78,038 1749 220 54,540 13,437 11,117

m=3 2 77,147 82,128 78,449 1287 987 39,494 10,575 8944

3 76,839 81,292 78,270 1308 315 14,452 4287 3725

n=10 1 190,159 199,326 192,654 2303 13,380 118,157 45,638 31,689

m=3 2 194,703 203,176 197,213 2165 3878 135,096 35,666 34,274

3 196,088 203,908 197,290 1532 1160 64,293 21,892 15,899

n=10 1 202,683 212,022 204,832 2418 8075 129,872 60,325 35,453

m=5 2 201,864 214,037 206,450 2550 21,932 195,212 84,424 48,013

3 199,713 206,482 202,424 1527 5672 200,692 95,398 55,732

n=15 1 488,538 511,019 496,189 5947 27,764 464,123 273,507 123,215

m=3 2 519,171 533,338 523,154 3825 16,031 508,221 226,209 159,550

3 496,723 502,874 499,740 1857 52,589 493,641 238,376 128,875

n=15 1 467,970 484,900 474,496 4051 53,445 460,893 244,413 108,651

m=5 2 473,526 491,086 479,028 3785 47,574 452,901 253,000 110,105

3 464,160 487,182 469,913 4904 66,107 470,343 331,076 109,473

n=20 1 969,581 1,055,694 990,975 27,251 155,310 985,382 655,829 221,563

m=5 2 974,175 998,281 984,807 6784 187,799 969,635 616,736 208,714

3 996,460 1,036,654 1,005,604 8594 284,418 1,005,561 610,805 222,410

n=20 1 945,314 1,006,516 959,948 15,856 364,600 979,586 766,307 160,048

m=7 2 935,668 958,091 942,208 4853 41,195 934,119 600,388 255,646

3 1,000,694 1,105,721 1,037,029 21,299 252,314 1,055,394 737,109 206,246

Table 7 SA algorithm—
additional makespan values for
four instances

Objective values No. of evaluations (x1000)

Min. Max. Avg. S.D Min. Max. Avg. S.D

n=15 1 150 156 153.73 1.05 179,700 183,048 181,185 794

m=5

n=20 1 119 124 121.03 1.77 1,206,689 1,267,865 1,239,428 16,569

m=7 2 126 134 130.60 1.61 253,514 258,070 255,658 1214

3 120 131 126.37 2.33 253,480 258,111 255,418 1250

Table 8 SA
algorithm—additional CPU
times for four instances

CPU times (ms) CPU times of best (ms)

Min. Max. Avg. S.D Min. Max. Avg. S.D

n=15 1 1,129,368 1,158,517 1,138,315 4830 1,129,368 1,158,517 1,138,315 4830

m=5

n=20 1 9,866,944 10,394,638 10,177,940 125,050 993,487 10,279,847 4,697,472 3,005,375

m=7 2 2,591,987 2,622,561 2,603,879 7736 2,591,987 2,622,561 2,603,879 7736

3 2,653,717 2,731,814 2,672,518 14,602 2,653,717 2,731,814 2,672,518 14,602
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7 Conclusion

The mathematical model developed in this work captures a
generalisation of a reentrant flexible flow shop, in which the
processing times of the jobs at some stage may depend on
the decisions made for the jobs at stages before and after
the current stage, that is, they may depend on the machine
sequence the jobs take in the processing flow. The problem
was encountered in a cutting stock application embedded in
the context of a virtual organisation.

The cutting stock problem is encountered in several pro-
duction contexts, such as cutting steel or glass, or cutting
wood for furniture making, in which rectangular pieces
are cut from a single rectangular stock plate. We can also
consider applications related to irregular cutting or nesting
problem class; for example, industries working with leather
and textile need to cut pieces using moulds of irregular
shape, and industries such as shipyards cut steel plates into
irregular shapes to build ships.

The model presented in this paper was applied to the cut-
ting stock application presented in Ahonen et al. [2]. Here,
same machines or servers can process tasks belonging to dif-
ferent stages, and the processing times may depend on the
machines or servers used at stages before and after the cur-
rent stage. When compared to the basic flow shop model,
the number of decision variables tends to be large. This was
observed in the case of instances with number of clients
(jobs) n = 15, 20 and number of servers m = 3, 5 and 7, for
which, except two cases of n = 15, m = 5, no optimal solu-
tions were found with the MIP package used in this work.
In this situation, a practical choice would be to use a meta-
heuristic algorithm, like simulated annealing or tabu search,
as illustrated in this work.

It can be considered that the mathematical model and
the use of metaheuristics could form a basis for introducing
practical tools for system development in the context of flex-
ible flow shops as defined in this paper, or more specifically,
in the context of cutting stock applications.
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