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Abstract This paper presents the results of comparative ex-
perimental tests of proper active powers and maximum tem-
peratures, conducted on the circumference grinding of flat
surfaces, made of grade 321 corrosion-resistant steel
(1.4541), using modern aluminium oxynitride and noble
electrocorundum vitrified-bonded grinding wheels. The tests
were carried out in both up-cut and down-cut conditions. In
both kinematic grinding aspects, the tested factors were deter-
mined by discrete increase of reductive grinding yield, apply-
ing increasing grinding-wheel in-feed to the workpiece and
keeping the remaining grinding parameters at the constant
level. The test results were later subjected to simplified statis-
tical analysis, and an attempt was made at substantive test
justification. It was demonstrated that, regardless of the as-
sumed kinematic grinding aspects of steel grade 1.4541
(321), the values of all the comparatively tested values of
aluminium oxynitride grinding wheels were, with increasing
reductive grinding yield, lower than the corresponding values
of the noble electrocorundum grinding wheels.

Keywords Electrocorundum grindingwheels . ALON
grindingwheels . Active grinding power .Maximum grinding
temperature . Stainless steel

1 Introduction

White noble electrocorundum (α-Al2O3) was applied as
grinding material on an industrial scale for the first time in
France in 1902, while γ-aluminium oxynitride (γ-AlxOyNz,
in brief, ALON) was used for the first time in the USA in 1982
[1, 2].

Although the white noble electrocorundum production
technology has not been subjected to considerable changes
and it is still melted from technical alumina, with additives,
in an electric arc furnace, aluminium oxynitride can be cur-
rently produced under about a dozen of various patented tech-
nologies allowing to obtain abrasives with diverse physical
and chemical properties.

A detailed review of particular ALON abrasive pro-
duction technologies, with the indication of property de-
scriptions, is presented in the literature quoted by
Nadolny [3].

Presently, the most popular in Europe and the Americas
is the ALON abrasive traded under the name of
ABRAL©, produced by the Pechiney Electrometallurgy
Abrasives & Reflections and the Rio Tinto Alcan in
France. ABRAL© is obtained with the application of di-
rect aluminium nitriding, with small addition of titanium
carbide, and sintering of fine crystallites in an electric
furnace. The comparison of the basic properties of abra-
sive grains of ABRAL© 55N and of white noble
electrocorundum 56A is presented in Table 1 [1–6]
(Figs. 1 and 2).

The essential operating features which distinguish the alu-
minium oxynitride abrasives from those of noble
electrocorundum include much lower wettability of the
ALON grain surfaces by liquid chromium steel and lower
intensity of grain microhardness loss zone, with increasing
grinding temperature (Fig. 3).
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Besides, aluminium oxynitride displays lower brittleness
than does noble electrocorundum, and single grains show a
larger number of cutting edges owing to sinter structure [3, 6].

The Austrian company Rappold-Winterthur applying both
types of abrasives has been producing modern vitrified bond-
ed grinding wheels for nearly 10 years.

Such grinding wheels made of noble electrocorundum are
called Uwin, and those made of aluminium oxynitride are
called NanoWin [1].

In comparison to the grinding wheels on classical ce-
ramic binders, the grinding wheels in question are
characterised by lower weight, higher resistance, ca.
10 % higher pore volume, higher resistance to tearing,
and, consequently, the better machining ability at higher
grinding speeds. Such grinding wheels make it also easier
to supply cutting oil and coolant through the grinding
wheel pores to the grinding zone.

Useful Uwin and NanoWin features result from the prop-
erties of the vitro crystalline binder bridges (Fig. 4) [7].

Suchbridges are not onlydisplayinghigher degree adhesion
to abrasive grains and lower volume in comparison to classical
ceramic-binder grinding-wheel bridges, but they also
containvitro-crystallinephase fibrechains,distributedrandom-
ly in amorphous base. Those fibres positively affect the Uwin
andNanoWingrindingwheel resistance to tearing and increase
their durability.Besides, according to the research conducted in
the Kraków University of Technology in Poland, the fibres
hardly support micromachining processes [5–8].

The tests conducted by the Rappold-Winterthur Company,
in respect of several different steel grades used in grinding

processes, with the use of Uwin and NanoWin grinding
wheels made of ABRAL© (ALON) and microcrystalline
sintered alumina (Cubitron) abrasives, indicated that the
grinding wheels made of aluminium oxynitride allowed to
increase reductive grinding yield, decrease the machining
time, and reduce the risk of grinding burns [1, 3, 7].

The reduction of the probability of grinding burn occur-
rence was associated with the reduction of grinding power
according to the same test results.

However, as the Rappold-Winterthur Company did not
publish the data concerning the testing conditions or detailed
forms of the assumed evaluation indicators, the test results
seem to be unclear and they require detailed verification.

2 Research description

Figure 5 presents the testing diagram of the circumference
surface grinding process, using the Uwin grinding wheel
made of noble electrocorundum 56A and the NanoWin grind-
ing wheels made of aluminium oxynitride 55N (ABRAL©).
where

In the input value set X:

x1—in-feed ad (3, 5, 7, 9, 11, 13 μm)
In version I for an ALON grinding wheel, with the pa-
rameters 1A 250×33×76.2 55N 60 F15VPH 902W:
Ia—for up-cut grinding conditions

Table 1 Comparison of the basic
properties of abrasive grains of
white noble electrocorundum
56A and of ABRAL 55N

Property Noble electrocorundum 56A Aluminium oxynitride ABRAL©

Grain shape Sword-shapeda Isometrica

Size of crystallites in grains (μm) ∼10 ∼10
Grain density (g/cm3) 3.96 3.65

Knoop microhardness (GPa) 20.3 18.0

Chemical composition Al2O3 99 % AlxOyNz 99.5 %

SiO2 0.01 % SiO2 0.06 %

Fe2O3 0.02 % Fe2O3 0.03 %

Na2O 0.16 % Na2O 0.11 %

CaO+MgO 0.02 %

aClassification of abrasive grain shapes according to [18]

Fig. 1 Dominating noble electrocorundum 56A abrasive grain shapes [1]
Fig. 2 Dominating abrasive grain shapes in aluminium oxynitride
55N—ABRAL© [1]
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Ib—for down-cut grinding conditions, version II for a
56A grinding wheel, with the parameters 1A
250×32×76.2 56A 60 F15VPH 902W:
IIa—for up-cut grinding conditions
IIb—for down-cut grinding conditions
In the input value set Y:
y1—volumetric grinding yield Qw mm3

y2—active grinding power Ps W
y3—grinding temperatureΘ in the maximum temperature
zone

In the conversion input value set Z:

z1—proper active grinding power Psw ¼ Ps
Qw

W
cm3 [2, 7, 9]

z2—average grinding temperature Θw in the maximum
temperature zone
In the constant value set C:
c1—grinder—precision grinder for surfaces, type 3G71S,
Russian made
c2—workpieces—100 × 20 × 20 mm cuboids made of
corrosion-resistant steel 1H18N9T (1.4541, 321)
c3—grinding velocity vs=34 m/s
c4—longitudinal feed rate ft=8 m/min
c5—cooling—without cutting oil and coolant
c6—dressing parameters for active grinding wheel
surfaces
c7—dresser type—single-grain, diamond, ground with
the blade weight of 0.8 karat
c8—circumference surface grinding, without cross-feed
(Fig. 6)

In the interfering value set H:

h1—grinding wheel dispersion parameters
h2—workpiece property value dispersion
h3—grinding parameter setting dispersion
h4—input value reading errors, etc.

Fig. 3 Changes of grain microhardness in noble electrocorundum 56A
and aluminium oxynitride 55N ABRAL©, depending on temperature [1,
3, 5]

Fig. 4 The structure of Rappold-Winterthur vitro crystalline binders,
series 600W and 900W [7]

Test-object 
processor Post-processor

h1 … hn

c1
…

 c n

y1
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y3

z1

z2

Fig. 5 Circumference surface grinding process testing diagram
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2.1 Experimental test methodology

Experimental tests were conducted on all options and
suboptions, in accordance with complete, static, determined
Test Plan PS-DK [10]. In each Test Plan setting, each exper-
iment was repeated three times. The test results obtained for
each Test Plan option and suboption were subjected to approx-
imation, with the use of the least square method and matrix
calculus. Approximation was performed by the application of
test object functions (TOF) in the form of the second-degree
polynomials, without interaction, and exponential functions.
The evaluation of the adequacy of the determined functions in
respect of the measurement results was conducted on the basis
of the analysis of maximum relative errors εmax (Eq. 1) and
determination coefficients R2 (Eq. 2).

εmax ¼ max
z
u
−žu

� ����
���

z
u

2
4

3
5⋅100% ð1Þ

R2 ¼
X n

u¼1
žu−z

� �2

X n

u¼1
z
u
−z

� �2 ð2Þ

where
zu is the arithmetic average of repeats in the Test Plan u-

system
žu is the value calculated from the determined function in

the Test Plan u-system
n is the number of Test Plan systems and z is based on

Eq. (3):

z ¼ 1

n

X n

u¼1
z
u

ð3Þ

The analyzed function was recognized to be adequate when
the arbitrarily assumed allowed value of εd≈20 % was not
lower than εmax, and the value R2≥0.95.

2.2 Testing techniques

The volumetric grinding yield Qw was determined arithmeti-
cally by multiplying the ground surface area by the grinding
depth ap. By using the coordinate machine measurement, it
was found that ap≈ad-0,0004mm. The measurements of the
active grinding power Ps were carried out by the application
of a multi-functional wattmeter, type DW 6090 (Fig. 7), con-
nected to the power-supply circuit of the main drive motor of
the grinding wheel. The measurement results were read from
the device’s digital display. The grinding temperaturesΘwere
measured in the maximum temperature zone with the use of
Flir S.C. 620 thermal imaging camera (Fig. 8), connected
through a FireWire terminal to a microcomputer equipped
with the ThermaCAM Researcher software. The software
allowed to carry out a deep analysis of the determined tem-
perature fields [11] (Fig. 9).

2.3 Test results

The first part of test results was presented analytically in
Tables 2 and 3 for up-cut and down-cut grinding, respectively,
with vitrified-bonded aluminium oxynitride grinding wheels.

Tables 4 and 5 present the second part of grinding test
results for up-cut and down-cut grinding, respectively, with
vitro-crystalline noble electrocorundum grinding wheels.

The test results presented here were subjected to approxi-
mation, in accordance with the previously discussed method-
ology and the approximating function courses, relative to in-
feed ( grinding depth), and they are illustrated in Figs. 10, 11,
12 and 13.

However, the values of proper active grinding powers are
presented in Table 6 and Fig. 14, as the target test results for
the grinding process with 55N grinding wheels and analo-
gously, in Table 7 and Fig. 15, for the grinding process with
56A grinding wheels.

Next, according to the assumed evaluation methodology of
the determined function adequacy, the values of maximum
relative errors ɛmax were calculated for the functions with the
highest values of the determination coefficient R2 and present-
ed in Tables 8 and 9.

2.4 Substantive test result analysis

The definitely lowest values of active grinding powers and
average temperatures in the maximum temperature zones, in
the whole range of the applied grinding wheel in-feed towards
the workpiece, during grinding with aluminium oxynitride
grinding wheels, in comparison to the grinding processes with
the use of noble electrocorundum grinding wheels (Figs. 10,
11, 12 and 13), resulted mainly from the differences in shape
and material structures of the 55N (ALON-sintered
microcrystallites) and 56A (composite poly-crystals) abrasive

Fig. 6 Precision surface grinder, type 3G71S (a), 55N (b) and 56A
grinding wheel (c)

276 Int J Adv Manuf Technol (2017) 89:273–282



grains. The ABRAL abrasive grains perform grinding with the
base bundle in the form of “abrasive micro-needles”, with
very small edge radii and large friction resistance of the work-
piece against the surface of such microstructures [1, 5, 8, 9,
12]. That means that micromachining phenomena dominate
during the grinding process with ALON grindingwheels. That
is demonstrated by the pictures of grinding trace structures in
the ground surfaces (e.g. in Fig. 16a), the profile graphs of the
grinding trace cross section (e.g. in Fig. 16b) and the isometric
images of the ground surface (e.g. in Fig. 16c).

However, the noble electrocorundum abrasive grains per-
form grinding with several blades at most, with considerably
larger edge radii and smaller friction resistance of the work-
piece against the cutting zone of those blades [1, 5, 8, 9, 12].
Such conditions favour the development of side bulging in the
form of burrs. That means that a considerable portion of the
microgrinding work is not designed for the removal of the
workpiece material, but rather for the material’s side reloca-
tion. Thus, microgrinding with subsequent abrasive grains
often occurs along the traces filled with burrs strengthened
by the workpiece crush. Also in that case, this interpretation
can be supported by the images of the grinding trace structures
occurring on the ground surfaces (e.g. in Fig. 17a), the profile
graphs of the grinding trace cross sections (e.g. in Fig. 17b)
and the isometric images of the ground surface (e.g. in
Fig. 17c).

The above analysis explains not only the observed differ-
ences in active grinding powers but also the differences in the
average temperature values in the maximum temperature
zone. The sample temperature value differences occurring in
particular temperature field zones, displayed in comparable
grinding processes, are presented in the thermographs below
(Figs. 18a, b).

However, considerably lower values of active grinding
powers and average temperatures in the maximum tempera-
ture zone during down-cut and circumference grinding of flat
steel surfaces, in comparison to up-cut grinding, regardless of
the types of abrasives applied in the respective tests, resulted
from the fact that abrasive grains start work with zero grinding

Fig. 7 Multi-functional wattmeter DW 6090

Fig. 8 Flir SC620 thermal imaging camera

Fig. 9 Sample thermal image of the grinding zone

Table 2 Test results for
up-cut grinding with
ALON grinding wheels

ad
mm

Qw

mm3

Ps
W

Θ

K

0.003 6 660 384

708 354

691 372

0.005 10 798 399

893 381

1080 344

0.007 14 1371 419

1458 397

1399 354

0.009 18 1845 434

1656 419

1738 404

0.011 22 2373 494

2119 478

1914 444

0.013 26 2283 519

2055 500

2123 464
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depth in up-cut grinding, unnecessarily grinding the work-
piece and consuming additional energy portions.

A separate profound analysis is required in respect of the
non-monotonous change phenomena in proper grounding
powers with the increase of the grinding wheel in-feed to the
workpiece, identified during the course of testing. Those

phenomena also occur in application of both aluminium
oxynitride (55N) grinding wheels and noble electrocorundum
(56A) grinding wheels, although non-monotonicity of such

Table 3 Test results for
down-cut grinding with
ALON grinding wheels

ad
mm

Qw

mm3

Ps
W

Θ

K

0.003 6 627 376

621 401

603 409

0.005 10 582 365

615 424

609 419

0.007 14 906 411

849 409

874 437

0.009 18 1440 452

1365 439

1401 463

0.011 22 1419 496

1388 489

1137 459

0.013 26 1335 530

1644 521

1848 507

Table 4 Test results for
up-cut grinding with
56A grinding wheels

ad
mm

Qw

mm3

Ps
W

Θ

K

0.003 6 759 365

807 394

861 398

0.005 10 1212 406

1256 413

1308 419

0.007 14 1767 494

1818 412

1754 389

0.009 18 2409 506

2244 482

2318 466

0.011 22 2682 506

2652 514

2690 482

0.013 26 2649 525

2682 543

2703 502

Table 5 Test results for
down-cut grinding with
56A grinding wheels

ad
mm

Qw

mm3

Ps
W

Θ

K

0.003 6 663 375

689 425

747 437

0.005 10 777 416

805 443

849 469

0.007 14 1242 511

1101 493

1190 498

0.009 18 1059 524

1569 539

1316 514

0.011 22 2277 555

2034 600

2136 503

0.013 26 2586 561

1989 572

2391 584

Fig. 10 The test-result approximating functions for up-cut grinding with
55N grinding wheels
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Fig. 11 The test-result approximating functions for down-cut grinding
with 55N grinding wheels

Fig. 12 The test-result approximating functions for up-cut grinding with
56A grinding wheels

Fig. 13 The test-result approximating functions for down-cut grinding
with 56A grinding wheels

Table 6 Proper active
grinding power test
results (55N grinding
wheels)

ad
mm

Psw w/mm3

Up-cut Down-cut

0.003 110.00 104.50

118.00 103.50

115.17 100.50

0.005 79.80 58.20

89.30 67.50

108.00 60.90

0.007 97.93 64.71

104.14 60.64

99.93 62.43

0.009 102.50 80.00

92.00 75.83

96.56 77.83

0.011 107.86 64.50

96.32 63.09

87.00 51.68

0.013 87.81 51.35

79.04 63.23

81.65 71.08
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changes is higher in down-cut grinding (Figs. 14 and 15). We
can distinguish two minima in those non-monotonous chang-
es. The first one corresponds to the in-feeds of the 5∼7-μm
range and the second one to the 13-μm in-feed. It would
apparently seem that the non-monotonicity of changes in the
proper grinding power results only from the form of functions
approximating the test results (third-degree polynomials,
without interaction). However, we should remember that the
material which was used in the tests was corrosion-resistant
steel grade 321, with austenitic structure, very low thermal
conductivity and high microchip adhesion to the active grind-
ing wheel surface (CPS).

The analysis of thermograms of the ground top surfaces
and of the microchip shapes indicated the reasons of the

occurrence of the first minima: it was the lowering of the
proper microgrinding resistance, caused by a surge of the av-
erage temperature on the ground top surface, as a result of too
slow thermal conductivity penetration into the workpiece
(Fig. 19a, b).

However, the reason of the occurrence of the second min-
ima was probably the attainment of the threshold of “support”
of the microchip generation process due to intercrystalline
corrosion, as well as the growth carbon solubility in the aus-
tenite (Figs. 18c) [13–17].

3 Conclusions

The following conclusions were drawn from the present
research:

& Together with in-feed (∼grinding depth) increase, the
values of active grinding power, volumetric grinding yield
and temperature are increasing in the maximum tempera-
ture zone, regardless of the type of abrasive used in the
tested grinding wheel or the kinematic grinding option
under consideration. Such changes are correctly

y = -2E+08x3 + 5E+06x2 - 34965x + 182,25
R² = 0,9138

y = -3E+08x3 + 8E+06x2 - 62264x + 227,23
R² = 0,7964
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Fig. 14 Changes of the proper active power values in up-cut and down-
cut grinding with 55N grinding wheels

Table 7 Proper active
grinding power test
results (56A grinding
wheels)

ad
mm

Psw w/mm3

Up-cut Down-cut

0.003 126.50 110.50

134.50 114.83

143.50 124.50

0.005 121.20 77.70

125.60 50.50

130.80 84.90

0.007 126.21 88.70

129.86 78.64

125.29 85.00

0.009 133.83 58.83

124.67 87.17

128.78 73.11

0.011 121.91 103.50

120.55 92.45

122.27 97.09

0.013 101.88 99.46

103.15 76.50

103.96 91.96

y = -2E+08x3 + 3E+06x2 - 23741x + 179,17
R² = 0,9957

y = -3E+08x3 + 9E+06x2 - 72982x + 263,67
R² = 0,792
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Fig. 15 Changes of the proper active power values in up-cut and down-
cut grinding with 56A grinding wheels

Table 8 Maximum relative approximation errors for the relative active
grinding power function

ad
mm

ɛmax(Psw)

55 N 56A

Up-cut Down-cut Up-cut Down-cut

0.003 13.9 % 15.2 % 11.2 % 10.5 %

0.005 4.4 % 20.7 % 8.9 % 2.2 %

0.007 4.0 % 5.6 % 10.2 % 7.7 %

0.009 7.3 % 18.5 % 3.9 % 4.1 %

0.011 17.2 % 1.6 % 8.7 % 14.6 %

0.013 5.2 % 12.3 % 20.7 % 4.7 %
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approximated by the test object functions, in the form of
the second-degree polynomials; however, the active grind-
ing power and temperature values in the maximum tem-
perature zone are lower in the circumference grinding pro-
cess, using the aluminium oxynitride grinding wheels,

Table 9 Maximum relative approximation errors for the maximum
temperature function in the grinding zone

ad
mm

ɛmax(Θ)

55 N 56A

Up-cut Down-cut Up-cut Down-cut

0.003 4.6 % 3.7 % 3.9 % 6.6 %

0.005 6.0 % 4.7 % 1.3 % 3.3 %

0.007 6.5 % 3.4 % 10.2 % 3.5 %

0.009 4.0 % 3.3 % 6.6 % 2.4 %

0.011 9.0 % 3.1 % 2.7 % 7.9 %

0.013 5.5 % 1.8 % 3.1 % 1.9 %

Fig. 16 The structure of grinding traces on the surfaces ground with
aluminium oxynitride grinding wheels (a), profile graph of the grinding
trace cross-section (b) and the isometric image of the ground surface (c)

Fig. 17 The structure of grinding traces on the surfaces ground with
noble electrocorundum grinding wheels (a), profile graph of the
grinding trace cross-section (b) and the isometric image of the ground
surface (c)

Fig. 18 Selected thermographs of the grinding zone, 55N (a) and 56A
grinding wheels (b), for the grinding wheel in-feed to the workpiece of
ad= 0.07 mm
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than in the analogous grinding process with the use of
noble electrocorundum grinding wheels.

& Regardless of the types of abrasives applied in the tested
vitro crystalline grindingwheels, the proper grinding pow-
er and average temperature values in the maximum tem-
perature zone are lower during down-cut circumference
grinding of steel grade 1H18N9T (321) flat surfaces than
during the analogous up-cut grinding.

& Together with the in-feed (∼ grinding depth) increase, the
proper grinding power values are changing non-monoto-
nously, regardless of the types of the abrasive used in the
tested grinding wheel or the considered kinematic grind-
ing option. Such changes are correctly approximated by
the test object functions, in the form of the third-degree

polynomials; however, the active grinding power values
are lower in the circumference grinding process, using the
aluminium oxynitride grinding wheels, than in the analo-
gous gr inding process with the use of noble
electrocorundum grinding wheels.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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