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Abstract In this paper, the parameters optimization of
plastic injection molding (PIM) process was obtained in
systematic optimization methodologies by two stages. In
the first stage, the parameters, such as melt temperature,
injection velocity, packing pressure, packing time, and cool-
ing time, were selected by simulation method in widely
range. The simulation experiment was performed under
Taguchi method, and the quality characteristics (product
length and warpage) of PIM process were obtained by
the computer aided engineering (CAE) method. Then, the
Taguchi method was utilized for the simulation experiments
and data analysis, followed by the S/N ratio method and
ANOVA, which were used to identify the most signifi-
cant process parameters for the initial optimal combinations.
Therefore, the range of these parameters can be narrowed
for the second stage by this analysis. The Taguchi orthog-
onal array table was also arranged in the second stage.
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And, the Taguchi method was utilized for the experiments
and data analysis. The experimental data formed the basis
for the RSM analysis via the multi regression models and
combined with NSGS-II to determine the optimal process
parameter combinations in compliance with multi-objective
product quality characteristics and energy efficiency. The
confirmation results show that the proposed model not only
enhances the stability in the injection molding process,
including the quality in product length deviation, but also
reduces the product weight and energy consuming in the
PIM process. It is an emerging trend that the multi-objective
optimization of product length deviation and warpage, prod-
uct weight, and energy efficiency should be emphasized for
green manufacturing.

Keywords Multi-objective optimization · Injection
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1 Introduction

Plastic injection molding (PIM) can quickly manufacture
high-grade plastic parts with complex configuration at a sin-
gle time. Because of versatility in mold and process design,
it has been widely used in manufacturing plastic products,
which process is actually one of the intricate systems. The
quality of plastic injection molding parts depends on the
choice of materials, mold design, and determination of pro-
cess parameter settings. The choice of materials and mold
design is usually decided before producing parts, which
cannot be easily changed. Defects in the products, includ-
ing warp, shrinkage, sink marks, and contour distortions,
can be reduced by optimizing process parameter settings.
Therefore, to search for optimal process parameter settings
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is recognized as the most feasible method and crucial step
in plastic injection molding so as to obtain high quality
products efficiently and economically.

Many researchers have been devoted to the conventional
process parameter optimization which method relies on
experience and trial-and-error [1]. Although these conven-
tional methods including the design of experiments (DOE)
method are costly and time-consuming, it is important to
evaluate design parameters and objectives through utilizing
the results of design of experiment and expert knowledge
at first. A design of experiment is used to establish the
parameter levels [2]. Sahu [3] employed design of exper-
iments and modified complex method to optimize process
conditions for reducing warpage. Ozcelik [4] also employed
this method to choose design objective parameters and used
Taguchi method to acquire the orthogonal parameter arrays.
In order to investigate the optimal process parameters, the
Taguchi approach is used in injection molding [5]. Tang [6]
introduced the Taguchi method to improve product quality
in manufacturing processes. It can solve the quality prob-
lems of products efficiently. However, Taguchi’s parameter
design method can only select the better combination of
specified process parameter level which includes discrete
values. To improve conventional Taguchi parameter design,
Fei [7] combined analysis of variance (ANOVA) with
Taguchi method to obtain the effect of injection molding
process parameter and optimal settings.

To search for the important optimal process parameters,
a series of simulation methods also had been introduced.
Computer-aided engineering (CAE) is widely used in PIM
to find the optimal process parameters [8–12]. In addition,
many researchers have focused on finding surrogate mod-
els, such as artificial neural network (ANN), support vector
regression (SVR), and response surface method (RSM).
These surrogate models are regarded as a mathematical
approximation instead of the actual simulation analyses.
Mathivanan [13, 14] minimized the sink depths in injection-
molded thermoplastic components by integrating finite ele-
ment flow analysis with central composite design (CCD)
of experiments and genetic algorithm (GA). The results
confirmed that this proposed methodology could be effec-
tive. Shi [15, 16] optimized process conditions to minimize
the warpage of the injection molding parts by using ANN
model. To obtain an optimal parameter setting with a better
control, Shie [17] employed a radial basis neural network
(RBN) over the contour distortions of polypropylene com-
posite components. Xu [18] integrated a back-propagation
neural network (BPNN) with particle swarm optimization
(PSO) to help engineers identify optimal process condi-
tions. BPNN can be utilized to efficiently optimize PIM
multiple objectives including part weight, flash, or volu-
metric shrinkage, present trade-off behaviors [19]. Zhou
[20] studied optimization of process parameters using the

SVR and GA. Chen [21] presented an integrated optimiza-
tion system to determine the optimal parameter settings of
multi-input multi-output (MIMO) plastic injection molding
process using BPNN and GA. Kurtaran [22] made reduction
in warpage in thin shell plastic parts using response surface
method (RSM) and ANN. To further improve part qual-
ity, a novel methodology integrating variable complexity
methods (VCM), constrained non-dominated sorted genetic
algorithm (CNSGA), BPNN, and Moldflow analyses was
put forward to locate the optimal solutions to the constrained
multi-objective optimization problem [23]. Moldflow can
be employed to obtain relevant data regarding warpage and
weld lines and evaluate the corresponding designs [24].
Wang [25] employed a combination of the Moldflow soft-
ware and ANN to understand the relationship between
plastic injection molding process parameters and shrinkage.
The simulation results can state the most important process
parameter affecting shrinkage.

The multi-objective optimization approached have
become a new trend in recent research in optimizing
machining process parameters. As a novel multi-objective
optimization method, non-dominated sorting genetic algo-
rithm (NSGA-II) is used to get good welding parameters
(such as welding speed, wire feed rate and rap), and errors
can be controlled within 3.97 % [26]. To select param-
eters in machining process significantly affects quality,
productivity, and cost of a component, NSGA-II was used
to solve the multi-objective optimization problem [27]. In
order to find the best process parameter combination that
optimizes simultaneously the performance characteristics of
hard turning behavior of AISI 52100 bearing steel, Bouacha
et al. [28] compared the performance of non-dominated
sorting genetic algorithm (NSGA-II) and particle swarm
optimization-based neural network(PSO-NN). It was found
that NSGA-II exhibits better performance than the PSO-NN
methodology. Zhang andMing [29, 30] successfully applied
NSGA-II to optimize the process parameters of wire elec-
trical discharge machine (WEDM) and obtained the optimal
parameter combinations that results in high surface quality
and good material removal rate (MRR).

In addition to modifying the warp, shrinkage, sink marks,
and contour distortions of PIM, product weight and energy-
consuming can also be optimized while adjusting the injec-
tion molding process parameter settings. Hsu [31] pre-
sented an integrated scheme to optimize parameter design
problems with multiple responses. Castro [32] employed
an approach comprising CAE, ANN, and data envelop-
ment analysis to determine the proper operating conditions
for finding the best compromise among several conflict-
ing performance measures. It is well known that the PIM
process consumes high energy. The hydraulic system con-
sumes most of the energy consume of the injection molding
machine. Thus, control precision and energy-saving are
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desired tendencies of the injection molding industry. Peng
[33] employed neuro-dynamic optimization to control an
injection molding process. The simulation results showed
that the proposed method can solve the high energy con-
sumption. Lu [34] studied the trade-off between product
quality and energy consumption in injection molding. The
energy consumption can be significantly reduced in labora-
tory scale tests, and at the same time, the product quality can
meet the pre-determined requirements.

Although the above mentioned researches have achieved
various levels of success, more efforts should be taken to
search an intelligent optimization strategy for efficiently
optimizing the PIM parameters when multiple objectives
are involved. DOE method and computer aided engineer-
ing (CAE) method have their merits and shortcomings,
respectively. In a widely range of process parameters, the
precision of prediction by DOE method cannot satisfy with
the engineering application. However, the prediction of
CAE method cannot always agree with the special PIM
equipment. In addition, the product weight and energy con-
sumption also could not solve by CAE method. Therefore,
the multi-objective optimization of injection molding pro-
cess parameters was put forward by two stages in this paper,
and the multiple quality characteristics and energy effi-
ciency are concerned using Taguchi method and NSGA-II.
In the first stage, the CAE method was taken in order to
determine the significant factors and narrow the range of
them. In the second stage, experimental data formed the
basis for the RSM analysis via the multi regression mod-
els and combined with NSGS-II to determine the optimal
process parameter combinations. An additional reason that
the multi-objective optimization of product length deviation
and warpage, product weight, and energy efficiency is a new
trend for green manufacturing that should be emphasized.

The following structure of this paper is arranged as
below. The optimization method and experimental setup
are drawn in Section 2. In Section 3, the simulation
results are shown and the analysis of them is obtained for
the first stage optimization. And the experimental regres-
sion model is built and the multi-objective optimization is
obtained by NSGA-II for the second stage optimization in
Section 4. Then, the discussions and conclusions are drawn
in Section 5 and Section 6, respectively.

2 Optimization method and experimental setup

2.1 Optimization method

In this paper, the optimization of PIM was obtained by two
stages. In the first stage, the parameters, such as melt tem-
perature, injection velocity, packing pressure, packing time,
and cooling time, were selected by simulation method in

widely range. The simulation experiment was performed
under Taguchi method, and the quality characteristics (prod-
uct length and warpage) of PIM were obtained by the
Moldflow commercial software. Then, the Taguchi method
was utilized for the simulation experiments and data analy-
sis, followed by the S/N ratio method and ANOVA, which
were used to identify the most significant process parame-
ters for the initial optimal combinations. Also, it can narrow
the range of these parameters for the second stage by this
analysis.

Since the injection-molded pieces used in this study were
pieces of plastic, the quality characteristics and energy effi-
ciency are concerned. The Taguchi orthogonal array table
was also arranged in the second stage. Then, the Taguchi
method was utilized for the experiments and data analysis.
The experimental data formed the basis for the RSM anal-
ysis via the multi-quality regression models and combined
with NSGS-II to determine the optimal process parameter
combinations in compliance with multi-objective product
quality characteristics and energy efficiency.

In this way, the achieved process parameter combina-
tions were expected not only to enhance the stability of the
injection molding process and ensure that the product length
met the specifications but also to effectively reduce product
weight and energy consume. The flowchart of the proposed
method is shown in Fig. 1.

2.2 Experimental setup

In the second stage, the injection molding experiments were
done by the JM55-ECO machine, which is manufactured by
Hsong Holdings Limited. PP-4025 plastic material was cho-
sen due to its characteristics of high hardness, low shrink-
age, and greater resistance to high temperature. The product
nominal length was 150.00 mm, and the desired warpage
value was 0 mm as expected. The experimental mold and
the finished product are shown in Figs. 2 and 3, respectively.
The sketch of up and down deviations of length and warpage
is shown as Fig. 3b, c. The workpiece is divided into two
parts under the geometric center point in the MoldFlow soft-
ware. Then, the up and down length deviation is defined as
the deviation of parts of up and down, respectively. Similar-
ity, the up and down warpage is also defined by this rule.
Product length was measured using a three-coordinate mea-
suring machine (Corma 564) with a range of 500 mm and
precision of 0.005 mm. Weight was measured using the pre-
cise analytical balance (Setra BL120) with a precision of
0.001 g. Energy consume was measured by energy meter
(Heng-Ping FA2104S) with a precision of 0.1W.h.

Both in the first stage and in the second stage, the Taguchi
method was employed to conduct the experiments. For the
first stage, an L25 (55) orthogonal array experiment was
arranged under Taguchi parameter standard setting values,
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Fig. 1 Flowchart of the
proposed method

in which no. 1 to no. 25 were Taguchi experimental data.
Accordingly, the control factor’s range was given five lev-
els, as depicted in Table 1. For the second stage, it is similar
to that of the first stage. An L25 (55) orthogonal array exper-
iment was also utilized to perform the PIM process. The
multiple quality characteristics and energy efficiency are the
performance of injection molding process. Accordingly, the
control factor’s range was given five levels, as depicted in
Table 2. Overall, the range of factors in Table 2 covered the
optima parameters under CAE simulation. However, some
parameters are the boundary of high or low limitation, such

as melt temperature, injection velocity, and packing time.
Then, the range of the second stage optimization is nearly
shrunk to half, comparing to the first stage optimization.

3 Simulation results and analysis for the first stage
of optimization

In this section, the L25 (55) orthogonal array is applied
by Moldflow simulation with assign five factors into rows.
Melt temperature (MT), injection velocity (IV), packing

Fig. 2 Experimental mold. a
Overview of machine. b
Injection mold. c Control system
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(a)

(b)

(c)

Fig. 3 Finished experimental product and sketch of up and down
deviations

pressure(PP), and packing time (PT), and cooling time (CT)
are control factors and are assigned to variable A, B, C, D,
and E, respectively. Therefore, the significant PIM process
parameters are determined by ANOVA and DOE screening

experiments via these simulations. In total, 50 data samples
are collected. From the experimental treatments with two
replications (up and down deviation) and the S/N ratio of
two quality characteristics, length deviation and warpage,
are shown in Table 3.

Table 4 shows the ANOVA results of product length devi-
ation and indicates that A and D are very significant, since
the P values of them are no more than 0.01. It can also
be concluded that the effects of C and E are not signifi-
cant, since the P values of them are more than 0.05. Table 5
also reveals that A is significant for warpage, and the others
are not significant. Therefore, the control factors in the sec-
ond stage could narrow the range of melt temperature and
packing time.

Since the responses of the experiment are length devia-
tion and warpage, the desired target product length deviation
and warpage are both 0 mm, and the smaller-the-better is
applied to calculate S/N ratio for each treatment. In quality
engineering, the S/N ratio could be an effective utilization
to obtain the significant parameter from those control-
ling parameters by evaluating the minimum variance. For
smaller-the-better, the definition of the S/N ratio is listed in
Eq. 1, in which η is the S/N ratio, yi is the response, and n
is the number of replications.

η = −10 × lg

[
1

n

n∑
i=1

y2
i

]
(1)

The η values of length deviation and of warpage are pre-
sented in Tables 6 and 7, respectively. The largest value of
η depicts the optimal condition. The define of delta listed in
Tables 6 and 7 is drawn as Eq. 2.

Delta = Xmax − Xmin, X = A, B, C, D, andE (2)

The Taguchi optimal parameters are the average of that
of length deviation and that of warpage. According to the
process parameter combinations of highest S/N ratio under
different responses in Tables 6 and 7 and the ANOVA results
in Tables 4 and 5, the initial process parameter settings
obtained from the Taguchi method and ANOVA are melt
temperature = 230, injection velocity = 90, injection pres-
sure = 80, packing time = 4, and cooling time = 18 for the

Table 1 Control factors and the standard settings of levels in the first stage

Melt temperature (◦C) Injection velocity (mm/s) Packing pressure(MPa) Packing time (s) Cooling time (s)

Level 1 190 30 40 1 10

Level 2 200 45 50 2 12

Level 3 210 60 60 3 14

Level 4 220 75 70 4 16

Level 5 230 90 80 5 18
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Table 2 Control factors and the standard settings of levels in the second stage

Melt temperature (◦C) Injection velocity (mm/s) Packing pressure(MPa) Packing time (s) Cooling time (s)

Level 1 210 50 50 2.5 14

Level 2 215 60 55 3 15

Level 3 220 70 60 3.5 16

Level 4 225 80 65 4 17

Level 5 230 90 70 4.5 18

length deviation optimization. Similarity, the initial process
parameter settings are melt temperature = 230, injection
velocity = 90, injection pressure = 50, packing time =
5, and cooling time = 12 for the warpage optimization.
Therefore, the initial process parameter settings for Taguchi
optimization are melt temperature = 230, injection veloc-
ity = 90, injection pressure = 65, packing time = 4.5, and
cooling time = 15. The result is listed in Table 8 for the
first stage optimization. The confirmation tests of Taguchi
optimization are conduced by CAE simulations. Then, the

up and down of length deviation are 0.9779 and −0.9762,
respectively; the up and down of warpage are 0.0264 and
−0.0266, respectively. These data of CAE simulation is also
shown as Fig. 4. Compared to Table 3, the performance of
optimized control parameters is better than that of previ-
ous settings. Then, the feasibility of optimization method is
confirmed.

In addition, Minitab 17 statistical software is utilized
for data analysis. Figures 5 and 6 draw the main effect of
factors on the S/N ratio of product length deviation and

Table 3 Experimental design, response statistics, and S/N ratio under CAE simulation

No. Control parameters Length deviation (mm) Warpage (mm)

A B C D E Up Down S/N ratio Up Down S/N ratio

1 190 30 40 1 10 1.095 −1.093 −0.7803 0.0297 −0.0298 24.5096

2 190 45 50 2 12 1.086 −1.084 −0.7085 0.0298 −0.03 24.4659

3 190 60 60 3 14 1.076 −1.074 −0.6281 0.0296 −0.0298 24.5242

4 190 75 70 4 16 1.067 −1.065 −0.5551 0.0294 −0.0298 24.5533

5 190 90 80 5 18 1.058 −1.056 −0.4815 0.0292 −0.0296 24.6122

6 200 30 50 3 16 1.058 −1.056 −0.4815 0.0288 −0.029 24.7613

7 200 45 60 4 18 1.05 −1.048 −0.4155 0.0289 −0.0291 24.7313

8 200 60 70 5 10 1.042 −1.04 −0.3490 0.0287 −0.029 24.7763

9 200 75 80 1 12 1.067 −1.065 −0.5551 0.0288 −0.0289 24.7764

10 200 90 40 2 14 1.057 −1.055 −0.4732 0.0286 −0.0288 24.8217

11 210 30 60 5 12 1.027 −1.025 −0.2229 0.0281 −0.0283 24.9743

12 210 45 70 1 14 1.044 −1.042 −0.3656 0.0284 0.0284 24.9130

13 210 60 80 2 16 1.037 −1.034 −0.3030 0.0281 −0.0283 24.9743

14 210 75 40 3 18 1.029 −1.027 −0.2398 0.0279 −0.0282 25.0206

15 210 90 50 4 10 1.021 −1.019 −0.1720 0.0275 −0.0278 25.1453

16 220 30 70 2 18 1.017 −1.015 −0.1378 0.0276 −0.0277 25.1454

17 220 45 80 3 10 1.011 −1.008 −0.0821 0.0275 −0.0277 25.1611

18 220 60 40 4 12 1.004 −1.001 −0.0216 0.0271 −0.0273 25.2879

19 220 75 50 5 14 0.9978 −0.996 0.0282 0.027 −0.0272 25.3199

20 220 90 60 1 16 1.019 −1.017 −0.1549 0.0273 −0.0274 25.2402

21 230 30 80 4 14 0.9875 −0.985 0.1184 0.0269 −0.027 25.3682

22 230 45 40 5 16 0.982 −0.98 0.1666 0.0267 −0.0269 25.4166

23 230 60 50 1 18 0.9975 −0.995 0.0308 0.0268 −0.0269 25.4004

24 230 75 60 2 10 0.991 −0.989 0.0877 0.0266 −0.0267 25.4654

25 230 90 70 3 12 0.9846 −0.983 0.1440 0.0264 −0.0266 25.5144
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Table 4 ANOVA for product length deviation

Source DOF Adj SS Adj MS F-Value P-Value

A 4 1.73355 0.433386 2537.28 0.000

B 4 0.01675 0.004188 24.52 0.004

C 4 0.00086 0.000215 1.26 0.415

D 4 0.11804 0.029509 172.76 0.000

E 4 0.00159 0.000398 2.33 0.216

Error 4 0.00068 0.000171

Total 24 1.87147

warpage, respectively. It is noted that the data mean is uti-
lized to determine factor effects. With this figure, the factor
effects can be visually observed. It shows that melt tem-
perature (A) has the extremely important effect on both
S/N ratio of product length deviation and warpage. There
is a clear linear relationship between melt temperature and
the product length deviation and warpage, respectively; the
product length deviation and warpage decrease significantly
by increasing melt temperature. This is because that bet-
ter fluidity can be obtained when the melt temperature is
high. Figure 5 also shows the effect of injection velocity
(B), packing pressure (C), packing time (D), and cool-
ing time (E) on the S/N ratio of product length deviation.
As it is depicted, melt temperature and packing time have
an extremely important effect on the S/N ratio of product
length deviation, and especially melt temperature is a domi-
nant factor on product length deviation. The same procedure
is used for the main effect of factors on the S/N ratio of prod-
uct warpage. As it is depicted in Fig. 6, none of the factors
has an extremely important effect on the S/N ratio of prod-
uct warpage except for melt temperature (A). The trend of
Fig. 6 is similar to the Fig. 5. Therefore, the product length
deviation is selected as the indicator of quality characteris-
tics in the optimization of process parameters in the second
stage. Considering the above analysis, the control factors
and the standard settings of levels in the second stage are
listed in Table 2.

Table 5 ANOVA for product warpage

Source DOF Adj SS Adj MS F-Value P-Value

A 4 2.55057 0.637643 495.32 0.000

B 4 0.05675 0.014189 11.02 0.020

C 4 0.00684 0.001710 1.33 0.395

D 4 0.01132 0.002831 2.20 0.232

E 4 0.00293 0.000732 0.57 0.701

Error 4 0.00515 0.001287

Total 24 2.63357

Table 6 η value of product length deviation (in S/N ratio)

Level A B C D E

1 −3.1537 −1.5041 −1.8252 −1.3485 −1.8252

2 −2.2744 −1.4053 −1.535 −1.3029 −1.535

3 −1.3035 −1.271 −1.2876 −1.3338 −1.2876

4 −0.3684 −1.2341 −1.0458 −1.2636 −1.0458

5 0.5477 −1.1376 −0.8585 −1.3033 −0.8585

Delta 3.7014 0.3665 0.9667 0.0849 0.9667

4 Experimental regression models and
multi-objective optimization in the second stage

4.1 Experimental results

In this section, the L25 (55) orthogonal array is also applied
by experiment with assign five factors into rows. The range
of these factors is determined in the first stage of opti-
mization. In total, 25 data samples are collected. From the
experimental treatments, length deviation, product weight
and energy consume are shown in Table 9.

4.2 Regression models

In the process of PIM, the response statistics changes drasti-
cally with the control parameters. Hence, it is very difficult
to obtain an analytical model based on the physics of
process. To solve this problem, one way is to build its
controllable parameters to the response statistics based on
regression analysis. In this subsection, general second order
models for prediction of length deviation (Ld), product
weight (Pw), and energy consume (Ec) are utilized during
the PIM. The models[35] can be drawn as the following
equation:

Y = b0 +
k∑

i=1

bixin +
k∑

i=1

biix
2
in +

k∑
i=2

i−1∑
j=1

bij xinxjn, (3)

where Y is the cutting performance (Ld ,Pw or Ec); b0, bi ,
bii , and bij are the coefficients; xin and xjn are the control
parameters, n is the sequence number of experiment (1–25)

Table 7 η value of product warpage (in S/N ratio)

Level A B C D E

1 122.6654 124.759 125.0565 124.8398 125.0579

2 123.8673 124.6881 125.0931 124.8729 125.0191

3 125.0277 124.9634 124.9356 124.9818 124.9471

4 126.1548 125.1358 124.9026 125.0862 124.946

5 127.1652 125.3339 124.8924 125.0995 124.91

Delta 4.4998 0.6458 0.2007 0.2597 0.9667
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Table 8 Taguchi experimental optimal parameters under confirmed CAE simulation

Melt temperature (◦C) Injection velocity (mm/s) Packing pressure(MPa) Packing time (s) Cooling time (s)

Length deviation 230 90 80 4 18

Warpage 230 90 50 5 12

Taguchi optimal parameters 230 90 65 4.5 15

for both materials; k is the factor number (1–5); x2
in is the

second order term of variable and xin xjn is the interaction
terms.

The regression models are developed by the software
MINITAB 17, which is commercial software for statistical
analysis. The models of PIM for Ld , P w and Ec are given
as Equation (4) to Equation (6).

Ld = −39.4 + 0.1635A − 0.0489B + 0.839C
−0.0398D − 0.0239E + 0.000614B × B

−0.001776C × C − 0.002733A × C

−0.000711B × C

(4)

Pw = 5.292 + 0.000343A − 0.000380B − 0.0763C
+0.0679D − 0.00054E + 0.000768C × C

−0.001237C × D

(5)

Ec = 60.2 − 0.2281A + 0.00142B − 0.669C
−1.071D + 0.1202E + 0.001011C × C

+0.1839D × D + 0.00268A × C

(6)

Fig. 4 The performance confirmed by CAE simulation (melt temper-
ature = 230, injection velocity = 90, injection pressure = 65, packing
time = 4.5, and cooling time = 15). a Length deviation. b Warpage

Based on Student’s t test at 95 % confidence level, there
are some coefficients omitted in above equations for Ld ,Pw

and Ec, respectively. Therefore, it is very important to verify
the adequacy of the proposed models. Then, the verification
is done by the R2 (coefficients of multiple determinations)
and ANOVA test, and Tables 10, 11, and 12 show the test
results. R2 for them are 82.46, 96.04, and 94.90 %, respec-
tively. The adjusted R-squared of three regression models
are 72, 92.34, and 94.42 %, respectively. So the regression
models for Ld ,Pw and Ec can be accepted as far as R2are
concerned.

4.3 Multi-objective optimization

NSGA-II was first proposed by Deb [36] to conduct the
elite-preserving and a phenotype crowd comparison oper-
ator to keep the diversity and reduce the computational
complexity; therefore, this evolutionary algorithm has an
excellent competency in exploring the set of Pareto-optimal
solutions to handle constrained multi-objective optimiza-
tion problems. The mathematic predictive models for length
deviation, energy consuming and product weight are opti-
mized using NSGA-II which has the capacity of finding the
optimal solution of multi-objective (two and three objec-
tives) problem. Length deviation and energy consuming are
the two main performances of PIM with natural conflict;
thus, they are regarded as two optimized objectives. By
using the NSGA-II for two-objective optimization, the opti-
mal process parameter settings with the primary goals of
minimum length deviation and minimum energy consuming

Fig. 5 Main effects plot for S/N ratio of product length deviation
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Fig. 6 Main effects plot for S/N ratio of product warpage

were obtained respectively. For sake of the synchronous
optimal of two goals, the objective functions are given as
follows:

Objective 1 = length deviation;
Objective 2 = energy consuming;

The following parameters of NSGA-II were listed
according to the study of obtaining optimal solutions with
the high efficiency:

(1). Population size = 150
(2). Maximum number of generations = 500
(3). Mutation probability = 0.25
(4). Crossover probability = 0.8

The Pareto-optimal front of two objectives (Length devi-
ation and Energy consuming) is shown in Fig. 7a, which
means the formation of the Pareto front results in the
final solution set. From Fig. 7a, it can be observed that
the values of the optimal sets were no bias towards too
high or too low due to NSGA-II allowing the all non-
dominated fronts to co-exist in the population. When the
values of length deviation increase from 0.1 to 0.87 mm,
the energy consuming decreases gradually. However, when
the length deviation continues increasing, the energy con-
suming is hardly reduced and almost keeps the same.
On the other hand, in order to study the relationship of
energy consuming and product weight, the same operational

Table 9 Experimental design and response statistics under PIM

No. Control parameters Length deviation (mm) Product weight(g) Energy consume(W.h)

A B C D E

1 210 50 50 2.5 14 0.572 3.465 9.7

2 210 60 55 3 15 0.718 3.47 10.1

3 210 70 60 3.5 16 0.35 3.507 10.3

4 210 80 65 4 17 0.49 3.55 10.5

5 210 90 70 4.5 18 0.165 3.651 11.1

6 215 50 55 3.5 17 0.711 3.477 9.5

7 215 60 60 4 18 0.562 3.496 9.8

8 215 70 65 4.5 14 0.481 3.546 10

9 215 80 70 2.5 15 0.382 3.693 9.9

10 215 90 50 3 16 0.76 3.434 9.6

11 220 50 60 4.5 15 0.98 3.506 9.8

12 220 60 65 2.5 16 0.455 3.567 9.7

13 220 60 70 3 17 0.031 3.758 10.1

14 220 70 50 3.5 18 0.721 3.447 9.4

15 220 90 55 4 14 0.661 3.476 9.2

16 225 50 65 3 18 0.849 3.556 9.7

17 225 60 70 3.5 14 0.149 3.682 9.4

18 225 70 50 4 15 0.825 3.445 8.5

19 225 80 55 4.5 16 0.729 3.462 9.3

20 225 90 60 2.5 17 0.706 3.492 9

21 230 50 70 4 16 0.204 3.704 9.7

22 230 60 50 4.5 17 0.787 3.472 8.8

23 230 70 55 2.5 18 0.611 3.476 8.7

24 230 80 60 3 14 0.504 3.499 8.5

25 230 90 65 3.5 15 0.391 3.578 9.1
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Table 10 Test results of analysis of ANOVA for Ld in PIM

Source DOF Adj SS Adj MS F-value P value

Regression 9 1.16901 0.12989 7.84 0

A 1 0.14802 0.14802 8.93 0.009

B 1 0.05089 0.05089 3.07 0.1

C 1 0.22159 0.22159 13.37 0.002

D 1 0.01414 0.01414 0.85 0.37

E 1 0.02043 0.02043 1.23 0.284

B*B 1 0.16855 0.16855 10.17 0.006

C*C 1 0.138 0.138 8.32 0.011

A*C 1 0.14472 0.14472 8.73 0.01

B*C 1 0.07617 0.07617 4.59 0.049

Error 15 0.24865 0.01658

Total 24 1.41766

Table 11 Test results of analysis of ANOVA for P w in PIM

Source DOF Adj SS Adj MS F-value P value

Regression 7 0.194988 0.027855 58.97 0

A 1 0.000129 0.000129 0.27 0.609

B 1 0.000722 0.000722 1.53 0.233

C 1 0.016518 0.016518 34.97 0

D 1 0.000691 0.000691 1.46 0.243

E 1 0.000015 0.000015 0.03 0.863

C*C 1 0.025805 0.025805 54.63 0

D*C 1 0.000836 0.000836 1.77 0.201

Total 17 0.00803 0.000472

Error 24 0.203018

Table 12 Test results of analysis of ANOVA for Ec in PIM

Source DOF Adj SS Adj MS F-value P value

Regression 8 8.80819 1.10102 37.19 0

A 1 0.40398 0.40398 13.64 0.002

B 1 0.00784 0.00784 0.26 0.614

C 1 0.21851 0.21851 7.38 0.015

D 1 0.07632 0.07632 2.58 0.128

E 1 0.56494 0.56494 19.08 0

C*C 1 0.04476 0.04476 1.51 0.237

D*D 1 0.10657 0.10657 3.6 0.076

A*C 1 0.20268 0.20268 6.85 0.019

Error 16 0.47372 0.02961

Total 24 9.2819
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(a)

(b)

Fig. 7 Pareto-optimal front of two objectives

method and parameter setting were applied to optimize
the two objectives (energy consuming and product weight).
Then, their Pareto-optimal front with the solution set is
presented in Fig. 7b. Although energy consuming is grad-
ually decreasing as well as length deviation and product
weight both rise up on the whole, the energy consum-
ing turns to fall slowly and change a little after it goes
through the critical point. It means that length deviation and
weight become undesirability with the decrease of energy
consuming. On the contrary, high quality (low length devi-
ation and small weight) has to pay the price for energy
consuming.

What is more, length deviation, energy consuming and
product weight are all regarded as three optimization goals
using NSGA-II, and the optimization models with the oper-
ational parameters were set as follows:

(1). Min f(x) = {length deviation, energy consuming,
product weight}.

(2). Population size = 200
(3). Maximum number of generations = 600
(4). Mutation probability = 0.25
(5). Crossover probability = 0.8

Nine better Pareto-optimal solutions from the whole
solutions are obtained at the end of NSGA-II operation
and shown in Table 13, and Pareto-optimal front of three-
objective optimization is shown in Fig. 8. It can be found
that length deviation, energy consuming and product weight
cannot come to the best simultaneously, and thus they
should make a compromise that length deviation and weight
are as small as possible under acceptable energy consum-
ing. Considering the actual requirements of processing,
the black circle presents the best optimal solutions for
PIM. The Pareto-optimal solutions in the black circle can
keep the balance between high quality and low energy
consuming.

Table 13 Nine better Pareto-optimal solutions for three optimization goals in PIM

No. Control parameters Length deviation (mm) Product weight(g) Energy consume(W.h)

A B C D E

1 210.0 90.0 51.7 2.5 18.0 0.626 3.438 10.274

2 216.8 87.3 51.4 2.5 17.5 0.725 3.442 9.599

3 227.7 88.9 51.4 2.6 14.9 1.074 3.447 8.291

4 226.8 88.2 53.0 2.5 15.0 0.988 3.448 8.463

5 229.2 89.0 54.1 2.5 14.1 1.027 3.452 8.207

6 230.0 63.2 50.1 2.8 14.1 0.952 3.461 7.860

7 229.0 74.6 64.4 4.4 18.0 0.148 3.552 9.738

8 227.3 75.8 65.3 4.4 17.8 0.111 3.568 9.859

9 230.0 79.6 66.4 3.0 14.0 0.132 3.609 8.943
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Fig. 8 Pareto-optimal front of
three objectives

4.4 Confirm experiment

In order to validate the Pareto-optimal front of three objec-
tives, some verification experiment were done, which is
listed in the Table 14.The mean prediction error (MPE) is
given by the following Equation

MPE = 1

n

n∑
i=1

abs(Yi − Y ∗
i )

Yi

× 100 (7)

where, the n is the total number of testing pattern, the Yi

is the experimental result of ith testing pattern, and the
Y ∗

i is the prediction result of ith testing pattern. It can
be concluded that the combination of optimized process
parameters is meet to the prediction accuracy, since the
mean prediction errors of all are no more than 15 %.

5 Discussions

Injection molding parameter settings are affected by the cost
of production. According to previous studies, in premanu-
facturing, the parameter setting combinations are generally
determined based on the engineers’ practical field related
experiences or through empirical methods, trial-and-error
methods, and experimental designs. These methods tend to
be costly in terms of both time and money, and the obtained
process parameters are not usually optimal. Therefore, the
multi-objective optimization of injection molding process
parameters are put forward by two stages in this paper, and
the multiple quality characteristics and energy efficiency are
concerned using Taguchi method and NSGA-II.

In the first stage, the parameters, such as melt tempera-
ture, injection velocity, packing pressure, packing time, and
cooling time, are selected by simulation method in widely
range. By the S/N ratio method and ANOVA analysis, it

Table 14 Verification experimental results for Pareto-optimal front of three objectives in PIM

No. Control parameters Experimental result Optimized result Prediction error

A B C D E Length Product Energy Length Product Energy Length Product Energy

deviation weight consume deviation weight consume deviation weight consume

(mm) (g) (W.h) (mm) (g) (W.h) (%) (%) (%)

1 216.8 87.3 51.4 2.5 17.5 0.724 3.513 9.8 0.725 3.442 9.599 0.14 2.02 2.05

2 226.8 88.2 53.0 2.5 15.0 0.853 3.573 9.2 0.988 3.448 8.463 15.83 3.50 8.01

3 230.0 63.2 50.1 2.8 14.1 0.815 3.505 8.8 0.952 3.461 7.860 16.81 1.26 10.68

Mean 10.93 2.26 6.91
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shows that melt temperature has the extremely important
effect on both S/N ratio of product length deviation and
warpage. Then, the most significant process parameters can
be identified for the initial optimal combinations in PIM.
In addition, the range of these parameters can be narrowed
for the second stage. Therefore, the precision of regression
models in the second stage can obtain better than that of
without CAE simulation.

In the second stage, the experimental data form the basis
for the RSM analysis via the multi regression models and
combine with NSGS-II to determine the optimal process
parameter combinations in compliance with multi-objective
product quality characteristics and energy efficiency. By
this way, the achieved process parameter combinations are
expected not only to enhance the stability of the injec-
tion molding process and ensure that the product length
meet the specifications but also to effectively reduce prod-
uct weight and energy consume. It is an emerging trend that
the multi-objective optimization of product length deviation
and warpage, product weight, and energy efficiency should
be emphasized for green manufacturing.

As it is shown in this paper, the merits of both DOE
method and CAE method have been enhanced. By this
method, the parameter setting combinations can be selected
under the Pareto solutions of multi-objective optimization.
The choice is not only for the two objects optimizations but
also for the three objects optimizations.

6 Conclusions

In this investigation, the multi-objective optimization of
injection molding process parameters was put forward by
two stages, and the multiple quality characteristics and
energy efficiency are concerned using Taguchi method and
NSGA-II. The obtained results are summarized as follows:

(1) It shows that the melt temperature has an extremely
important effect on both S/N ratio of product length
deviation and warpage in CAE simulation. And the
optimal parameters for them are melt temperature =
230 ◦C, injection velocity = 90 mm/s, packing pres-
sure = 65Mpa, packing time = 4.5s, and cooling time
=5s.

(2) To obtain the multi-objective optimization in the sec-
ond stage, the regression models for Ld ,Pw andEc can
be accepted as far as R2are concerned, in which R2 for
them are 82.46, 96.04, and 94.9 %, respectively.

(3) Using NSGA-II algorithm, the two-objective and
three-objective optimizations can offer the optimal
parameter settings with minimum length deviation,
product weight and energy consuming, in which the
mean prediction errors of all are no more than 15 %.

And the most suitable process parameter combina-
tions can be obtained from Pareto-optimal solutions
according to the requirement of the manufacturing
engineer.
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