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Abstract Maintenance of assembly and manufacturing
equipment is crucial to ensure productivity, product qual-
ity, on-time delivery, and a safe working environment.
Predictive maintenance is an approach that utilises the
condition monitoring data to predict the future machine
conditions and makes decisions upon this prediction. The
main aim of the present research is to achieve an im-
provement in predictive condition-based maintenance de-
cision making through a cloud-based approach with us-
age of wide information content. For the improvement, it
is crucial to identify and track not only condition related
data but also context data. Context data allows better
utilisation of condition monitoring data as well as anal-
ysis based on a machine population. The objective of this
paper is to outline the first steps of a framework and
methodology to handle and process maintenance, produc-
tion, and factory related data from the first lifecycle
phase to the operation and maintenance phase. Initial
case study aims to validate the work in the context of
real industrial applications.

Keywords Predictivemaintenance . Condition-based
maintenance . Context awareness . Cloudmanufacturing

1 Introduction

Maintenance of assembly and manufacturing equipment is
crucial to ensure productivity, product quality, on-time deliv-
ery, and a safe working environment. Implementation of ef-
fective prognosis for maintenance can bring variety of benefits
including increased system safety, improved operational reli-
ability, increased maintenance effectiveness, reduced mainte-
nance inspection and repair-induced failure, and reduced
lifecycle cost [1].

Maintenance approaches in industrial history have
evolved over time [2], and they are still the challenging
research topics. At earlier stages, the Corrective
Maintenance also known as reactive maintenance or
run-to-failure was used. Later, an approach called pre-
ventive maintenance (PM) was focused on taking actions
before a failure occurs. This approach has evolved to
Condition-Based Maintenance (CBM), where the deci-
sions are made based on the machine condition indica-
tors obtained in most cases through measurement sys-
tems. Predictive maintenance (PdM) and Prognostics
and Health Management (PHM) are approaches that uti-
lise the condition monitoring data to predict the future
machine health state and make decisions upon this
prediction.

Three key steps [3] of CBM are: (1) data acquisition,
(2) data processing, and (3) maintenance decision mak-
ing. In this model, the diagnosis and prognosis are in-
cluded in the last step as a part of the decision-making
process.

Standard EN 13306 [4] defines PdM as CBM carried
out following a forecast derived from the analysis and
evaluation of significant parameters of the degradation
of the item. According to the standard, the approaches to
maintenance can be categorised as shown in Fig. 1.
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According to the ISO 13381-1 [5] standard predictive pro-
cess consists of the following steps:

– Pre-processing to diagnose all existing failure modes, de-
termine potential future failure modes,

– Prognosis of current failure modes to assess the severity
of all measured failure modes,

– Prognosis of future failure modes to assess the future
failure modes,

– Post-action prognosis to identify actions that will halt or
eliminate current failure modes and prevent the initiation
of future failure modes, perform prognosis process taking
into account the effect of any maintenance actions.

Predictive maintenance of machinery gives the ability
to ensure product quality, perform just-in-time mainte-
nance, minimise equipment downtime, and avoid cata-
strophic failure [6].

1.1 Maintenance issues

The problems related to maintenance can be divided into two
complementary aspects: economical and technical. The first is
related to the economic justification of maintenance related
actions. It considers cost/benefits/investment related aspects.
Traditional approach treats maintenance as only cost related
[7], however, considering maintenance activity in broader
scope with relation to production and quality can point out
that it could be treated as an investment and analysed from
this point of view. This aspect is related to questions of what
should be done and why—economical justifications. On the
other hand, there is technical aspect related to questions of
what can be done, and how it can be done. Research presented
in this paper is focused on technical aspect, but with consid-
eration of certain economical aspect.

One of the problems in the current implementation ofmain-
tenance is the lack of holistic view over the asset and so-called
islands of knowledge. Within a company, the data about asset
are gathered by different functional units such as maintenance,
production, quality assurance, etc. The same machines/
subsystems types can be distributed through different lines,
units, and factories, causing that spread data are gathered

and analysed independently. Therefore, lessons learned in
one place are not used in another place.

Moreover, data are gathered, produced, and processed by
different ICT (Information and Communication Technologies)
systems [8] e.g. CMMS (Computerized Maintenance
Management System) and CM (Condition Monitoring) for
maintenance functions; SCADA (Supervisory Control and
Data Acquisition) for monitoring process and controlling the
asset; ERP (Enterprise Resource Planning) for business func-
tions; and SIS (Safety Instrumented Systems) for safety-related
functions.

There are some existing data that could be used; however, it
is analysed only in special cases, or not at all. Example of this
kind of data is data in machine tool controller systems; it
includes different events and parameters. Often, the issue is
lack of knowledge about the importance of the data. This
resulted in the situation that the data important to diagnosis
and prognosis are not collected although all the technical re-
sources exist.

Another problem is related to the inability to predict future
performance while introducing new working conditions, e.g.
new materials for manufactured product. It also applies when
process parameters are being optimised from the production
perspective.

Emerging technologies like Cloud-based approaches of-
fer new opportunities. Targeting this vibrant field, the
present research proposes a new approach for predictive
maintenance. Its novelty includes: (1) variety of utilised
data; (2) context modelling; and (3) application using a
Cloud-based approach.

The rest of the paper is organised as follows. Section 2
reviews methods and research areas related to the present
work; Section 3 introduces our research interests; Section 4
outlines the research framework; Section 5 presents a case
study; and, finally, Section 6 concludes the paper and high-
lights our future work.

2 Related research

In this section, research efforts related to the key aspects of the
proposed approach are described.

MAINTENANCE

Preventive MaintenanceCorrective Maintenance

Condition based MaintenancePredetermined Maintenance

On request ContinousScheduledScheduledDeferred Immediate

Predictive 
Maintenance

Fig. 1 Maintenance strategies—based on EN 13306 [4]
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2.1 Cloud-based approaches

2.1.1 Cloud computing

Cloud computing can be considered as evolution of grid com-
puting with orientation to business [9]. The idea of the cloud
computing is to provide on-demand services through the
Internet that can be categorised in three groups:
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). In recent years,
there has been a noticed trend to apply the cloud computing
model in the manufacturing industry [10].

During the past years, the cloud approach for CM has
found several implementations; several companies are provid-
ing commercial services. Still, not many if any provide the
PdM. Recently, Lee et al. [11] presented the methodology
for adapting Prediction and Health Management (PHM) sys-
tems in a cloud environment, exemplified by IMS Watchdog
Agent® Toolbox. In the presented example, the system has
been adopted to run on virtual machines in cloud with en-
hanced configurability enabled by modularisation of its func-
tionality. It has also been mentioned that cloud computing
allows recording of data and status of machine throughout
its whole life span. Therefore, degradation process can be
tracked by both the machine builder and the user.

2.1.2 Internet of things

Internet of Things (IoT) is a paradigm where everyday objects
are connected to the Internet. It allows devices communication
with each other with minimum human intervention [12]. The
term has been initially used by Kevin Ashton in 1999. In [13],
he describes the IoT as follows:

‘If we had computers that knew everything there was to
know about things—using data they gathered without any
help from us—we would be able to track and count every-
thing, and greatly reducewaste, loss and cost.Wewould know
when things needed replacing, repairing or recalling, and
whether they were fresh or past their best.’

2.1.3 Cloud manufacturing

Cloud manufacturing (CMfg) paradigm is a result of combi-
nation of cloud computing, the IoT, service-oriented technol-
ogies, and high performance computing [14]. It transforms
manufacturing resources and capabilities into manufacturing
services. It is not the simple deployment of manufacturing
software tools in the computing cloud. The physical resources
integrated in the manufacturing cloud are able to offer adap-
tive, secure, and on-demand manufacturing services over the
Internet of Thinks [15]. One of the services included in CMfg
concept is Maintenance-as-a-Service [16].

2.2 Disparate data source

Integration of disparate data sources that are commonly avail-
able in industry can be integrated for better maintenance de-
cision making. The cloud approach is pointed as a feasible
solution for this integration [8, 17]. XML language is present-
ed as a tool that can be used for data integration. However,
there is no research reported on how this data can be used to
improve the prediction. In [18], the architecture and the basic
concept of an integration platform for maintenance have been
presented.

2.3 Fleet-wide approach

Research described in [19, 20] presented an approach of pre-
dictive maintenance at the fleet level. By adding not only data
from identical units but also similar ones, the higher volume of
data can be obtained to reduce uncertainty. Semantic model is
used to determine similar cases that have been registered in the
past among the fleet. Indicated context have been divided into:

– Technical context—technical features,
– Dysfunctional context—degradation modes,
– Operational context—operational conditions
– Service context—operation modes
– Application context—context indicated as needed for

optimisation.

It applies a similarity-based prognosis approach for RUL
(remaining useful life) estimation as presented in [21].
Multiple models are built upon data from previous run-to-
failure cases, and data from current case are compared with
the obtained models. Prediction is done based on the models
that are closest to the current situation. Offline stage is used to
determine the aggregation function, which allows conversion
of multidimensional time series of faulty and nominal signals
into mono-dimensional health time series. Relevance Vector
Machine (RVC) and Sparse Bayes Learning (SBL) are used to
utilise new knowledge for prognosis. The approach has been
tested in the referenced work through a case study for diesel
engines. In online stage, the time series from the current unit
are converted to health time series. Among learned time series,
the similar ones are found and similarity-based interpolation is
applied for RUL prediction.

2.4 Massive machine maintenance data analysis

In [22], the cloud-based case-based reasoning has been
adopted for fault prediction. Case-based reasoning (CBR) is
an effective way for solving problems. Cases are created based
on data fault and sensor data retrieved from maintenance da-
tabase and machine sensor data, respectively. When a new
case is created, this is updated in a local node. To maintain
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the case database, some cases need to be updated or removed.
In this approach, the local nodes are used for real-time mon-
itoring and prognosis, while cluster computing in the cloud is
used for case-base creation and its maintenance. In the local
node, the ‘target case’ is created and all similar cases from the
local database are retrieved. Based on the similarity, the cases
are ranked. Each case is associated with a fault type. This is
used to predict the failure. However, this is prediction of what
type of failure can occur, but not when it will occur. The
presented framework is of big potential, but methods for esti-
mation of RUL have not been mentioned. Moreover, it does
not fully utilise the cloud computing concept. It is limited to
distributed and cluster computing.

2.5 Information fusion

In predictive maintenance, there is a need to handle different
data from different sources. These are the inputs to the process
as well as intermediate results. Foo and Ng [23] provided an
overview on high-level information fusion. Data and informa-
tion fusion has been explained as a technique that involves a
process of combining data from multiple inputs with the aim
to obtain information that is better than that would be derived
from each of the sources individually. Data fusion is used in
predictive maintenance in various ways. Recently, a review on
multisensory data fusion state-of-the-art was reported in [24].
Information fusion (IF) research has an origin in military area;
however, it was also applied in other areas. As an example, the
work done in [25] presented the application of IF in
manufacturing for simulation-based decision support.

The IF and CBM processes have many in common.
Therefore, knowledge from IF research could be applied for
improvements in CBM. Figure 2 presents an overview of the
IF and CBM processes. For proper maintenance decision
making, the processes included in high-level IF should bewith
high importance.

2.6 Challenges in predictive maintenance

In analysing surveys and state-of-the-art papers in the field of
predictive maintenance, several challenges are found.

2.6.1 Context data utilisation

Beside condition monitoring data, there is a need to collect
and utilise in predictions effect of external environmental
variables such as operational condition data, as well as ef-
fects of minor maintenance actions [26]. Moreover, better
correlation of machine condition with process and inspection
data are required to provide context needed to differentiate
between process and machine degradation [6]. The appropri-
ate means to synthesise data in this way remains an open
research question [27].

2.6.2 Knowledge management

Knowledge extracted during process should be managed in
the way that it can be reused in later cases. Incorporate sub-
jective information from the area experts in RUL estimation
and effect on it for prediction reliability.

2.6.3 Uncertainty management

It is important to develop robust algorithms that can accurately
perform the prognosis in the presence of uncertainty as well as
methods to quantify the confidence in the results of prognosis
[28].

2.6.4 Systematic approach

There is a lack of systematic way in predictive maintenance
system design and implementation [29]. It should also include
an economical justification of a selected approach [1]. To be
able to compare and select proper approach, there is a need of
an evaluation framework for predictive methods.

3 Problem definitions

This research aims at improving maintenance activities by
applying cloud-based predictive maintenance approach with
utilisation of variety of data types and sources. The main as-
pects of the research can be summarised by the following four
research questions.

RQ1. In what ways can predictive maintenance activities
for one entity be improved by utilising information from mul-
tiple similar entities? This research question aims to study
possible improvements for predictive maintenance. The hy-
pothesis for this question can be expressed by the following
mathematical formula (1).

I in KAk <
X

i

I in KAi <
X

i

I in⋃
i

KAi ð1Þ

where I in KAx is the information that can be obtained from
xth knowledge area, ∑ is a fusion operator for information,
and U is a fusion operator for knowledge areas.

Knowledge area can be interpreted as knowledge about
each separate entity or group of entities. It can also be
interpreted as knowledge from specific perspective e.g. main-
tenance, production, and quality. Very often, data from those
perspectives are analysed independently. Lee et al. [6] provid-
ed an example where overall equipment effectiveness (OEE)
only provides the status of production efficiency without rela-
tionship between performance and the cost involved in sus-
taining a certain OEE level. Furthermore, machine condition
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data is not correlated with controller and inspection data to
distinguish between process and machine degradation.

Fusion of multiple pieces of information obtained separate-
ly from different knowledge areas should provide lower infor-
mation uncertainty than single information. Moreover, fusion
of information obtained from fused multiple knowledge areas
should provide even more improvement. Some examples of
potential improvement are provided in Section 4 of this paper.

RQ2. How predictive maintenance activities for one entity
can be improved by utilising information from multiple sim-
ilar entities? This question can be further broken down into the
following two questions:

RQ2 (a) What data and information are required?
RQ2 (b) How the data and information from different

sources and of different kinds can be integrated in a useful
way for the predictive maintenance purpose?

Traditionally, condition-based maintenance of entity is fo-
cused on and limited to condition monitoring data related only
to the monitored entity. This research question addresses the
issue of improving maintenance activities by considering in-
formation and data from other similar activities. This could
provide solutions that have already been found for similar
problems. This research questions is focused on methods that
can be applied to utilise data from multiple entities in useful
way for PdM.

RQ3. How the cloud-based models of predictive mainte-
nance could be designed? The aim of this research question is
to define benefits, opportunities, and threats of using the cloud
concept in application to proposed approach with consider-
ation of current and future problems.

RQ4. How the proposed approach could be implemented?
The focus of this research question is on the framework and

methodology of the proposed cloud-based predictive mainte-
nance approach.

4 Framework

In our framework, data from various sources and of different
types are considered, including (1) condition monitoring data
such as vibration from accelerometers, temperature, ball-bar
measurements, etc.; (2) event data about fault, failure, and
maintenance actions; and (3) context data related to
manufactured product and process specification, production
environment, and geometrical setup.

Acquiring and analysing context data benefits in various
ways. It allows us to compare monitoring data from popula-
tion of entities, e.g. by finding items that work in similar
conditions. When applying new working conditions to partic-
ular item, prediction can be improved by analysing data from
other items that have already been working with those or
similar conditions. For prediction purpose monitoring, data
could be analysed in the context of past, present, and future
working conditions. An example of how estimation of remain-
ing useful life can be improved within this framework is
depicted in Fig. 3.

Simple scenario of RUL estimation is presented in Fig. 3a.
The health indicator is obtained from condition monitoring
signal, and degradation curve from run to failure could be
recorded. With this scenario, if the degradation curve is pres-
ent, it could be compared and fitted to the current state. Then,
by comparing fitted degradation curve with threshold value,
the RUL can be obtained. This case can be seen as related to
single knowledge area. It needs to be noticed that proper RUL
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should provide time to occurrence of functional failure. It is a
moment that machine or component cannot perform its tasks
fulfilling requirements e.g. machining accuracy, surface
roughness, or cycle time.

Next scenario presented in Fig. 3b corresponds to usage of
more data by means of more degradation curves from a pop-
ulation of machines. Fitting those curves gives a set of possi-
ble RUL values that allow us approximating the RUL distri-
bution. It is additional information that can be used in the
decision process. This is an example how much information
can be obtained by fusing information from a set of knowl-
edge areas. In this case, each knowledge area represents
knowledge regarding each separate machine from the same
perspective related to its health state monitoring.

Figure 3c shows the third scenario which accounts the con-
text data beside the condition monitoring data. In this scenar-
io, degradation curves from similar working conditions repre-
sented by context data are grouped together. It is marked with
different line styles for degradation curves. When estimating
the RUL, planned future working conditions could be
accounted that leads to more accurate predictions as the only
set of the most relevant data is taken for the estimation. In this
case, information regarding each separated machine has been
obtained from fused knowledge areas, when one knowledge
area is the area mentioned in the previous two scenarios, and
the other areas are related to context knowledge.

One of the means of context modelling is ontology.
According to [30], an ontology-based context modelling
allows:

– Knowledge sharing between computational entities by
having a common set of concepts about the concept;

– Logic inference by exploiting various existing logic rea-
soningmechanisms to deduce high-level, conceptual con-
text from low-level, raw context;

– Knowledge reuse by reusing well-defined Web ontol-
ogies of different domains, e.g. a large-scale context on-
tology can be composed without starting from scratch.

Other data utilised in our framework are event data that are
important from different perspectives of prognosis. One is
identification which and when component failed and/or has
been replaced. Connecting event data with condition monitor-
ing data allows mapping performed maintenance actions and
occurrence of events to changes in performance. To achieve
this, there is a need to fuse information of different type i.e.
structured and unstructured data that are present as event
descriptors.

Cloud-based concept is not limited to the cloud computing
where IT resources such as infrastructure, platform, and appli-
cations are delivered as services, but it is a broader concept
where the Internet of Things (IoT) and cloud manufacturing
ideologies are considered.

By combining the CBM/PdM and the cloud concept, we
could gain in multiple areas and solve some existing and fu-
ture problems. However, this process should not be only one
directional, when existing applications are being brought in to
the cloud and provided as services. Probably, methodologies
and techniques used in CBM/PdM should be adapted to ben-
efit more from the fact that are realised with the cloud concept.
This step further will bring new opportunities as well as new
threats to overcome.

Having shop floor machines in the cloud allows us includ-
ing in steps of prediction, not only data from items under
investigation but also data from whole population of identical
or similar item. Data can be gathered and processed without or
with minimal intervention of human operators. Moreover, it
will allow for direct feedback to the machine, e.g. to modify
controller parameters so as to maintain performance according
to the current situation and machine health status. Further,
having all equipment interconnected allows acquisition of
better context information. In this concept, connected equip-
ment can deliver Data-as-a-Service to the cloud-based pre-
dictive maintenance. On the other hand, equipment can sub-
scribe Prognosis-as-a-Service or in more general case
Maintenance-as-a-Service. An overview of this approach is
presented in Fig. 4.
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Within the cloud, data, knowledge, and resources could be
exchanged. Example of one potentially fruitful data and infor-
mation link is between machine tool builder (MTB) and ma-
chine user. When MTB can access and process data from all
installed machines, it could improve future design and support
services.

Another important aspect of prognosis is uncertainty.
It is an effect of sensor measurement errors, missing
data, and/or knowledge as well as errors introduced by
the methods. Predictions are also affected by uncertain
future conditions. Recently, this aspect of prediction has
attracted more attention. To schedule maintenance ac-
tions, not only the value of remaining useful life predic-
tion is needed but also the uncertainty associated with
this value. To handle and process uncertainty probability
theory, Evidence theory, Fuzzy Set, or Rough Set theory
could be applied.

5 Case study

An initial case study has been settled in a production line
of an automotive manufacturing industry. At first, a vari-
ety of data regarding one machine/subsystem is analysed.
As a subject of investigation, a machine tool linear axis
has been selected. Considered data sources are CMMS
system with information of maintenance actions and the
spear parts stock, SCADA system with production data,

CM system with ball-bar measurements, and online ma-
chine tool monitoring system.

Example of result from ball-bar measurement of ma-
chine with some issues in X axis is presented in Fig. 5.
A special software tool has been developed to parse
folders with the ball-bar measurements stored in the
XML files, and exported to an RDB (Relational Data
Base).

To generate feature for single axis i.e., X axis, feature
XRMS = XYRMS + XZRMS −YZRMS has been proposed,
where ABRMS represent RMS (Root Mean Square) value
calculated from recorded deviations of path radius when
executing circular path in plane defined by axes A and
B. This feature has been calculated for measurements
exported to the RDB, and results have also been stored
in the same RDB.
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FromCMMS, all machines of the same type as the machine
selected for the case study have been identified and instances
of X axis’ ball-screw for all of those machines have been
created. Those instances have been grouped into (1) ball-
screws that have already been replaced (failed) and (2) ball-
screws that are still in operation. For each instance, a corre-
sponding RMS-based feature from ball-bar measurement has
been queried. For the failed ball-screws depicted in Fig. 6a, it
can be noticed an increasing trend for the selected feature over
its lifetime. Looking at the operating ball-screws in Fig. 6b,
some items with accelerated degradation process can be iden-
tified, i.e. the one represented with square marked line. Next
step is to find the correlation between machine usage context
and the differences in the degradation processes.

To obtain the context related information regarding ma-
chine tool usage, an online monitoring system has been
installed in the machine tool’s electrical cabinet. This data
acquisition system retrieves and stores information about the
machine’s axes positions, velocities, and torques. A
screenshot of live preview is presented in Fig. 7.

6 Conclusions

This paper presents a research framework for cloud-based
predictive maintenance. The main aim of the present research
is to improve condition-based predictive maintenance by
using the largest information content possible—a maximum
content in a factory or in-between factories. However, novelty
is not in the amount of data but in the variety of data sources
and the approach to gathering, processing, and utilising the
information according to the cloud-based concept. In the core
of the approach, there is context modelling, retrieval, and pro-
cessing that corresponds to knowledge management. This will
allow processing and exchanging knowledge in a cloud envi-
ronment to benefit from crowdsourcing. It is also a better
solution economically compared with existing working man-
ner based on multiple stand-alone systems and island type of
data collection and decision making.

The next step of this research covers continuation of the
case studies in real-world industrial settings. Future work will
focus on analysing means to correlate machine condition with
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context data, as well as on developing general cloud-based
framework. More results will be reported separately in the
future.
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