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Abstract To control and to manage the geometric deviations
along the product life cycle, the first step is to consider, during
the design stage, the tolerance specification, the tolerance al-
location and the tolerance analysis. Many approaches of the
literature for tolerance analysis of rigid assemblies exist, and
different commercial computer-aided tolerancing (CAT) soft-
ware packages were developed with those models. However,
there is a growing interest in considering working conditions
and operating windows in CAT. As a response to these needs,
skin model concept was proposed. The aim of this paper is to
connect a point cloud-based discrete geometry framework (i.e.
a skin model representation) to the manufacturing processes,
in order to bring the CAT simulation tools closer to reality. In
this work, the effect of a manufacturing process on solving a
stack-up function is investigated throughout circular profiles
obtained by a turning process. A case study has been defined
and solved using two literature models, the variational model
and the vector-loop one, by considering the manufacturing
signature. The results have been compared to those obtained
by the same models without considering the manufacturing
signature. Monte Carlo simulations have been carried out by
solving the stack-up functions into Matlab® software, and
statistical analyses have been carried out by Minitab®
software.
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Nomenclature
T Index of data points in each sampled profile
B Backshift operator
N Number of equally spaced points each profile
k Number of undulations per revolution for each

profile
a Means vector of a multivariate normal distribution

used in the Armax model
b Variance-covariance matrix of a multivariate normal

distribution used in the Armax model
εt Term modelled as a Gaussian white noise with stan-

dard deviation equal to 0.374 μm
Li Generic side of the rectangular box (i=1 to 4)
rzi Rotation parameter of the generic side of the box

(i=1 to 4)
tyi Translation parameter of the generic side of the box

(i=1 to 4)
di Geometric tolerance parameter applied to the points i

of each circular profile (i=A, B, C, D and E) and
used in the variational model

{Δx} Vector of variations of the dimensional variables
{Δu} Vector of variations of the assembly variables
{Δα} Vector of variations of the geometric variables
[A] The first order partial derivate of the dimensional

variables in the closed loop
[B] The first order partial derivate of the assembly vari-

ables in the closed loop
[C] The first order partial derivate of the dimensional

variables in the open loop
[D] The first order partial derivate of the assembly vari-

ables in the open loop
[F] The first order partial derivate of the geometric var-

iables in the closed loop
[G] The first order partial derivate of the geometric var-

iables in the open loop
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Sij
d Sensitivity matrix of the dimensional variables
Sij
α Sensitivity matrix of the geometric variables
m Number of the dimensional variables
n Number of the geometric variables
αj Geometric tolerance parameter applied to the points j

of each circular profile (j=A, B, C, D and E) and
used in the vector-loop model

F Scale factor

1 Introduction

The geometric variation management is a need in design,
manufacturing and all other phases of the product life cycle
[1]. It is due to the fact that, even though modern manufactur-
ing processes achieve an increasingly high accuracy, geomet-
ric deviations have a huge influence on both the function
behaviour and on the customers’ quality perception of the
product. To control and to manage these geometric deviations
along the product life cycle, the first step is to consider during
the design stage, the tolerance specification, the tolerance al-
location and the tolerance analysis [2].

Tolerance analysis is an important task in the design of
mechanical assemblies, and it has received considerable atten-
tion in literature. Tolerance analysis generally consists in
studying one or more tolerance chains, each of which associ-
ates a functional requirement on the assembly with a set of
tolerances specified on components; the mathematical model
of a tolerance chain helps to detect situations where
manufacturing errors that are allowed by parts’ tolerances
are likely to violate the required assembly tolerance. From this
basic objective, however, the problem has been defined dif-
ferently according to the needs of specific applications.
Differences can involve properties of parts and assemblies
(the geometry of the features and relations), types of tolerance
specifications (dimensional or geometric) and assumptions on
tolerance stack-up (worst-case or statistical). As consequence,
several methods have been proposed for solving tolerance
analysis problems under different sets of assumptions.

The most significant models for tolerance analysis of rigid
assemblies proposed by the literature are vector loop, matrix,
variational, Jacobian, torsor, unified Jacobian-torsor and the T-
Map®. The basic idea of the vector-loop model is to represent
the variability in the product, due to the tolerances and the
assembly conditions, by chains of vectors [3, 4]. The basic
idea of the variational model approach is to represent the de-
viations from nominal due to the tolerances and the assembly
conditions through a set of parameters of a mathematical mod-
el [5–7]. The matrix model uses a displacement matrix to
describe small displacements of a feature within its tolerance
zone and clearance between two features [8]. A Jacobian-
based model uses pairs of functional elements to represent
both the dimensions and the variations in an assembly. The

functional element pairs are arranged in chains representing
those dimensions that stack together to determine the resultant
assembly functional requirement [9–11]. The torsor model
uses the idea that tolerances are essentially small linear and
angular dispersions of a functional feature with respect to its
nominal, and it is based on the concept of a small displace-
ment torsor [12, 13]. The unified Jacobian-torsor model is an
innovative tolerance analysis method, which uses the torsor
model for tolerance representation and the Jacobian matrix for
tolerance propagation [14]. Both deterministic and statistical
analysis methods about this model are concise and efficient.
The T-Map® model is based on a two-level model: the local
model that models a part’s variations in order to consider the
interactions of the geometric controls applied to a feature of
interest, and the global model that inter-relates all control
frames on a part or assembly. A tolerance-map is a hypothet-
ical solid of points in n-dimensions, which represent all pos-
sible variations in the feature or assembly. Overlaying the
coordinates of the T-Map, the stack-up equations to perform
the tolerance analysis are obtained [15, 16]. Many commercial
CAT software packages were developed on the basis of those
models, such as 3-DCS of Dimensional Control Systems®,
VisVSA of Siemens®, CETOL® and so on.

However, there is a growing interest in considering work-
ing conditions and operating windows in CAT [17, 18]. These
computer models for tolerance simulation and analysis make
severe simplifications about observable geometric deviations,
since they are reduced to rotational and translational feature
defects [19]. This leads to results with large ranges of uncer-
tainty and a discrepancy between the virtual models and the
observed reality [20]. Furthermore, the tolerancing tasks in
design as well as all other activities of geometric variations
management should be incorporated in a complete and coher-
ent tolerancing process [21, 22]. As a response to these needs,
skin model concept was proposed [1]. It is a model of the
physical workpiece surface in contrast to the nominal model,
which is a ‘simple’ model of the intended workpiece not tak-
ing into account inevitable geometric deviations [1].

The aim of this paper is to connect a point cloud-based
discrete geometry framework (i.e. a skin model representa-
tion) to the manufacturing processes, in order to bring the
CAT simulation tools closer to reality. The discrete geometry
framework of the skin model has been represented by the
pattern left on a surface throughout a turning process that is
a widely used manufacturing process. The turning process
involves a correlation among the points on the manufactured
surface that is called signature; it has been inserted in the
framework of the skin model.

The first contribution of this paper is the insertion of a skin
model into two models of the literature for tolerance analysis of
rigid parts: the variational and the vector-loop ones. The second
contribution is that the used skin model is the signature of an
actual turning process. To demonstrate the effectiveness of
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considering the actual turning signature into the models for
tolerance analysis, the developed skin models with signature
have been applied to a case study made up of three parts: a rigid
box and two profiles that fit within it. The case study has been
chosen simple in order to be solved manually but representa-
tive, since it allows to consider both dimensional and geomet-
rical tolerances applied to the same profile. The obtained results
have been compared to those obtained by the use of the two
models of the literature. Matlab® andMinitab® software pack-
ages have been used to carry out the tolerance analysis and the
statistical analysis of the obtained results, respectively.

The paper is organized as follows: in Section 2, the case
study and the manufacturing signature of the circular profiles
are presented. In Section 3, the variational model with and
without manufacturing signature is solved. In Section 4, the
vector-loop model with and without manufacturing signature
is described in detail and solved. In Section 5, the obtained
results are compared and discussed.

2 Case study

The case study is composed by three parts: a hollow rectan-
gular box and two circular profiles that fit within it, as shown
in Fig. 1. The aim of this 2D tolerance analysis is the mea-
surement of the variation of the gap g between the second
profile and the top side of the box (Δg) as a function of the
dimensions and the tolerances applied to the components, as
shown in Table 1. The tolerance analysis has been carried out
by considering the rectangular box fixed and the circular pro-
files with and without the manufacturing signature.

In this work, circular profiles machined by turning process
have been studied throughout an autoregressive-moving aver-
age (ARMAX) model [23]. This harmonic model was com-
bined with a second-order autoregressive model of the noise.
Combining this harmonic model and the second-order
autoregressive model of the noise, the parametric model of
the identified process signature is given by:

Y t ¼
ffiffiffiffiffi
2

N

r X3
k¼2

b2k−1⋅cos
k⋅t⋅2⋅π
N

� �
þ b2k ⋅sin

k⋅t⋅2⋅π
N

� �� �

þ 1

1−a1B−a2B2 ⋅εt

ð1Þ

where t=1, 2,…, N is the index of data points in the sampled
profile, B is the backshift operator, N is the number of equally
spaced points measured on that profile. For each index t, Yt
represents the radial distance between the actual point and the
least square substitute circle, measured at an angular position
θt = 2πt / N. Thus, the signature model in Eq. (1) is a linear
combination of two harmonic terms plus a second-order

autoregressive model of the noise. Each term of the first part
of Eq. (1) represents the kth harmonic (k=2, 3), characterized
by k undulations per revolution. The parameters’ vector (a and
b) in Eq. (1) forms a stochastic vector, that has a multivariate
normal distribution with the mean vector and the variance-
covariance matrix. The term εt in Eq. (1) was modelled as a
Gaussian white noise with standard deviation equal to
0.374 μm.

The introduction of the manufacturing signature in toler-
ance analysis is an important step to improve the simulation
results due to the solving of the literature models. In fact, the
variation of a profile radius is simulated as shown in Fig. 2a
into literature models; but actually, we have the configuration
shown in Fig. 2b. This real configuration shows a generic
signature due to the manufacturing process. However, in this

Fig. 1 Case study made up of three parts: a rigid box and two profiles
that fit within it

Table 1 Parameter values of case study

Definition Parameter Value [mm]

Width of the box X1 50

Height of the box X2 80

Radius of the circular profile 1 X3 20

Radius of the circular profile 2 X4 20

Dimensional tolerance of the circular profile 1 r1 0.0145

Dimensional tolerance of the circular profile 2 r2 0.0145

Form tolerance of the circular profile 1 d1 0.0145

Form tolerance of the circular profile 2 d2 0.0145
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work, the manufacturing process is a turning process, so the
signature wasmainly affected by bi-lobe and tri-lobe contours.
An example of the machined profile due to the ARMAX
model is shown in Fig. 3.

3 Variational model with and without manufacturing
signature

A mathematical rigorous foundation of the variational model
has been proposed by Boyer and Stewart [6] and later by
Gupta and Turner [7]. So, the gap g of Fig. 1 has been evalu-
ated by means of the following analytical equation, while all
the details are reported in [24]:

g ¼ 1:2702þ rz3ΔX 13−ΔY 13 þ 5rz3−ty3−r2−dE ð2Þ

where

ΔX 12 ¼ ty4 þ r1 þ dB þ rz4 40−hð Þ� �
= 1þ rz1rz4ð Þ ð3Þ

ΔY 12 ¼ rz1ΔX 12−5rz1 þ ty1 þ r1 þ dA ð4Þ
h ¼ −5rz1 þ ty1 þ r1 þ dA ð5Þ
ΔX 13 ¼ −rz2ΔY 13−a ð6Þ

ΔY 13 ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−c
	 
q

ð7Þ
a ¼ 18:73rz2 þ ty2 þ r2 þ dD ð8Þ
b ¼ rz2 10−a−ΔX 12ð Þ−38:73þΔY 12½ �= 1þ rz22

	 
 ð9Þ
c ¼ 10−a−ΔX 12ð Þ2 þ 38:73−ΔY 12ð Þ2− 40þ r1 þ r2 þ dCð Þ2

h i
= 1þ rz22
	 


ð10Þ
In Eqs. (2)– (10), rzi is the rotation parameter of the generic
side Li of the box, tyi is the translation parameter of the generic
side Li of the box, r1 and r2 are the model parameters, due to
the dimensional tolerances, of the first and the second circular
profiles, respectively, di is the model parameters due to the
form tolerance applied to the points of circular profiles (where
i=A, B, C, D and E, as shown in Fig. 1), ΔX12-ΔY12 and
ΔX13-ΔY13 are the assembly parameters of the first and the
second profiles on the rectangular box. The parameters rzi and
tyi of the sides of the box are equal to zero because the box has

fixed planar surfaces. So the set of Eqs. (2)– (10) is drastically
simplified in

g ¼ 40−dE−r1−r2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dC þ r1 þ r2 þ 40ð Þ2− dB þ dD þ r1 þ r2−10ð Þ2

q
−dA

ð11Þ
where only the model parameters due to the dimensional and
form tolerances of two circular profiles are required. The
Eq. (11) has been solved throughout of a statistical approach
considering the model parameters as statistical variables fol-
lowing Gaussian probability density functions.

The same mathematical model has been used by con-
sidering the manufacturing signature. This means that the
values of the form tolerance of the two circular profiles
have been substituted by the value of the form deviations
computed by means of the manufacturing signature (i.e.
by means of Eq. (1)). Therefore, the roundness of the two
circles has been simulated by the local values of Yt eval-
uated for the points on the circular profile. The obtained
values have been used to define the values of the param-
eters di of the variational model, where i=A, B, C, D and

Fig. 2 How to simulate the radial
variation of a circular profile

Fig. 3 Machined profile generated by the Armax model

2156 Int J Adv Manuf Technol (2017) 88:2153–2161



E with A, B, C and D the contact points between the
profiles and the box. The values of r1 and r2 remain equal
to ±0.0145 mm, since the manufacturing signature affects
only the values of the di parameters.

4 Vector-loopmodel with andwithoutmanufacturing
signature

The vector-loop-based tolerance analysis method has been
proposed by Chase et al. [3]. The assembly equations
expressed by the vector-loop-based assembly models which
use vectors to represent either component dimensions or as-
sembly dimensions take three main sources of variation into
account in a mechanical assembly: dimensional, kinematic
and geometric variations.

The methodology of the vector-loop model may be sum-
marized in three main steps. First of all, one should create the
assembly vector loops. The whole assembly is modelled with
a graph representation, in which each edge corresponds to a
joining feature, while each vertex is a part being assembled.
Then, equations are written for each independent loop.
Assembly constraints for each vector loop may be expressed
as a concatenation of homogeneous rigid body transformation
matrices. These equations are linearized using Taylor’s series
expansion (direct linearization method—DLM). Finally, loop
equations are solved.

Taylor’s first-order series expansion of assembly constraint
equations for a closed loop can be written as

ΔHCf g ¼ A½ �⋅ Δxf g þ F½ �⋅ Δαf g þ B½ �⋅ Δuf g ¼ 0f g ð12Þ
and for an open loop, it is:

ΔHof g ¼ C½ �⋅ Δxf g þ G½ �⋅ Δαf g þ D½ �⋅ Δuf g ð13Þ

where {ΔHC} is the vector of clearance variations in a closed
loop, {ΔHo} is the vector of assembly variations in an open
loop; {Δx} is the vector of variations of dimensional vari-
ables; {Δu} is the vector of variations of assembly variables;
{Δα} is the vector of variations of geometric feature vari-
ables; [A] and [C] are the first-order partial derivatives of the
dimensional variables in the closed loop and open loop, re-
spectively; [B] and [D] are the first-order partial derivatives of
the assembly variables in the closed loop and open loop, re-
spectively; [F] and [G] are the first-order partial derivatives of
the geometric feature variables in the closed loop and open
loop, respectively.

Among Eqs. (12)–(13), {Δu} is obtained by solving these
two equations. For the closed loop, {Δu} is given in Eq. (14)
if [B] is a full-ranked matrix.

Δuf g ¼ − B½ �−1⋅ A½ �⋅ Δxf g− B½ �−1⋅ F½ �⋅ Δαf g ð14Þ

From Eqs. (13)–(14), it can obtain the {Δu} in the open
loop as

Δuf g ¼ C½ �− D½ �⋅ B½ �−1⋅ A½ �
� �

⋅ Δxf g

þ G½ �− D½ �⋅ B½ �−1⋅ F½ �
� �

⋅ Δαf g ð15Þ

Therefore, the gap g of Fig. 1 has been evaluated by means
of the three main steps and the analytical equation previously
mentioned. The assembly graph of Fig. 4 shows two joints of
‘cylinder-slider’ kind between box and profile 1 at points A and
B, respectively, one joint of ‘parallel-cylinder’ kind between
profile 1 and profile 2 at point C, one joint of ‘cylinder-slider’
kind between profile 2 and box at point D, and the measure to
perform g. The vector loops have been created and placed on
the assembly, as shown in Fig. 5. The first (closed) loop joins
the box and the profile 1 by the links passing from points A and
B. The second (closed) loop joins the subassembly box—pro-
file 1 and the profile 2 by the links passing through points D and
C. The third (open) loop defines the gap g. Once the vector
loops have been defined, the relative equations have been gen-
erated and solved. So, the variation of gap g (Δg) can be esti-
mated with a worst-case way and a statistical way (with the root
sum square), as shown in Eqs. (16)–(17):

Δgwc ¼ �
Xm
j¼1

Sd


 

⋅Δx j þ

Xn
j¼1

Sαj j⋅Δα j

 !
ð16Þ

ΔgStat ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

Sd


 

⋅Δx j

 !2

þ
Xn
j¼1

Sαj j⋅Δα j

 !2
vuut ð17Þ

where the sensitivity matrices of dimensional variables Sij
d and

geometric variables Sij
α are known, in accordance with [25],

which are the coefficients of the {Δx} and {Δα} in
Eqs. (14)–(15); m and n are the number of dimensional and
geometric variables, respectively.

Fig. 4 Assembly graph of the case study
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Also, the variation of gap g (Δg) can be estimated with a
Monte Carlo simulation. In this case, it is just necessary to
solve the assembly problem, to write the final stack-up

function and to vary the model parameters randomly.
Therefore, the problem can be drastically simplified in
Eq. (18):

g ¼ X 2−X 3−X 4−αA−αE− αC1 þ αC2 þ X 3 þ X 4ð Þ⋅sin arccos
X 1−X 3−X 4−αB−αD

αC1 þ αC2 þ X 3 þ X 4

� �� �
ð18Þ

where X1 and X2, the width and the height of the box, respec-
tively, are constant; X3 and X4, the radii of two profiles, have a
Gaussian density function with a mean value equal to radius
and standard deviation equal to a third of the dimensional tol-
erance (r1 and r2, respectively); αA, αB, αC1 , αC2 , αD and αE,
the geometrical parameters of two profiles, have a Gaussian
density function with mean value equal to zero and standard
deviation equal to a sixth of the form tolerance (d1 and d2).

The samemathematical model has been used by considering the
manufacturing signature. This means that the values of the form
tolerance of the two circular profiles have been substituted by the
value of the form deviations computed bymeans of themanufactur-
ing signature. Therefore, the roundness of the two circles has been
simulated by the local values ofYt of Eq. (1) evaluated for the points
on the circular profile. The obtained values have been used to define
the values of the parameters Δαj of the vector-loop model, where
j=A, B, C, D and E with A, B, C and D are the contact points
between the profiles and the box. The value ofΔxj remains equal to
±0.0145 mm, since the manufacturing signature affects only the
values of theΔαj parameter.

5 Discussion of results

Monte Carlo simulations have been carried out by
implementing 50,000 runs; this value has been chosen after

performing a sensitivity analysis. In particular, the sensitivity
analysis has been carried out all models by varying the num-
ber of Monte Carlo simulations and considering a scale factor
F=1. The results about the standard deviations due to the
sensitivity analysis are shown in Fig. 6. It is evident that re-
sults are very stable if 50,000 runs of Monte Carlo simulation
are carried out.

Three scale factors (1, 10 and 50) of the applied tolerance
ranges have been considered to simulate three different

Fig. 5 Assembly loops of the case study

Fig. 6 Results about standard deviation of the sensitivity analysis (F= 1)
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dimensional and geometrical conditions of the circular pro-
files. The measurement of the g gap has been evaluated at
every assembly cycle, and a statistical analysis has been car-
ried out by Minitab® software. The normality of the obtained
distributions of the g gap has been evaluated by means of
Anderson-Darling test. All results are shown in Tables 2, 3
and 4 with the mean, the standard deviation, the skewness and
kurtosis values (model 1 is the variational model with
manufacturing signature, model 2 is the variational model
without manufacturing signature, model 3 is the vector-loop
model with manufacturing signature and model 4 is the
vector-loop model without manufacturing signature).

The mean value of the gap g due to the variational and
vector-loop models without the manufacturing signature is
very near to the nominal value of 1.2702 mm even varying
the scale factor. When the scale factor increases, the standard
deviations of the gap g increase in eachmodel and there are no
significant differences among models.

The variational and vector-loop models with the
manufacturing signature involve a decrease of the gap

mean value with the increase of the scale factor. It is
due to the fact that when the ARMAX model generates
the profiles, they are always generated in very similar and
nearby positions as shown in Fig. 7, and the next effect is
the shift of the second profile towards the upper side of
the box, until exiting.

To solve this problem, other simulations have been
carried out in which the profiles have been generated by
the ARMAX model, at first, and then they have been
casually rotated; only after the rotation, the parameter
values for two models, in the contact points, have been
extracted by profiles. In this way, an operating condition
of the assembly has been introduced.

The results of these last simulations are shown in
Table 4 (model 1r is the variational model with
manufacturing signature and model 3r is the vector-loop
model with manufacturing signature, both with profiles
casually rotated). The variational and vector-loop models
with manufacturing signature and operating condition in-
volve a smaller decrease of the gap mean value with the

Table 2 Variational model
results considering 50,000 cycles
of assembling

Model Scale
factor

Mean
[mm]

3 · StDev
[mm]

A2 P value Skewness Kurtosis

1 1 1.2562 0.047 0.150 0.966 −0.005 −0.012
10 1.1307 0.467 0.230 0.796 0.017 −0.002
50 0.5763 2.351 0.260 0.705 0.010 −0.033

2 1 1.2701 0.043 0.470 0.247 0.004 −0.039
10 1.2693 0.434 0.350 0.467 0.015 0.023

50 1.2713 2.175 0.420 0.320 0.009 0.014

Table 3 Vector-loop model
results considering 50,000 cycles
of assembling

Model Scale
factor

Mean
[mm]

3 · StDev
[mm]

A2 P value Skewness Kurtosis

3 1 1.2561 0.047 0.250 0.744 0.000 0.000

10 1.1319 0.472 0.430 0.313 0.004 −0.037
50 0.5849 2.344 0.550 0.159 0.020 0.002

4 1 1.2702 0.049 0.200 0.891 −0.005 −0.028
10 1.2705 0.494 0.660 0.083 −0.013 −0.006
50 1.2673 2.445 0.300 0.584 0.016 0.004

Table 4 Results of variational
and vector-loop models with
manufacturing signature and
operating conditions

Model Scale
factor

Mean
[mm]

3 · StDev
[mm]

A2 P value Skewness Kurtosis

1r 1 1.2701 0.053 0.430 0.307 0.011 −0.038
10 1.2690 0.535 0.830 0.033 −0.014 −0.026
50 1.2400 2.676 0.640 0.098 −0.001 −0.024

3r 1 1.2702 0.053 0.310 0.549 0.008 −0.029
10 1.2691 0.534 0.380 0.404 0.023 −0.017
50 1.2407 2.685 0.300 0.592 0.007 −0.066
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increase of the scale factor, but these gap mean values are
very near to the nominal value of 1.2702 mm and to the
mean values evaluated previously. The standard devia-
tions change if compared to that previously obtained and
with this changing, a magnitude of the manufacturing

signature effect on the tolerance analysis has been evalu-
ated, as shown in Fig. 8.

All Anderson-Darling tests show that the obtained distri-
butions of the g gap are Gaussian, symmetric and normally
concentrated around the mean value.

Fig. 7 Ten profiles generated by
Armax model

Fig. 8 Percentage variation of
three·standard deviation due to
the manufacturing signature

2160 Int J Adv Manuf Technol (2017) 88:2153–2161



6 Conclusions

This paper presents two skin models for tolerance analysis of
rigid parts that take into account the pattern left by the turning
process on the obtained surfaces, it has been called signature.
The developed two models have been applied to a case study
in order to compare them with the models of the literature that
consider the surfaces as a single feature. The adopted case
study involves three parts. The manufacturing signature has
been simulated by means of bi-lobe or tri-lobe profiles, which
are the contours typically given by a turning process. The first
Monte Carlo simulations have shown that the mean values of
the gap g, due to the variational and vector-loop models with-
out manufacturing signature, are very near to the mean value
of 1.2702 mm even by varying the scale factor, but they de-
crease when the manufacturing signature is taken into ac-
count. Moreover, the standard deviations of the gap g increase
in each model and there are not significant differences with
and without considering the manufacturing signature.

To overcome these limitations, due to the Armax model,
into the generations of profiles with signature, other simula-
tions have been carried out introducing an operating condition
of assembly, the casual rotation of profiles. With this trick, the
mean values of the gap g due to the variational and vector-loop
models with and without manufacturing signature are very
near to the mean value of 1.2702 mm even by varying the
scale factor with a maximum percentage variation of about
2.5 % when a scale factor equal to 50 is considered. The
standard deviations change if compared to that obtained with
the first simulations, in particular there are mean variations
equal to 23.2 and 8.7 % between the variational model with
and without signature and the vector-loop model with and
without signature, respectively.

Future works aim to verify the effectiveness to consider
manufacturing signature for solving 3D tolerance analysis
problems that involve further signatures of manufacturing
processes.
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