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Abstract Machining with anthropomorphic robotic manipu-
lators is used to increase the flexibility and reduce the costs of
production. Productivity in robotic machining processes is
limited by low rigidity of robot structure and vibration insta-
bility in machining (chatter). Vibration instability analysis in
robotic machining process is a challenging issue due to the
variability of the dynamic behavior of the robot within its
workspace. Hence, a dynamic model which correctly takes
these variations into account is important to define the cutting
parameters and the robot configurations to be adapted along a
machining trajectory. In this paper, a multi-body dynamic
model of a serial robot is elaborated using beam elements
which can easily be integrated into the machining trajectory
planning. The beam element geometry, elasticity, and
damping parameters are adjusted on the basis of experimental
identifications. A stability diagram based on regenerative
chatter in milling operations as a function of the kinematic
redundancy variable is established. It is shown that stability
in robotic machining can be ensured through the optimization
of the robot configurations, without changing the cutting pa-
rameters, in order to maintain productivity performance. The
predicted stability diagram is validated by experimental robot-
ic machining results.

Keywords Robotic machining . Kinematic redundancy .

Stability prediction

1 Introduction

Technical advances in anthropomorphic robots position them
as serious competitors to conventional machine tools in terms
of precision, load capacity, and flexibility. Industrial robots are
mainly used for pre-machining and the machining or other
post-casting applications in the foundry industry with a
high-productivity requirement. In order to increase the remov-
al rate, which gives a shorter machining cycle time and high
productivity, cutting volume and cutting speed should be in-
creased. These parameters are limited by the low rigidity of
the robot structure and the appearance of chatter vibrations.
This paper addresses the machining chatter vibrations in the
robotic machining process.

Tobias et al. [1] and Altintas [2] present the regeneration of
waviness (Fig. 1b) as the most powerful source of chatter and
self-excited vibration. The regenerative chatter vibration system
can be represented by the block diagram as shown in Fig. 1a.

The dynamic behavior of a robot within the workspace
depends on its configuration. Each posture has its own dy-
namic behavior and stability conditions [4]. Thus, a dynamic
model of a robot, which correctly takes these variations into
account, is essential in order to analyze the stability of ma-
chining operation and optimize the cutting parameters. In this
way, several researchers have devoted their studies to the dy-
namic modeling and identification of the dynamic behavior in
order to optimize the precision in robotic machining with re-
spect to their poses.

Mejri et al. [5] experimentally investigated the end-effector
position effect on the dynamic behavior of an ABB IRB6660
robot. They observed modifications in the robot’s dynamic
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behavior depending on changes in its posture. The experimen-
tal identification enables the determination of the actual dy-
namic parameters of the robot structure, but they are valid for
a given position and configuration where the tests are per-
formed. It cannot predict the robot dynamic behavior along a
trajectory. Moreover, experimental identifications are very ex-
pensive and time-consuming, but they are usually required as
an effective means to calibrate numerical models [6].

Two approaches are generally used for numerical modeling
of the robot’s dynamic behavior: (a) flexible joints and rigid
bodies approach and (b) both flexible joints and body ap-
proach [4].

The flexible joints and rigid body approach is an effective
tool for dynamic modeling of the machine tools. The advan-
tages in terms of computing time justify the application of this
method in many researches, where dynamic behavior is mainly
influenced by low-frequency dominant modes and the rigidity
of the joints are weak compared to the rigidity of the links [4, 7].

Pan et al. [7] and Rafieian [8] studied instability phenom-
ena in robotic machining based on flexible joints and rigid
body approach. Based on this modeling approach, only low
frequencies for the robot, depending on joint flexibility, can be
obtained. This modeling approach does not allow determining
the high-frequency range that is needed for analyzing stability
of robotic machining equipped with a high-speed spindle.

Machine tool structures are more rigid than the serial ro-
bots, and their bodies can be assumed as infinitely rigid.
However, considering the robot links as infinitely rigid is not
adapted for accurate prediction because they are not rigid
enough as machine tool parts [4, 9].

Mousavi et al. [4] studied two modeling approaches and
compared them according to their respective capabilities to
predict machining stability. This comparison demonstrates
the necessity of considering link flexibilities for stability anal-
ysis in robotic machining.

In order to consider the flexibility of robot links, the finite
element method (FEM) can be used. It provides an accurate

estimation of static behavior by the determination of the robot
stiffness matrix in the workspace [9–11]. Variation in robot
dynamic behavior can be tracked along a machining trajectory
by several frequency-domain simulations of local linearized
FEM. Time-domain simulation of nonlinear FEM is impracti-
cable due to the high model complexity and calculation cost
[9].

Matrix structural analysis (MSA) method [11, 12], as a
simplified FEM, uses equivalent beam elements for the
modeling of mechanical structure components. It is used for
model reduction. This method has been applied to predict the
dynamic behavior of machine tool parts such as spindle rotors
using Timoshenko beam elements [3], as well as complete
machine tools using Bernoulli beam elements [12]. This meth-
od enables the analysis of the dynamic behavior of a robot in
different configurations along a machining trajectory with an
acceptable computing time.

In section 2, the MSA method is used to elaborate a re-
duced, but enough accurate dynamic model of the STAUBLI
170 BH industrial machining robot by considering the flexi-
bility of links. In section 3, the parameters of the robot dy-
namic model are identified on the basis of experimental results
[13–15]. This model is used in section 4 to predict stability
conditions, according to the configurations of the robot. The
stability limits are established as a function of the kinematic
redundancy variable. The experimental tests of machining op-
erations are realized and confirm the dynamic model predic-
tions. Finally, conclusions are presented in section 5.

2 Dynamic model of the STUBLI 170 BH robot

Dynamic modeling and simulations along a machining trajec-
tory by using FEM of the real robot body geometries is inef-
fective because of the large size of the resulting models and
the high computational time. In this paper, theMSAmethod is
used to reduce model size and, consequently, the calculation

Fig. 1 a Block diagram of
regenerative chatter vibrations; b
chip thickness variation in
regenerative chatter [3]
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time of simulation process along a machining trajectory. To
this end, each link of the robot structure is represented by
three-dimensional (3D) Euler–Bernoulli beam elements as
shown in Fig. 2.

The 3D beam element has two nodes and 12° of freedom.
The nodal displacements in the local frame are arranged as

ULocal ¼ u1 v1 w1 θx1 θy1 θz1 u2 v2 w2θx2 θy2 θz2
� �T

The displacement transformation matrix between local and
global coordinates is

ULocal ¼ Q⋅UGlobal ð1Þ

where Q is the local to the global coordinate transformation
matrix. It is a 12×12-block orthogonal matrix which is ob-
tained in the local coordinate direction cosines expressed in
the global one. The direction cosines of the local coordinate

attached to the beam i (Xi, Yi, and Zi) in the global coordinate
(X0, Y0, and Z0) (Fig. 2) are presented as shown in Table 1.

The transformation matrix for element i then is written as

Qi½ �12�12 ¼
λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

2
664

3
775
12�12

ð2Þ

where λ½ � 3�3 ¼ l1 m1 n1½ l2m2n2 l3m2n3�
The same transformation is used for nodal force.

FLocal ¼ Q⋅FGlobal ð3Þ

Thereafter, the principle of virtual displacements in local
frame is

FLocal ¼ Kq⋅ULocal ð4Þ

where Kq is the stiffness matrix of the element in the local
coordinate. The results are recalled here for the 3D case:

Kq
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L
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−EA
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0 0 0 0 0 −
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0 0

0 0
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0
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0
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0

0
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0 0 0
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0
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0 0 0
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−
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0 0 0 0 0
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0 0 0 0 0

0
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0 0 0
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0
12EIz
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0 0 0
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0 0 0
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0
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0 0 0 0 0
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0
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0

0
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0
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0 0 0
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L

It can be written in the global coordinate as

FGlobal ¼ Kx⋅UGlobal ð5Þ

where Kx is the stiffness matrix in the global coordinate.
Hence, stiffness matrix in the global coordinate is obtained
through the congruent transformation (the transformation

matrix is orthogonal: Q− 1 =QT).

Kx ¼ QT ⋅Kq⋅Q ð6Þ

Similarly, mass and damping matrices in the global frame
are written as

X x ¼ QTXqQ with X ¼ M ;K ;C ð7Þ
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The global mass and stiffness matrices of the structure are
obtained by assembling the mass and stiffness of the structure
elements in the global coordinate.

A simplified beam element model of the STAUBLI 170
BH robot is developed on MATLAB® as shown in Fig. 3b.
The STAUBLI 170 BH serial industrial robot is composed of
six active joint q= [q1…q6] and six links as shown in Fig. 3. It
is equipped with a high spindle speed.

The Travel Coordinate System (TCS) typemodel is applied
to identify the local frame in the kinematic chain as illustrated
in Fig. 4 [16].

Two characteristic dimensions of the kinematic element i
are axial offset ai, measured on the axis of the pair (i-1, i)
(OiOi”), and link length bi, defined by the normal to the axes
of the two pairs adjacent to element i (Oi”Oi’) (Fig. 4). These
parameters are determined from the actual geometry of the
robot as presented in Table 2.

The direct geometric model defining the pose of the
end-effector in the global frame is represented by the
following transformation from O0X0Y0Z0 (global coordi-
nate) to O6X6Y6Z6 (local frame attached to end-effector)
[16, 17]:

O0X 0Y 0Z0 →
RX
01 φ10ð Þ

O1X 1Y 1Z1 →
TZ

11
0 b1ð Þ

O10X 1
0Y 1

0Z1
0 →

RY

1
0
2
φ21ð Þ

O2X 2Y 2Z2

→
TY

22
0 0 a2ð Þ

O2}X 2″Y 2″Z2″ →
TX

2″2
0 b2ð Þ

O20X 2
0Y 2

0Z2
0 →

RY
2
0
3
φ32ð Þ

O3X 3Y 3Z3 →
RY
34 φ43ð Þ

O4X 4Y 4Z4 →
TZ
44″

a4ð Þ
O4}X 4″Y 4″Z4″ →

RX
4″5

φ54ð Þ
O5X 5Y 5Z5

→
TY
55″

a5ð Þ
O5}X 5″Y 5″Z5″ →

RY
5″6

φ65ð Þ
O6X 6Y 6Z6

In these transformations, R
→
a
bc φð Þ denotes a homogeneous

4×4 matrix associated to a rotation of angleφ around the axis
a! (X, Y or Z) from the local coordinate b (OiXiYiZi) to the

local coordinate element c Oiþ1X iþ1Y iþ1Ziþ1ð Þ : T
→
e
fg dð Þ de-

notes a homogeneous 4×4 matrix to a linear transformation

matrix along the axis e! (X, Yor Z) from the local coordinate f
(OiXiYiZi) to the local coordinate g (Oi0X i0Y i0Zi0 or
Oi "Xi "Yi "Zi ") by a displacement of d (ai or bi presented in
Table 2).

A06 is an operator defining the pose, and the end-effector is
expressed as follows [17]:

A06 ¼ RX
01 φ10ð Þ:TZ

11
0 b1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

A01

⋅RY
1
0
2
φ21ð Þ:TY

22
0 0 a2ð Þ:TX

2″2
0 b2ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A12

⋅RY
2
0
3
φ32ð Þ|fflfflfflfflffl{zfflfflfflfflffl}

A23

⋅RY
34 φ43ð Þ:TZ

44″ a4ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A34

⋅RX
4″5 φ54ð ÞTY

55″ a5ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A45

⋅ :RY
5″6 φ65ð Þ:TX

66″ a6ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A56

Otherwise,

A06 ¼ ∏
6

i¼1
Ai−1;i ¼ A01A12A23A34A45A56

where Ai − 1,i is the 4×4 homogenous matrix that expresses the
position and the orientation of the local frame of element i relative

to the local frame of element i-1. The local frame of a robot
element (i) relative to the global frame is obtained as follows:

A0i ¼ ∏
i

k¼1
Ak−1;k ¼

0 0 0 1
X i

Y i λOi½ �3�3
Zi

2
664

3
775

Fig. 2 3D beam elements with
12° of freedoms
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The homogenous matrix orientation part (λ0i) is used to
determine the transformation matrix of each robot element
(Eq. 2).

To define the inverse geometric model of the robot, Paul’s
method [18] is used. The inverse geometric model gives the
different joint variables (φi,i − 1) according to the known end-
effector poses A06 along a machining trajectory.

Based on the MSAmethod, each robot’s link is represented
by a 3D beam element (Fig. 3b) and assembled by following
the flow chart shown in Fig. 5. Elementary matrices are as-
sembled in the global coordinate system as in the classic finite
element procedure.

3 Identification of robot parameters

The flexible joints are modeled by linear torsional springs.
The joint stiffness values for the STAUBLI 170 BH robot
were obtained experimentally by Olabi et al. [19] based on
the measurement of joint angular displacements due to the
static load. The joint stiffness values from the base to the
end-effector respectively are presented in Table 3.

A linearized dynamic model of the robot, for a given con-
figuration x0 in the global frame, can be expressed by the
following differential equation:

M x x0ð Þ€δx tð Þ þ Cx x0ð Þδx tð Þ þ Kx x0ð Þδx tð Þ ¼ F tð Þ ð8Þ

where δx(t) = x(t)− x0 is an infinitesimal nodal displacement
relative to the global frame. F(t) is the force vector. Mx, Cx,
andKx are respectively robot systemmass, damping, and stiff-
ness matrices in the global frame. They are determined for
each configuration in the robot workspace according to the
flow chart given in Fig. 5.

The beam element’s dimensions are determined from CAD
models supplied by the robot manufacturer as presented by
Oueslati et al. [14]. The equivalent Young modulus of the
robot is identified to EAlu=69.10

9pa, and the equivalent den-
sity is ρAlu=2700 Kg/m3 [14].

In dynamic analysis of structures, damping plays an
important role. The experimental identification carried
out by Mejri et al. [5] enables the determination of the
actual modal parameters of the robot structure in a given
position and configuration where the tests are performed.
It is not valid for other positions and configurations of
the robot, but they are usually required as an effective
means to calibrate numerical models. Swiatek et al. [20]
performed the numerical identification of damping which
is carried out by using FEM simulation with ADAMS®.
This damping model remains a numerical approximation.
Proportional damping occurs in most industrial cases. It
is the most common approach to model dissipative forces
in complex engineering structures. It can be easily inte-
grated into Altintas formulation for identification of the
stability limit.

The proportional damping model expresses the
damping matrix (Cx) as a linear combination of the mass
(Mx) and stiffness matrices (Kx) (Rayleigh hypothesis)
[21], that is,

Cx ¼ αM x þ βKx ð9Þ

α and β values are determined by using vibration testing.
The major advantage to consider proportional damping lies on
the fact that a structure having n degrees of freedom can be
represented by n uncoupled real mode [22]. For this reason,
the damping in the form shown in Eq. 9 is advantageous as an

Fig. 3 a Stäubli 170 BH CAD model; b beam elements model of the
robot

Table 1 Direction
cosines between axes xi yi zi

X0 l1 m1 n1
Y0 l2 m2 n2
Z0 l3 m3 n3

Int J Adv Manuf Technol (2017) 88:3053–3065 3057



orthogonal transformation, and the damping term in Eq. 8
reduces to

P½ �T : Cx½ �: P½ �

¼

αþ βω2
1 0 : : 0

0 αþ βω2
2 : : :

: : : : :
: : : αþ βω2

k :
0 : : : αþ βω2

n

2
66664

3
77775
n�n

ð10Þ
where [P] is the eigenvector matrix and ω0k is the kth natural
frequency of the structure. Again, from symmetry, it can be
inferred that, as it is shown in Eq. (11), the orthogonal trans-
formation of the damping rationmatrix reduces to the form [22]

ξk ¼
1

2
αω0k þ β

ω0k

� �
ð11Þ

Bearee [15] realized the experimental test on STAUBLI
170 BH robot for two different configurations. For the first

configuration, the estimated dominating frequency is 8.2 Hz
and 5.9 Hz for the second one. The damping ratio associated
with this mode is estimated for both configurations at 6.5 %.
Hence, these results are used to determine damping matrix
coefficient values (α and β) using the damping ratio for kth

mode (ξk).
The natural frequencies and mode shapes of the robot sys-

tem are determined numerically as solutions of the following
Eigen problem equations:

Kx−ω2
0kM x

� �
Pk ¼ 0 ð12Þ

where Pk is the kth mode shape (eigenvector) of the robot
structure. It has a nontrivial solution if and only if

det Kx−ω2
0kM x

� � ¼ 0

Calculate the joint coordinates and transformation 

matrices of each element (Eq.2) as function of operational 

space coordinates, by using inverse geometric model. 

Calculate the mass and rigidity matrices of each body of 

the robot in the local coordinate. (Elementary matrices) 

Determine the mass and rigidity matrices of each body 

in the global coordinate system by using element 

matrices and transformation matrices (Eq. 7) 

Assembling the elementary mass and rigidity matrices in 

the global coordinate system as in the classic finite 

element procedure

Fig. 5 Chart flow to construct a FE model of the robot in any
configuration in the workspace

Table 2 Geometrical
parameters of the Stäubli
RX 170 B robot [14]

Element i ai (mm) bi (mm)

1 0 100

2 70 0

3 0 0

4 750 0

5 135 0

6 200 0

Fig. 4 Robot structural diagram
with the TCS model notation
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Due to changes in robot posture along a machining
trajectory, as shown in Fig. 6, the dynamic behavior of
the robot and the natural frequencies vary within its
workspace.

The considered machining trajectory is a linear trajecto-
ry in the Y0 direction from y= 0.4m to y= 1.5 m for a con-
stant value of x= 0.1 m. Natural frequencies of the robot for
different end-effector positions along the machining trajec-
tory can be obtained by following the chart presented in
Fig. 5 and solving Eq. 12 for each robot configuration.
Variations in natural frequencies along the considered tra-
jectory are shown in Fig. 7.

It can be seen that the natural frequencies of the robot
have a wide range of low frequency (5 Hz) to high fre-
quency (10 kHz). The natural frequencies can vary up to
40 % along the simple linear trajectory. Therefore, these
dynamic behavior variations must necessarily be taken
into account in stability analysis. The machining opera-
tion can be in stable condition at the starting point of the
machining trajectory, then in unstable condition during
operation.

On the other hand, these variations related to the robot
configuration provide to take advantage of kinematic redun-
dancy in robotic machining. The next section studies this pos-
sibility in robotic machining.

A dynamic model to predict the robot dynamic behavior
along a machining trajectory in its workspace has been elab-
orated in this section. Thus, the stability prediction in robotic
machining can be studied.

4 Stability prediction

A stability diagram based on regenerative chatter theory is an
effective tool to predict and control chatter vibrations. The
stability diagram of a machining process represents the inter-
action between structural dynamics and the cutting process. It
is determined by solving the closed loop block diagram
(Fig. 1a). Based on the milling theory proposed by Budak
and Altintas [2], the cutting force model in milling operations
can be written in the form [23, 24]

F tð Þ ¼ 1

2
KcD tð Þb δ tð Þ−δ t−τð Þ½ � ð13Þ

where Kc is the specific cutting pressure matrix, τ is the tooth
passing period of the cutting tool, b is the depth of cut (Fig. 8),
and [δ(t)− δ(t− τ)] are the tool tip displacement vectors due to
vibration at the current time (t) and previous tooth period
(t− τ). D(t) represents time-variant directional dynamic
milling force coefficients. It can be expanded into a
Fourier series, and the most simplistic approximation is
its average component Do [2].

D0 ¼ N
2π

αxx αxy

αyx αyy

	 


where time-variant directional dynamic milling force co-
efficients are given as

ayy ¼ 1

2
cos2∅−2r∅þ rsin2∅½ �∅ex

∅st

ayz ¼ 1

2
−sin2∅−∅þ rcos2∅½ �∅ex

∅st

azy ¼ 1

2
−sin2∅þ 2∅þ rcos2∅½ �∅ex

∅st

azz ¼ 1

2
−cos2∅−2r∅−rsin2∅½ �∅ex

∅st

where r is the ratio of radial and tangential specific cut-
ting pressure and ∅ st and ∅ ex are the start and exit angles
of the cutting tooth as illustrated in Fig. 8.

Substituting the harmonic solution δ(t): δ(t) =Δeiωt into the
cutting force equation (Eq. 13) and then into the motion equa-
tion (Eq. 8) gives

−Mω2 þ Cωiþ K
� �

Δ ¼ 1

2
KcD0b 1−e−iωτ

� �
Δ ð14ÞFig. 6 Different configurations of the robot along the machining

trajectory

Table 3 Joints stiffness of the STAUBLI 170 BH serial robot [19]

Axis 1 2 3 4 5 6

K (N.m/rad) 2.04× 105 1.75× 106 5.7 × 105 4.9 × 105 1.2 × 105 0.05× 105
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Fig. 7 Variation of natural frequencies along the considered machining trajectory
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In addition, the transfer function of the structure is

H ωð Þ ¼ −Mω2 þ iCωþ K
� �−1

By substituting the transfer function into Eq. 14,

I−
1

2
KcD0b 1−e−iωτ

� �
H ωð Þ

	 

Δ ¼ 0 ð15Þ

This equation has a nontrivial solution if the determinant
below is zero:

det I−
1

2
KcD0b 1−e−iωτ

� �
H ωð Þ

	 

¼ 0 ð16Þ

The oriented transfer function matrix is defined by
D0H(ω); ; thus, the eigenvalues of the characteristic equation
(Eq. 16) at specific chatter vibration frequencies ω=ωc are
given by

Λ ¼ ΛR þ ΛI ¼ −
N
4π

bKc 1−e−iωcτ
� � ð17Þ

N is the number of tool teeth. By solving Eq. 17 and deter-
mining the characteristic equation for b, the imaginary part of
b is equal to zero and gives the time delay between the passage
of consecutive tool teeth (τ). The real part of b gives the depth-
of-cut limit (blim) in chatter frequency (ωc), which separates
the stability and instability zones [2, 23]. After some manipu-
lations, the stability limit (blim) can be written as

Workpiece Radial direction 

Tangential direction 
Tool Entry point

Exit point

Depth of 

cut (ap) 

Workpiece Radial engagement 

(ar) 
Feed direction 

Fig. 8 Cutting parameters in
milling

Fig. 9 a First functional redundancy ; b second functional redundancy Fig. 10 Tool tip rotation around X7 in the local frame
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blim ¼ −
2πΛR

NKt
1þ κ2
� � ð18Þ

where κ is defined as

κ ¼ ΛI

ΛR
¼ sinωcτ

1−cosωcτ

4.1 Stability prediction in machining robot

One of the advantages of robotic machining is taking advantage
of the kinematic redundancy. This means that for the same
machining trajectory, different robot configurations are possi-
ble. Because of this, kinematic redundancy has been the subject
of many robotic optimization studies. Different criteria are de-
fined to manage redundancy, such as stiffness improvement
[17], accuracy, etc. In this paper, the distance from the stability
limit is the criteria to optimize robot poses in machining.

A serial robot manipulator has functional redundancywhen
the operational space dimension no is larger than the degree t
of the task performed. The degree of functional redundancy is
determined as follows [25]:

r f ¼ no−t ð19Þ

Aone-axis rotary table is integrated into the robotic cell. The
table rotates around Y0 in the global frame. In certainmachining

operations, such as drilling, face milling, plunge milling, etc.,
the cutting tool axis could be perpendicular to the machined
surface. Hence, the machining task degree (t) is five (three
positions and two rotations). In this robotic cell, formed by
the STAUBLI 170 BH robot with six active joints and external
rotary table with one axis, the degree of freedom no=6+1 and
the degree of functional redundancy rf=2. These redundancies
allow us to have an infinite number of configurations for a
given position of the end-effector in the task space (relative to
the workpiece). The set of these configurations forms the inter-
nal motion space. The first internal motion is the spindle rota-
tion around the Z7 axis of the local frame (X7 Y7 Z7) attached to
the tool tip as shown in Fig. 9a. The second one consists in the
rotation of the end-effector and the table as if they were a single
rigid body around the Xw axis of the local frame (XwYwZw)
attached to the workpiece to keep tool axis perpendicular to
the machined surface as shown in Fig. 9b.

Hence, for the same tool position, different solutions for the
value of angles θXw and θZ7 are possible (Figs. 9 and 10).
Therefore, unlimited configurations can be considered. Each
robot configuration has its own dynamic behavior and stable
cutting conditions. Thus, this robot property enables us to
optimize robot configurations regarding machining stability
conditions using redundancy in robotic machining.

In this section, the second redundancy is studied. To this
end, the spindle rotates around the X7 axis with a value for θX7
without changing the tool tip position. At the same time, the
workpiece rotates around the Xw axis with a value for θXw in

Table 4 Cutting parameters

Fig. 11 Stability prediction and
selected experimental
configuration
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order to maintain the tool axis perpendicular to the machined
surface (Fig. 10). The local frames in the new configuration
are represented by (X7

' , Y7
' , Z7

' ) and (Xw
' , Yw

' , Zw
' ) as shown in

Figs. 9 and 10.
By following the chart presented in Fig. 5 and using Eq. 18,

for each configuration, a stability limit can be determined. The
stability limits from the numerical model (developed in sec-
tion 2) is established for different possible configurations
using the second redundancy θX7 (Fig. 10). Machining is con-
sidered milling operation on an aluminum workpiece with
cutting parameters presented in Table 4.

Therefore, the robot configuration varies in the internal
motion space when θX7 is considered as a redundant kinematic
parameter. The stability diagram as a function of structure
rotation angle around the Xw axis (θX7) and the depth of cut
are presented in Fig. 11.

The predicted stability limits are established for the cutting
parameters presented in Table 4. Stable and unstable zones are
dependent on the machining parameters (Table 4) such as
spindle speed or feed and radial depth of cut.

To compare stability diagram results with experimental
tests, two configurations are selected based on the theoretical
stability diagram shown in Fig. 11. For the same cutting con-
ditions, the first configuration is in unstable zone and the sec-
ond one is in stable zone. These two selected configurations
are illustrated in Fig. 12a, b.

4.2 Experimental results

Experimental machining testes are carried out with the
STAUBLI 170 BH industrial manipulator by Olabi et al.

Fig. 13 The forces measured in the machining operation by a first
configuration and b second configuration [13]

Fig. 12 a First configuration with θX7= 0° ; b second configuration with
θX7= 90°
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[13] in two configurations selected in Fig. 11 and shown in
Fig. 12. Experimental cutting tests are performed on alumi-
num workpieces fixed on a force measurement table with the
cutting parameters presented in Table 4.

Figure 13 presents the cutting forces measured during the
considered machining operation. In Fig. 13a, we can observe
that the cutting force variations grow suddenly which means
instability in the machining operation (chatter). The machin-
ing marks clearly reflected the chatter vibrations marks on the
workpiece [13].

The numerical stability limit diagram (Fig. 11) clearly il-
lustrated that the first configuration is in unstable zone. The
experimental machining in the second configuration gives a
stable condition (Fig. 13b). The numerical results (Fig. 11)
also predicted that the second robot configuration has a max-
imum distance from unstable zone. The cutting parameters
were the same for two experimental machining tests, but the
robot configuration changes using the redundancy which
modifies the stability condition.

Applying this method for all points of a machining trajec-
tory allows the robot configuration to be optimized against
instability condition and to maximize stability margins in or-
der to maintain productivity performance.

5 Conclusion

The principal objective of this work is to develop a nu-
merical model to predict the dynamic behavior of robotic
manipulator in a machining operation. This model enables
stability limits to be determined along machining trajec-
tories. Hence, a numerical model of the STAUBLI 170
BH industrial machining robot is elaborated by using 3D
Euler–Bernoulli beam elements based on the matrix struc-
tural analysis method. The numerical model is readjusted
by experimental results realized at the specific positions.
The numerical model enables to predict the robot’s dy-
namic behavior as well as stability limits with respect to
posture change along a machining trajectory in the robot
workspace.

The proposed stability diagram shows the variations of the
robot dynamic behavior in the internal motion space for the
same cutting parameters and the same trajectory position as a
function of robot redundancy. This stability limit enables to
predict the robot configuration for which machining opera-
tions are at a maximum stable margin. The prediction from
the theoretical stability limit diagram is consistent with the
observations obtained from experimental cutting results. The
numerical model and machining results confirm that the sta-
bility in robotic machining can be ensured by managing func-
tional redundancy in order to maintain productivity without
changing the cutting parameters.

This prediction approach can be applied to all points of a
machining trajectory in order to optimize the robot configura-
tions regarding stability through functional redundancy control.

In this paper, exploitation of kinematic redundancy has
been performed for a serial industrial robot. This approach
can be applied to other kinematic architectures of robots: se-
rial, parallel, and hybrid.
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