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Abstract Monotonic fault progression is an important as-
sumption for a number of prognostic models. This assumption
can be violated through human intervention and self‐healing
and result in non-monotonic degradation data which not only
increases the uncertainty but also may cause model failure.
Methods to analyze and handle non-monotonic degradation
in repairable systems are practically nonexistent in the litera-
ture. In this research, we intend to consider repairable systems
in which self‐healing is possible and human interventions are
desirable. We presented a novel example of self-healing for
fatigue cracks analyzed by acoustic emission. The aim of the
present paper is to initiate a new research area on using non-
monotonic measures in degradation-based prognostics.
However, this research is not a review of trend analysis tech-
niques, and therefore, there are more techniques to be consid-
ered or developed in future studies. In effect, trend analysis
should be considered as an integral part of prognostics and
health management. This study considers trend analysis for
three classes of data, (1) prognostic parameters, (2) degrada-
tion waveform, and (3) multivariate data. A new form of crest
factor is introduced for more effective waveform analysis of
non-monotonic data. In addition, two algorithms are intro-
duced to treat non-monotonic trend. The prognostic model
used in this research does not produce results without treating
non-monotonicity. These kinds of algorithm have promising
potential to treat non-monotonicity and deal with arbitrary
stationary noise in degradation data.
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1 Introduction

Uncertainty management has been always a key issue in suc-
cessful applications of prognostics and health management
(PHM). Uncertainties in PHM arise from imperfections in
predictability of prognostic models. The sources of uncer-
tainties in PHM are classified into three categories, (1) ran-
domness related to future degradations, (2) modeling errors,
and (3) inaccuracies in degradation data [1]. The errors in
modeling can emerge due to violating fundamental assump-
tions and excessive simplifications. It is pertinent to mention
that monotonic fault progression is an imperative assumption
for a great number of prognostic models [2–6]. Hence, there
can be no doubt that non-monotonic degradation features in-
tensify uncertainty and may cause model failure. A monotonic
trend suggests unidirectional and consistent change in the
mean level of degradation data. Therefore, not only monoton-
ic degradation data are more desired, but it is also recommend-
ed to quantify and consider monotonicity in systematic con-
struction of PHMmodels [5, 6]. Monotonicity is a measure of
data complexity which deals with subjacent positive or nega-
tive trend of parameters based on the assumption that systems
do not experience any form of repair. Monotonicity can be
quantified as the average difference of the fraction of negative
and positive derivatives of degradation measurements [6].
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For degradation data, trend can be defined as the pattern of
the time-ordered degradation measures. Trend analysis is a
prevalent tool in different fields of science to identify signifi-
cant decreases or increases in the magnitude of a reference
variable in time-series data [7]. Moreover, trend analysis has
been investigated for aging properties, such as failure rate and
mean residual life (MRL) [8, 9]. Researchers have also
worked on the trend of failure process in repairable systems
based on statistical hypothesis tests [10–12]. This type of trend
analysis is mainly helpful for model selection and cannot be
part of trend analysis for degradation data. However, the trend
analysis of the failure times is a decent candidate to measure
prognosability [6] i.e., the variance of the critical failure times.

In essence, degradation data consists of a certain trend and
noise (i.e., stochastic variations). The noise is an inherent fea-
ture of degradation data which needs to be minimized during
the feature extraction phase. For instance, highly loaded bear-
ings and cutting tools require sophisticated feature extraction
to display clear degradation trends [13, 14]. Although consid-
erable research has been devoted to feature extraction, rather
less attention has been paid to non-monotonic degradation
features due to the existence of pre-failure repairs. From a
practical point of view, repairs can be in the form of human
intervention and/or self‐healing. The former refers to all kinds
of maintenance activities and alteration of operating condi-
tions e.g., in tool condition monitoring. In effect, repairs can
change the degradation trend, and therefore, result in non-
monotonic fault progression.

Methods to analyze and handle non-monotonic degrada-
tion in repairable systems are practically nonexistent in the
PHM literature. In this research, we intend to consider repair-
able systems in which self‐healing and human interventions
are desirable. We presented a novel example of self-healing
for fatigue cracks analyzed by acoustic emission (AE). The
aim of the present paper is to initiate a new research area on
using non-monotonic degradation data in PHM modeling.
Moreover, there have been few investigations on the applica-
tion and usefulness of trend analysis methods on degradation
measures. This study provides a roadmap in processing non-
monotonic degradation data. This work considers the trend
analysis for three classes of data, (1) prognostic parameters,
(2) degradation waveform, and (3) multivariate data. A new
form of crest factor is introduced for more effective waveform
analysis of non-monotonic data. In addition, two algorithms to
deal with non-monotonic data are introduced with the objec-
tive of revealing the possible monotonic components of such
data.

The remainder of this paper is organized as follows:
Section 2 describes two different sets of data utilized in this
study. These data sets provide non-monotonic degradation
features because of human intervention and self‐healing.
Section 3 covers several graphical and analytical trend analy-
sis methods for analyzing degradation data. Section 4

introduces two algorithms for treating a non-monotonic trend,
and it is followed by conclusions in Section 5.

2 Description of data and experiment

Two different data sets applied in this research to represent
non-monotonic degradation features. The first set relates to
bearings degradation. Over recent years, a significant amount
of research has been undertaken to develop and apply PHM
models for common rotary machinery components, particular-
ly rolling element bearings [15–17]. Nevertheless, little atten-
tion has been paid to the performance of PHMmodels subject
to change in operating conditions. For this reason, and also
due to technical difficulty, the bearing data set was made
through simulation with variable shaft speed. The fault signal
of bearings was modeled through the combinations of the
following parts: repetitious impulses, load, bearing-induced
vibration, and machinery-induced vibration (see [18, 19] for
more details). The simulation used the ball pass frequency of
outer race as the frequency component of bearing faults. It
should be noted that all the bearing’s fault frequencies are
linear function of shaft speed. Therefore, by changing the
shaft speed the rate of degradation will be changed. Figure 1
shows different cases of degradation measures simulated for
rolling element bearings. It is evident that the root mean
squared (RMS) of the degradation signal is a function of the
shaft speed (see case 1–3). Accordingly, changing the shaft
speed results in non-monotonic degradation measures (see
case 4–6). It is important to emphasize that the simulation
results, as shown in Fig. 2, are similar to the experiment results
produced by Gebraeel and Pan [20]. Table 1 provides the
feature selection metrics, introduced by Coble [6], for the
non-monotonic cases (4–6). Each case has a population of
50 samples. As expected, case 4 has the lowest monotonicity
metric as well as the high variance of critical failure times.

The second set of data was generated in a fatigue crack
growth test for a sample of HAYNES® HR-120™. This ma-
terial is a heat-resistant alloy that provides excellent strength at
elevated temperature. The experiment intends to analyze crack
growth using AE for a sample shown in Fig. 3.

The length of crack for this test is 20mm. However, there is
an unusual difference between this experiment and the regular
fatigue crack growth tests. When the crack reached the middle
point of the intended crack length (i.e., 10 mm), the test was
stopped and a single tensile load (STL) was applied for 300 s.
The magnitude of the STL was 150 % of the maximum load
applied for crack propagation [21]. The STL creates the
chance for a phenomenon known as fatigue crack closure
(FCC). First pioneered by Elber [21], FCC is an important
phenomenon in evaluating the effective driving force for crack
growth. Elber identified that plastically deformed material left
in the wake of a propagating crack would result in partial or
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complete crack closure for a portion of the applied loading
range. After applying the STL, we expect to observe non-
monotonic change in the AE signals which represents FCC
i.e., the period of retardation. The AE data set contains over
27,000 observations and 11 response variables (i.e., signal
features) as follows:

& X1: PAC-energy is derived from the integral of the recti-
fied voltage signal over the duration of AE hit. PAC-
energy and AE count are the two discrete variables in this
data set.

& X2: Average frequency (over the entire AE hit =AE count/
duration)

& X3: Initiation frequency, i.e., rise-time based frequency

& X4: Count is defined as the number of times the signal
crosses the threshold in an AE hit. In effect, AE counts
imply the existence of a transient wave in the AE
waveform.

& X5: Amplitude or maximum AE signal excursion
& X6: Absolute signal level (ASL) is the averaged amplitude

of the AE signal
& X7: Reverberation frequency (AE count—count to peak)/

(duration—rise-time)
& X8: Absolute energy is the true energy measure of AE hit.
& X9: Rise-time is the time from the start of AE hit to the

time of the peak amplitude
& X10: RMS of AE signal
& X11: Signal strength which is similar to energy but it is

calculated over the entire AE

The AE data set is applied in multivariate trend analysis.
General information about the AE signal and the details of AE
signal features are available in the literature [22–24]. Figure 4
shows an AE feature (PAC-energy) after removing the back-
ground noise. The areas shown in the red ellipses represent the
periods of retardation i.e., crack closure.

3 Trend Analysis techniques

3.1 Statistical trend analysis

Statistical trend analysis refers to a set of parametric and non-
parametric statistical tests to detect the existence of a trend in
time series. Hypothesis tests in statistical trend analysis

Fig. 1 Different cases of the simulated degradation measures

Fig. 2 Result of the change in shaft speed in bearing degradation
experiment produced by Gebraeel and Pan [20]
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usually contemplate the null hypothesis as “no deterministic
trend.” Each test has a statistical quantity to perceive the ex-
istence of a deterministic trend. Parametric tests (e.g., t test)
are mainly based upon the linear regression coefficients for
normally distributed and homoscedastic random variables
[25]. Thus, the parametric tests are limited to linear trends.
On the other hand, nonparametric tests are not highly affected
by outliers and large data gaps. Mann-Kendal (MK) is the
most used nonparametric trend test which is based on the
relative ranking of data (i.e., a rank-based test). The MK test
computes the difference between the sequential data (xi−xj).
Then, it assigns integer values of 1, 0, or −1 to the computed
differences:

sign xi−x j

� � −1 for xi−x j

� �
< 0

0 for xi−x j

� � ¼ 0
1 for xi−x j

� �
> 0

8<
:

If n represents the length of the data series, the test statistic,
S, is computed using the sum of the integers as:

S ¼
X n

i¼2

X i−1

j¼1
sign xi−x j

� � ð2Þ

Hence, the MK test is related to the sample size, trend
magnitude, and coefficient of variation. It is important to note
that failure to reject the alternative means that there is no
enough evidence to conclude the existence of a trend in data.
Therefore, statistical trend analysis methods might be useful
only as a preliminary trend check.

3.2 Graphical methods

Graphical tests do not usually need complicated calculations.
Thus, they are simple to perform, and they are powerful in
detecting the strong trends. On the other hand, they might not
be very useful for data with slight trends, and therefore, they
need to be combined with analytical tests. In addition, graph-
ical tests are based upon interpretation which is prone to error.
There are a number of graphical methods with respect to trend
analysis. Using control charts was even mentioned in the lit-
erature as a graphical test. This section covers two graphical
tools that were found suitable for degradation data: (1) cumu-
lative plots and (2) temporal shape analysis.

For certain systems, damage is considered to be cumulative.
Thus, the decreasing slope of an increasing cumulative degrada-
tion can be a sign of improvement in durability. Figure 5 clarifies
the change in trendswhere the shaft speed changes from 35 to 20
RPM (after 60 h). The cumulative plots clearly detect the strong
trend in the data due to the variation in shaft speed. Cumulative
plots were also produced for the AE signal features. It is inter-
esting to note that only the energy-related features showed con-
siderable change in trend during the retardation period.

The second graphical method known as temporal shape
analysis is a qualitative analysis proposed by Konstantinov
and Yoshida [26]. This analysis starts by approximating the
variable v by a polynomial with the order of m. Then, the
values of the polynomial are evaluated at v. Next, the first
and the second derivatives of the polynomial are calculated.
The sign of difference between every data points and the pre-
ceding in the first and the second derivatives should be ex-
tracted. The combination of the extracted signs forms the qual-
itative shape of the variable. The first derivatives show the
change in trend, and the second derivatives provide insight
about the shape of the variable. It is possible to show the
qualitative shape by +1 and −1 which represent + and − signs.
Figure 6 shows the qualitative shape for non-monotonic data
using a polynomial with the order of 4.

It was realized that with an order of 4 or more, we can
obtain the monotonicity of 1 for modest speed changes (i.e.,
from 35 to 33). High order polynomials take the noise into
account and might not be reliable for trend analysis.

3.3 Analysis of waveform

The analysis of waveforms can be performed in time domain
or time-frequency domain prior to signal feature extraction.

Table 1 Metrics for the non-
monotonic degradations
(cases 4–6)

Case 4—speed change
from 35 to 20 RPM

Case 5—speed change
from 35 to 30 RPM

Case 6—speed change
from 35 to 33 RPM

Monotonicity 0.333 0.75 0.85

Prognosability 0.855 0.855 0.951

Fig. 3 Sample (according to ASTM E647) and the sensor location
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Time–frequency analysis has gained increasing attention in
the field of trend analysis. These techniques analyze nonsta-
tionary signals in time and frequency domains simultaneously.
Traditional signal analysis relies on the limiting assumption of
stationary signals. However, in real physical world, signal
features change over time. Wavelet analysis is the most pop-
ular time–frequency analysis for detection of meaningful
trends [27–29] or finding the turning points [30]. In actual
practice, wavelet-based methods are more appropriate for
real-time implementation because of better computational ef-
ficiency. This section investigates the use of Hilbert-Huang
transform (HHT) for trend analysis.

The Hilbert-Huang transform (HHT) is a relatively new
time-frequency technique [31]. The HHT method is able to
analyze large signals. The empirical mode decomposition
(EMD) is the first major operation of the HHT. The details
of EMD process can be found in [32, 33]. The EMD relies on
the local characteristic time scales of a signal and can decom-
pose the signal into a collection of successive intrinsic mode
functions (IMFs). In other words, EMD intends to accurately
reveal the signal characteristics. An IMF is a function that

reveals a simple oscillatory mode embedded in the signal
[32]. After finding the IMFs, Hilbert transform (HT) is applied
to produce a full time-frequency-energy distribution of the
signal. HT process provides instantaneous frequency and am-
plitude information for each IMF.

In essence, the amplitude of signal waveforms would be a
useful feature to display a non-monotonic trend. Nonetheless,
the amplitude in a degradation signal might not be a good
indicator of the incipient fault, particularly in the absence of
certain physical quantities such as impacting. Figure 7 shows
a typical waveformwhich is a combination of small waveform
collected periodically. The change in the amplitude of the
signal represents the change in the shaft speed. However,
thorough analysis is required if there is a slight trend change,
or there is a need for comparison of several degradation signal.
In this way, HHT is able to decompose the signal to several
components and provide the instantaneous amplitude.
Accordingly, the important components of signals can be an-
alyzed, and the component associated with noise can be re-
moved [34, 35].

The concept of crest factor is utilized to further improve the
waveform analysis. For a waveform, crest factor is the ratio of
the peak amplitude to the RMS value. This dimensionless
feature is an indication of significant peaks. Here, the instan-
taneous amplitudes of the main signal components and the
RMS for each individual wave were used to provide the crest
factor. Figure 8 illustrates the crest factor calculated for the
first signal components related to the three non-monotonic
cases introduced in Fig. 1. It is evident that the crest factors
in Fig. 8 are neither helpful for detecting the trend change nor
useful for comparing different cases of speed change.

For these reasons, a new form of crest factor is introduced
which can be defined as the ratio of the maximum amplitude up
to the time of calculation over the RMS of each waveform. The
trend changes using the modified crest factor are illustrated in
Fig. 9. A better comparison of the first two signal components is
provided in Fig. 9. The trend changes occur after the 24th
waveform. Obviously, the first component of the signal has
better indication of the trend change. Therefore, HHT along
with the modified crest factor has the potential to provide the
indication of trend change even for real-time applications.

3.4 Multivariate trend analysis

For some data sets, it might be of interests to analyze the
whole complex multivariate data. There are many approaches

Fig. 4 AE data after smoothing

Fig. 5 Cumulative damage (shaft speed changes from 35 to 20 RPM)
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to investigate multivariate data sets. Among those methods,
independent component analysis (ICA) and principal compo-
nent analysis (PCA) seem to be good candidates for trend
analysis of multivariate degradation signals.

ICA is a popular signal processing method to decompose a
multivariate signal into uncorrelated and maximally indepen-
dent components [36]. This method is also helpful in selecting
the proper variables for further analysis. This method was
applied on the AE data related to the FCC test. ICA was not
able to appropriately handle the retardation period.

PCA is a widely used linear statistical technique for reduc-
ing the dimensionality of complex multivariate data. In PCA,
the goal is to analyze covariance structure and reduce the

complexity of the data by projecting onto a lower dimensional
subspace while retaining the variability. Through the PCA, the
data will be represented by the products of scores (i.e., mutu-
ally orthogonal data) and principal component loadings (i.e.,
transposed linear transformation matrix) plus the matrix of
residuals. PCA has been utilized in the literature to analyze
the features and the waveform of AE signal [37–39].

The AE data used in this analysis was introduced in section
2. Using scatter plots and correlation maps, the highly corre-
lated variables were identified. Accordingly, energy (variable
1) is highly correlated with count (variable 4) and absolute
energy (variable 11). All these variables are related to the
energy of the signal. Also, RMS (variable 10) correlated with
ASL (variable 6). In essence, correlated variables increase the
contribution of their related principal component. Hence, the
highly correlated variables were eliminated, and the data set
with seven variables was used for the next phase. PCA was
performed for the smoothed AE data that was free of highly
correlated variables. Figure 10 shows the bi-plot for all the
vectors. The direction and length of the vectors in the bi-plot
represent the contribution to the first two principal compo-
nents. For example, the first PC on the horizontal axis has
positive coefficients for all the variables except variable 3.

Using the scree plot, it can be shown that it is possible to
represent over 90 % of the variability of the data with the first
four PCs. The same analysis was performed for the portion of
the data that contains retardation. Interestingly, similar to the
bi-plot for the whole data, variable 3 causes the variation on
the opposite way comparing to the whole data. It was realized
that all the retardation period for the signal features have some

Fig. 6 Qualitative shape (non-
monotonic trend for speed
changes from 35 to 20 RPM)

Fig. 7 Typical waveform (non-monotonic signal)
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negative values except variable 3. To this end, by elim-
inating variable 3, improved results were obtained.
Furthermore, it is possible to look at the portion of
the data that has no retardation. In this respect, the first
14,000 observations were used. Finally, by removing
variable 3 and comparing the bi-plots, it is possible to
say that the shift in the relationship between PCs can
represent the retardation period. Thus, it can be con-
cluded that PCA can display the trends in the data as

shown in Fig. 11, where the black circle represents the
retardation period. Considering the new scree plot for
the modified data, we can conclude that three principal
components are appropriate to represent that data even
with the retardation period.

There are always two important questions regarding
PCA, (1) how many principal components should be
retained for the analysis and (2) is there any useful
information in the remainder of PCs (i.e., PC4, PC5,

Fig. 8 Crest factor (speed
changes from 35 to 20 RPM)

Fig. 9 Waveform analysis with
the modified crest factor (speed
changes from 35 to 20 RPM)
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and PC6) which were not selected. To address the sec-
ond question, the information complexity criteria was
used [40]. The results show that one PC would be
enough to cover the remainder of information that was
not covered in the selected PCs. It seems variable 6
may contain significant information. It is clear from
Fig. 11 that variable 6 has different direction, and it
should contain some information that is not appeared
in the first three principal components. Variable 6 is
RMS which is basically different from other signal
features.

4 Treatment of non-monotonic trends

4.1 Trend-based segmentation

Trend-based segmentation methods are able to locate the turn-
ing points in time series data. These methods are popular in
financial time series to locate a set of trading [30, 41, 42]. The
most common segmentation methods include piecewise linear
representation (PLR) [41], Fourier transform, and wavelets.
Figure 12 illustrates the results of trend-based segmentation
for the non-monotonic-bearing degradation data which

Fig. 10 Bi-plot for all the vectors

Fig. 11 Trend analysis by PCA
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presented in section 2. In this example, three stages of segmen-
tation using the PLRmethodwere enough to group the data into
four segments. The first segment represents the degradation
with high speed, and the second segment represents the speed
reduction (i.e., change in operating condition). Segments 3 and
4 belong to the degradation measures after the speed reduction.

Next, it is reasonable to apply a prognostic model to test the
treatment of non-monotonic trends. To this aim, General Path
Model (GPM) with Bayesian updating was applied [6, 43].
GPM is an important class of degradation models [44] and has
been extensively applied in the PHM literature [45–47]. This
model was developed based on the famous article by Lu and
Meeker [48] in which the authors considered reliability pre-
diction based on degradation measurements where the time-
to-failure data is not sufficient to estimate failure distributions.

GPM requires a population of the degradation paths for a
specific fault mode. Degradation measurements (i.e., prognos-
tic parameters) show the degradation paths to the end of life
under the assumption that there is a unique degradation path
for each individual component. The degradation path y for
unit i at time t can be expressed as:

yi ¼ η t;φ;Θið Þ þ ε ð3Þ
where ε represents the error,φ is a vector that represents fixed
effects, andΘi is a vector that represents individual effects for

the ith component. End of life is usually indicated by passing
over a pre-defined critical threshold. To estimate the remain-
ing useful life (RUL) of an individual component through
GPM, the fitted model needs to be extrapolated to the failure
threshold. It implies that the model parameters are constantly
used for all RUL estimation regardless of the actual trend of
degradation measures. It is worth noting that monotonic deg-
radation paths are a key assumption of GPM.Not surprisingly,
GPM failed in using non-monotonic-bearing degradation da-
ta. The prognostic model works properly if only monotonic
segments of the data are taken into consideration. In other
words, using the bearing data, we only take segments 3 and
4 into account for successful RUL estimation.

4.2 Average conditional displacement

This section considers the application of an algorithm known
as average conditional displacement (ACD) for automatic es-
timation of monotonic trends. ACD describes data trends
using piecewise linear curves. This approximation algorithm
was first introduced by Vamoş [49]. It must be emphasized
that ACD is based upon the signal values interval not the time
interval. In this algorithm, the slope of each estimated linear
segment is proportional to the average of the time series values
in the corresponding interval [49, 50]. The advantage of the

Fig. 12 Trend-based
segmentation for the non-
monotonic-bearing degradation
data. Various colors represent
different segments of the data
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ACD algorithm is twofold: (1) no need for initial assumptions
such as functional form of the trend and (2) the development
of an automatic algorithm. The accuracy of ACD is compara-
ble with well-tested methods such as polynomial fitting and
moving average particularly for the signals with stationary
noise. The ACDworks well in estimating the monotonic trend
for time series data with arbitrary stationary noise. More im-
portantly, ACD reveals one of the possible monotonic com-
ponents of a non-monotonic trend. Suppose that a time series
{xn}, with 1≤n≤N, can be generated by a discrete stochastic
process Zn and the values of the trend f(t) as

X n ¼ f n þ Zn ð4Þ

Considering δt as the sampling interval, fn represents the
value of f(t) at the moment and we have

tn ¼ n−1ð Þ δt ð5Þ

Instead of the unknown initial and final values (i.e., f1 and
fN), the ACD algorithm uses the extreme values of time series.
In addition, it should be assumed that Zn does not depend on
fn. Furthermore, it should be assumed that Zn is stationary, and
Xn is a nonstationary process. Figure 13 shows the one-step
variation of the time series {xn} for the interval (ξ j, ξ j+1].

There are J disjoint intervals that embrace all the values of
xn. Therefore, Nj is the number of xn values in the interval
Ij= (ξ j, ξ j+1], for j =1,2,…, J. An increase in N results in
improved accuracy of the trend estimation. However, the ratio
between the noise fluctuation and the amplitudes of the trend
variation is the major contributor to the accuracy of the ACD
algorithm. In essence, when homogeneous intervals are used,
the difference between the values of Nj should not exceed a

unit at the most. The one-step variation of the time series can
be defined as

δxn ¼ xnþ1− xn ð6Þ

The sample average of δxn (i.e., the average variation of
{xn} within Ij) is computed as follows

ĝ j ¼
1

2N j

X
xn ϵ I j

δxn þ
X

xnþ1 ϵ I j

δxn

0
@

1
A ð7Þ

It should be noted that the interval Ij should contain the
initial or final values. Moreover, the values of ĝ j should have

similar sign in order to be used in the numerical approximation
of the monotonic trend. Otherwise, the monotonic trend can-
not be determined. If the values of ĝ j have different signs,

repeated central moving average (RCMA) can be utilized to
smooth the fluctuation of the time series. RCMA provides a
gradual smoothing of the time series based upon two param-
eters: (1) length of the averaging window and (2) the number
of averaging.

In Fig. 13, the thin straight segments denote the pieces of
[xn] that enter into the computation of the sample average. The
thick continuous line denotes the ACD approximation of the
monotonic variation of [xn] for the interval (ξ j, ξ j+1]. Thus,
the points ~t j; ξ j

� �
and ~t jþ1; ξ jþ1

� �
demarcate the jth straight

segment which has the slope of ĝ j. Hence

~t jþ1 ¼ ~t j þ
ξ jþ1−ξ j

g ̂ j
ð8Þ

Therefore, for t ϵ ~t j ; ~t jþ1

� �
the estimated monotonic trend

(i.e., piecewise linear curve) is

~f tð Þ ¼ ξ j þ t−~t j
� �

g
̂
j ð9Þ

Furthermore, ĝ j are negative for decreasing trend. Thus the

points ~t j; ξ J− jþ2

� �
and ~t jþ1; ξ J− jþ1

� �
demarcate the jth

straight segment which has the slope of g ̂ J− jþ2. Hence

~t jþ1 ¼ ~t j þ
ξ J− jþ1−ξ J− jþ2

g ̂ J− jþ2
ð10Þ

Thus, we have

~f tð Þ ¼ ξ j þ t−~t j
� �

ĝ J− jþ2 ð11Þ

The theoretical background of the ACD is elaborately ex-
plained by Vamoş [49, 50]. Here, we intend to present the
numerical quantities of the ACD. Figure 14 shows the applica-
tion of the ACD for treating the non-monotonicity in the bear-
ing degradation measures. Not surprisingly, the prognostic
model, i.e., GPM, only worked after applying the ACD and

Fig. 13 The one-step variation of the time series in which the thick
straight line represents the ACD approximation [50]
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transforming the non-monotonic data to monotonic.
Accordingly, it is worthwhile to consider the potential benefits
of ACD for treating non-monotonicity and stationary noise in
PHM applications.

5 Conclusion

Monotonic fault progression is an important assumption for a
number of prognostic systems. This assumption can be violat-
ed through human intervention and self‐healing. Non-
monotonic degradation data not only increase the uncertainty
but also may cause model failure in PHM. The existence of
non-monotonic degradation paths among the population of
the degradation data would also impact the trendability which
indicates the level that data can be described by the same
functional form. Methods to analyze and handle non-
monotonic degradation in repairable systems are practically
nonexistent in the PHM literature. In this research, we intend
to consider repairable systems in which self‐healing and hu-
man interventions are desirable. We presented a novel exam-
ple of self-healing for fatigue cracks analyzed by acoustic
emission (AE). The aim of the present paper is to initiate a
new research area on using non-monotonic data in
degradation-based prognostics. In essence, efficient trend de-
tection is also critical in early discovery of an impending fail-
ure. A fruitful trend analysis requires proper sampling fre-
quency and continuous recording of degradation measures.

Statistical trend analysis methods might be useful only as a
preliminary trend check. Graphical methods are appropriate
for trend detection of signal features. Particularly, cumulative

plots are useful for certain features, e.g., energy-related fea-
tures. The decreasing slope of an increasing cumulative deg-
radation can be a sign of improvement in durability. Generally
speaking, graphical methods are not useful for data with slight
trends, and therefore they need to be combined with analytical
methods. In addition, graphical tests are based upon interpre-
tation which is prone to error.

Analyzing the waveform might be a better option before
doing any feature extraction. HHT is very useful in noise
removal and extracting the main components of degradation
signals. Those components can be used for trend analysis and
feature extraction. Obviously, the first component of the signal
has better indication of the trend change. Therefore, HHT
along with the modified crest factor has the potential to pro-
vide the indication of trend change even for real-time applica-
tions. The modified crest factor worked appropriately in ana-
lyzing and comparing the waveforms. Nevertheless, the wave-
form analysis needs to be supported by quantitate measures
rather than relying on graphical examination.

For multivariate data, it was realized that PCA is able to
indicate the trends in the data providing its perfect perfor-
mance. Preliminary analysis of the data including smoothing,
filtering, and eliminating the correlated variables were very
helpful in proper implementation of PCA.

The methods for treating non-monotonicity can be applied
in empirical degradation-based prognostic which takes into
account the measured or inferred conditions of a specific unit
under study. In this paper, two algorithms to deal with non-
monotonic trend are introduced: trend-based segmentation
and ACD. The ACD works well in estimating the monotonic
trend for time series data with arbitrary stationary noise. More

Fig. 14 Applying ACD for
treating the non-monotonicity for
three bearing degradation signals
(speed changes from 35 to 20
RPM)
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importantly, ACD reveals one of the possible monotonic com-
ponents of a non-monotonic trend. It is important to note that
Bayesian GPM applied for the non-monotonic-bearing degra-
dation data. This prognostic model failed to provide any RUL
estimation due to high level of non-monotonicity. However,
the prognostic model worked properly after applying the ACD
and transforming the non-monotonic data to monotonic. It
seems, both algorithms have the potential to treat the non-
monotonicity in degradation data even for real-time
applications.
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