
ORIGINAL ARTICLE

Heuristics to minimize the completion time variance of jobs
on a single machine and on identical parallel machines

Raju Rajkanth1
& Chandrasekharan Rajendran1

& Hans Ziegler2

Received: 5 July 2015 /Accepted: 5 May 2016 /Published online: 26 May 2016
# Springer-Verlag London 2016

Abstract This paper addresses the problem of scheduling n
jobs on a single machine and onm identical parallel machines
to minimize the completion time variance of jobs. This prob-
lem of scheduling jobs on parallel machines is motivated by a
case study in an automobile ancillary unit. First, a heuristic to
solve the single-machine scheduling problem is proposed. The
parallel-machine scheduling problem is solved in two phases:
job-allocation phase and job-sequencing phase. Two heuris-
tics are proposed in the job-allocation phase, whereas in the
job-scheduling phase, the single-machine scheduling ap-
proach is used. In this paper, both versions of parallel-
machine scheduling problem (restricted and unrestricted) are
considered. A good upper bound is obtained using a genetic
algorithm, to evaluate the performance of the proposed heu-
ristics for the parallel-machine scheduling problem. An exten-
sive computation evaluation of the proposed heuristics is pre-
sented for both single-machine scheduling problem and the
parallel-machine scheduling problem (especially considering
the case study), along with the comparison of performances
with the existing heuristics in the literature.

Keywords Single-machine scheduling . Parallel-machine
scheduling . Completion time variance . Heuristics

1 Introduction

Given n jobs to be processed on a single machine, in the
completion time variance (1||CTV) problem, the best se-
quence of the jobs is identified such that the CTV for this
sequence is the minimum among all the possible sequences.
The CTV problem is classified as a non-regular objective. A
performance measure is called regular if it is non-decreasing
in each of the job-completion times; otherwise it is called non-
regular. Other non-regular performance measures include the
mean squared deviation (MSD) of completion times from a
given due date of jobs, the waiting time variance (WTV), and
the flow time variance (FTV) problem. First, the 1||CTV prob-
lem is considered and then the case of an identical parallel
machine is considered in this paper. The CTV minimization
problem on identical parallel machines is denoted by
Pm||CTV. The identical parallel-machine problem can further
be classified into two: the restricted version and the unrestrict-
ed version. These two problems differ based on the presence
of idle time before start time of first job on each machine. In
the restricted problem all machines start at time zero and do
not allow for the inserted time before jobs. This problem is
denoted by Pm|Res|CTV. The unrestricted problem allows for
the idle time to exist before the start time of the first job on a
machine. This problem is denoted by Pm|Unres|CTV.

Our paper is motivated by a real-world case study in an
automobile component manufacturer in India. The company
follows the Just-In-Time approach tomeet the buyer’s require-
ment. The buyers have to be given a fair treatment in terms of
order fulfillment by the manufacturer. Hence, the objective is
to improve the customer-service rate by minimizing the
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variance between order fulfillments of all the buyers in a given
timeline. Hence the minimization of CTV is identified as the
performance metric that can minimize variance and also bring
uniformity in service across buyers. The major products
manufactured by the manufacturing company (under study)
are different types of dampers that are used to eliminate/
minimize various kinds of vibrations that occur in internal
combustion engines. Orders are unique in terms of both order
quantity and product type. Each order from a buyer is treated
as an unique job. The finished product has to undergo se-
quence of operations (e.g., turning, drilling, and milling, with
CNC lathes present in the line). All the operations have been
thoroughly analyzed and then the bottleneck operation and the
corresponding work-center have been identified. This work-
center has two identical parallel machines. Hence, keeping all
these is mind, both literature and the corresponding theoretical
research problem were explored. This research problem has
led us to the problem of minimizing the CTVof jobs on par-
allel machines. In order to investigate this problem of sched-
uling on parallel machines, it is important to study the problem
of scheduling on a single machine. Such a study of single-
machine scheduling problem can give insight into scheduling
on parallel machines. Therefore, in this paper the literature
review and investigation concerning the scheduling of jobs
on a single machine with the objective of minimizing the
CTVof jobs is carried out. Subsequently, by using the findings
of this investigation and by carrying out the literature review
on the problem of scheduling on parallel machines, the prob-
lem of scheduling jobs on parallel machines with the objective
of minimizing the CTVof jobs is ventured in this paper.

The measure of CTV with respect to the single-machine
scheduling problem was first addressed byMerten and Muller
[1] in the context of file organization problem in computing
systems. Various properties of single machine CTV problem
were proved by researchers in the past. Notably, the V-shape
property (which means that the jobs before the job with
shortest processing time should be scheduled in the non-
increasing order of their processing times and the jobs after
the smallest job should be scheduled in the non-decreasing
order of their processing times) of optimal sequence was
proved by Eilon and Chowdhury [2]. The position of the job
with the largest process time in an optimal sequence was dem-
onstrated by Schrage [3] and the author alsomade a conjecture
about the position of next three largest jobs: the last, second,
and third position respectively. Kanet [4] gave a counter ex-
ample to disprove Schrage’s conjecture about the scheduling
position of the fourth largest job. Vani and Raghavachari [5]
showed that Schrage’s conjecture on the positions of the first
three largest jobs is true for the 1||CTV problem. Further, Hall
and Kubiak [6] verified Schrage’s conjecture about the place-
ment of the first three largest jobs. Kubiak [7] proved that the
CTVminimization problem is NP-hard.Manna and Prasad [8]
presented the bounds for the position of the smallest job in an

optimal sequence for the 1||CTV problem. Many heuristics
were proposed to derive a near-optimal schedule for the
1||CTV problem (see [2, 4, 5, 8–13]). Meta-heuristics such
as genetic algorithm (see Srirangacharyulu and Srinivasan
[13]), simulated annealing (Mittenthal, Raghavachari, and
Rana [14]), and tabu search (Al-Turki, Fedjki, and Andijani
[15]) were proposed to get good solutions for the 1||CTV
problem. A few attempts are reported in the literature for solv-
ing the 1||CTVoptimally using the exact methods such as the
dynamic programming (De, Ghosh, and Wells [16]) and
branch-and-bound technique (Viswanathkumar and
Srinivasan [17]; Srinivasan and Srirangacharyulu [18]).

As for as the parallel-machine scheduling problem,
Federgruen and Mosheiov [19] derived a lower bound for
the identical parallel-machine variance minimization problem
and proposed a heuristic, called alternating schedule heuristic.
Chen, Li, and Sawhney [20] discussed various dominant prop-
erties for the Pm|Res|CTV problem, and presented a heuristic
algorithm, which the authors referred to as balanced assign-
ment verified spiral (BAVS), to solve the Pm|Res|CTV prob-
lem. Srirangacharyulu and Srinivasan [13] proposed heuristics
for the single-machine CTV problem (SMH) and the parallel-
machine CTV problem (called Multi-machine restricted heu-
ristic (MMRH) and Multi-machine unrestricted heuristic
(MMUH)). Li, Chen, and Sun [12] addressed the
Pm|Unres|CTV problem and proved some dominant proper-
ties about an optimal solution to the problem. They also pro-
posed a heuristic, which the authors referred to as WAVS for
the unrestricted problem, and claimed that their heuristic so-
lution is near-optimal for small-problem instances, and out-
performs some existing algorithms for the large-sized problem
instances. The allocation procedure of MMRH/MMUH is
similar to that of the allocation procedure (referred to as bal-
anced assignment in the heuristic BAVS) proposed by Chen,
Li, and Sawhney [20]. Similarly the sequencing phase in
BAVS is similar to that of WAVS. So, the BAVS heuristic is
not considered in this paper, and only WAVS is considered in
this study. In this paper, both restricted and unrestricted prob-
lems are addressed and hence we consider the heuristics pro-
posed by Srirangacharyulu and Srinivasan [12] and Li, Chen,
and Sun [13] in our work as benchmarks.

The single-machine and parallel-machine scheduling prob-
lems have been addressed more with respect to regular perfor-
mance measures. Gokhale and Mathirajan [21] addressed a
scheduling problem for minimizing total weighted flowtime,
observed in automobile gear manufacturing. Specifically, the
bottleneck operation of the pre-heat treatment stage of gear
manufacturing process has been dealt with, in scheduling by
the authors (for more information refer to Chen [22] and Lee,
Lin, and Ying [23] for problems on multi-machine with regu-
lar measures of performance). A similar bottleneck problem is
addressed in the case study presented in our paper, but with a
non-regular performance measure.
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Minimizing the CTV is an important measure when both
earliness and lateness need to be penalized. Especially with
the increasing interest in Just-In-Time (JIT) philosophy, the
CTV problem has gained considerable attention in the sched-
uling area in recent times (Li, Chen, and Sun [12]). The CTV
problem has applications in the manufacturing systems where
it is essential to provide all jobs the same treatment, which
could ensure fairness across different jobs.

There are good single-machine algorithms reported in the
literature and these algorithms have been tested using good
benchmark problem instances related to single-machine
scheduling with CTV objective. Hence, the development of
any new single-machine heuristic (such as ours) can be eval-
uated using the existing good heuristics and benchmark prob-
lem instances. If such a new heuristic performs better than the
existing heuristics, then the extension of the idea to parallel-
machine scheduling problem becomes logical and intuitively
justifiable. Therefore, in this paper a new single-machine heu-
ristic for minimizing the CTV has been developed. After pro-
posing such a heuristic and showing its superiority over the
existing heuristics, the extension of this single-machine heu-
ristics to address the scheduling of jobs on the parallel ma-
chine with the objective of minimizing CTV has been ven-
tured out in this paper.

This paper is organized as follows. Section 2 provides the
1||CTV problem definition and notations. Section 3 gives
some existing results and lemmas for the 1||CTV problem.
Section 4 presents the heuristic proposed in this paper to solve
the 1||CTV problem and thereafter the computational analysis.
Section 5 provides the Pm||CTV problem definition and nota-
tions, and presents some existing conjectures that are used in
this paper to develop the proposed heuristics for the Pm||CTV
problem. Section 5 also presents two proposed heuristics used
to solve the Pm|Res|CTV and the Pm|Unres|CTV problems,
followed by its computational evaluation (especially consid-
ering the case study). Finally, concluding remarks and the
future directions are given in Section 6. A genetic algorithm
is proposed for the sole purpose of obtaining a good upper
bound (UB) on the CTV, so as to evaluate the goodness of
solutions given by the proposed heuristics and the existing
heuristics, and is presented in Appendix A. A numerical illus-
tration of the proposed heuristic for the single-machine CTV
problem is presented in Appendix B.

2 Single machine CTV problem

The assumptions made in solving the 1||CTV problem (also
see Srirangacharyulu and Srinivasan [13]) are described as
follows:

1. All jobs are available at time zero and the job-processing
times are known in advance.

2. A machine can process only one job at a time.
3. No setup time exists between two consecutive jobs.
4. Preemption is not allowed.
5. The machine is available for processing at time zero.

Let

n the total number of jobs to be scheduled

λ a complete sequence

Cj(λ) the completion time of job j in λ

C λð Þ the mean completion time of n jobs in λ

Jj job j

Pk the process time of the job in position k in λ /*note: jobs J1, J2,
…, Jn are numbered such that P1 ≥P2 ≥P3≥… ≥Pn, and
hence the process times of jobs 1, 2, 3,…, n can be simply
written as P1, P2, P3,…,Pn corresponding to J1, J2, J3,…, Jn
*/

CTV(λ) the completion time variance of jobs, given the schedule λ

The CTVof n jobs on a single machine is given by

CTV λð Þ ¼ 1

n

Xn

j¼1

C j λð Þ−C λð Þ
� �2

; ð1Þ

where

C λð Þ ¼ 1
n ∑

n

j¼1
C j λð Þ, the mean completion time of jobs in

sequence λ.

3 Preliminary results

Some important properties of the 1||CTV problem relevant to
our study are presented in this section.

Property 1 (Eilon and Chowdhury [2]):
The optimal sequence that minimizes CTV is V-shaped.
Property 2 (Hall and Kubiak [6]):
In an optimal schedule, the largest job is scheduled in the

first position, the second largest job is scheduled in the nth
position and the third largest job is scheduled in the second
position.

Property 3 (Merten and Muller [1]):
Every sequence and its dual have the same CTV. The dual

of a schedule is obtained by reversing the order of last (n−1)
jobs.

Property 4 (Srirangacharyulu and Srinivasan [13]):
In an optimal schedule of a 1||CTV problem, the jobs with

the completion time less than the mean completion time are in
the longest processing time (LPT) order and the jobs with start
time greater than or equal to the mean completion time are in
the shortest processing time (SPT) order.

Let the jobs be numbered such that P1≥P2≥P3≥…≥Pn.
Let λ be a given schedule and λ ′ be the schedule obtained by
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interchanging the two adjacent jobs in positions j and k in λ,
where k= j+1.

Let Δ=CTV(λ)−CTV(λ ′).

Lemma 1 (Srirangacharyulu and Srinivasan [13]):
Let Cj(λ) and Ck(λ) be the completion time of jobs in po-

sition j and k respectively in λ such that Cj(λ) and Ck(λ) lie on
either side of C λð Þ. Hence,

Δ ¼ n−1ð Þ
n

δ2−2δ C λð Þ−C j λð Þ
� �

; ð2Þ

where δ= (Pk−Pj), and k> j.

Lemma 2 (Srirangacharyulu and Srinivasan [13]):
Let λ be the given schedule and λ′ be the schedule obtained

by swapping the two jobs in positions j and k (k> j) in λ.
Hence, Δ′=CTV(λ)−CTV(λ′), and is given by:

Δ
0 ¼ δ

n
2 C

0
j;k−1 λð Þ−hC λð Þ

� �
þ hδ−

h2δ
n

� �
; and h

¼ k− jð Þ; ð3Þ

where C
0
j;k−1 λð Þ ¼ ∑

k−1

i¼ j
Ci λð Þ, with k> j.

4 Proposed heuristic for the 1||CTV problem (SMH1)

In this section, a heuristic to solve the 1||CTV problem is
proposed (referred to as SMH1 hereafter). For the purpose
of easy understanding and presentation of the heuristic, the
nomenclature of jobs J1, J2, …, and Jn, such that
P1≥P2≥P3≥…≥Pn is used.

4.1 Step-by-step procedure: SMH1 algorithm

Step 0 Let β be an arbitrary complete sequence following
Property 1 and Property 2 (see Section 3) with
CTV(β).

Step 1 Let π represent a partial sequence obtained by placing
job J1 in the first position of π, J2 in the last position
of π and job J3 placed in the second position of π
(based on Properties 1, 2, and 3 given in Section 2),
i.e., π={J1− J3−…− J2}.

Step 2 Do the following with respect to placement of job Jn
in π in position n

2

� �
and in at most three adjacent

positions on either imminent side of position n
2

� �
;

by placing Jn in these positions, at most seven possi-
ble sequences are generated.

Step 3 Consider one sequence at a time out of those gener-
ated in Step 2, do the following.

Step 3.1 Let j=3.
Step 3.2 Let j= j+1.
Step 3.3 Let π1 and π2 be the two partial sequences,

derived from π by placing job Jj appropriately,
be given as follows:

π1 ¼ J 1−J 3−J j−…−Jn−…−J 2
� 	

andπ2

¼ J 1−J 3−…−Jn−…−J j−J 2
� 	

;

/*Note: when j=4, we have π={J1− J3−…−Jn−…−J2},
π1 = {J1− J3− J4−…−Jn−…−J2} and π2= {J1− J3−…−Jn−…
−J4− J2}.*/

Step 3.4 Let σ1 and σ2 be two feasible sequences gener-
ated by placing jobs in the unscheduled posi-
tions of π1 and π2 as follows respectively. As
for σ1, a feasible complete sequence is generat-
ed by placing the unscheduled jobs with respect
to π1, taken one at a time, alternately in the
unscheduled positions to the right extreme side
and the left extreme side of Jn. This is done so
in order to have a V-shaped property of the final
full sequences. As for σ2, a feasible complete
sequence is generated by placing the unsched-
uled jobs with respect to π2 (taken one at a
time), alternately in the unscheduled positions
to the left extreme side and the right extreme
side of the partial sequence. For example, a ten-
job problem with J10 placed in position six, we
have σ1 and σ2 obtained from π1 and π2 respec-
tively given as follows:

σ1 ¼ J 1−J 3−J 4−J 6−J 8−J 10−J 9−J 7−J 5−J 2f g

and

σ2 ¼ J 1−J 3−J 5−J 7−J 9−J 10−J 8−J 6−J 4−J 2f g

.Step 3.5 Let CTV(σ1) and CTV(σ2) be the completion
time variances of the two complete sequences
σ1 and σ2.

If CTV(σ1) <CTV(σ2)
then
set π=π1 and
set β′ ← σ1
else
set π=π2 and
set β′ ← σ2

Step 3.6 If CTV(β′) <CTV(β) ,
then
set β←β′ and
CTV(β) =CTV(β′).
/*e.g., a possible updated π appears as fol-

lows: {J1− J3− J4−…− Jn−…− J2} with jobs
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J1, J2, J3, J4, and Jn fixed in their respective
positions.*/

Step 3.7 Go to Step 3.2 until j=n−2. Place job n−1 in
the leftover position of β.

Step 4 Swap complimentary jobs k and j (see Kanet [4], for
details) from sequence β to obtain β″.

/*Note: only complimentary pairs (complimentary
pairs: two jobs (on on either side of Jn) when
swapped, should result in a sequence, following the
V-shaped property of the CTV problem) are chosen
for swapping.*/

Step 5 Using Δ′ from Lemma 2, if Δ′≤0, then
set β=β″ and
CTV(β) =CTV(β″).
/*Note: if the mean completion time of β″ lies in-

between the completion times of the complimentary-
pair jobs j and k, useΔ from Lemma 1, and ifΔ≤0,
then update β as β″ and evaluate the CTV
accordingly.*/

Step 6 By repeating Steps 3, 4, and 5 for every sequence
generated in Step 2, the final β and CTV(β) are ob-
tained, yielding the solution of the proposed heuristic
algorithm, SMH1.

A numerical illustration for the SMH1 is given in
Appendix B.

4.2 Computational study for 1||CTV problem

The proposed heuristic is implemented using Visual C++ and
executed on a personal computer with 4 GB RAM memory
and with processor Intel(R) Core(TM)2 Duo CPU with
2.99 GHz. The performance of the proposed SMH1 is com-
pared with some of the existing heuristics, namely EC1.1 and
EC1.2 (Eilon and Chowdhury [2]), JJK (Kanet [4]), MP
(Manna and Prasad [8]), SMH (Srirangacharyulu and
Srinivasan [13] also used by them in their parallel-machine
heuristic in the same paper) and VS (Ye, Li, Farley, and Xu
[11]; also used by Li, Chen, and Sun [12] in their parallel-
machine CTV problem) by using the benchmark problem in-
stances presented by Srirangacharyulu and Srinivasan [13].
The results of performance evaluation comparing the heuris-
tics for the single machine CTV problem are given in Table 1.
The pseudo-polynomial algorithm presented by De, Gosh,
and Wells [16] is used to obtain the optimal solution for these
nine problem instances. The proposed heuristic SMH1 gives
optimal solutions in five problem instances and with minimal
deviation from the optimal solution for the remaining problem
instances. The proposed heuristic (SMH1) in this paper has
comparable CPU times with those of the existing heuristics,
such as SMH and VS. Moreover, the CPU times for executing
every one of the existing heuristics and our heuristic are very
negligible (less than 1 s on the computer with afore mentioned

specifications). Table 2 presents the comparison study of
SMH1, SMH, and VS for some randomly generated problem
instances (with number of jobs greater than 25). The branch-
and-bound algorithm presented by Srinivasan and
Srirangacharyulu [18] is used to obtain the optimal solution
to these problem instances. The results show that the proposed
heuristic performs better, when compared with the existing
heuristics. Therefore, the proposed heuristic SMH1 is used
hereafter in the present study, in respect of the parallel-
machine scheduling problems.

5 Parallel-machine scheduling problem

In this paper, both the restricted and unrestricted versions of
the multi-machine (identical parallel machine) CTV problem
are considered. In the unrestricted case, the idle time is
allowed before the start of each machine unlike the restricted
case (see Srirangacharyulu and Srinivasan [13], for details).

5.1 Notations and assumptions

Assumptions in the problem formulations are made as given
below (as given by [13]).

All jobs are available at time zero; job-processing times are
known in advance; eachmachine can process only one job at a
time; no setup time exists; preemption is not allowed; and all
machines are available for processing at time zero.

Let

N number of jobs to be scheduled

M number of machines

Ωi set of jobs assigned to machine i; note: jΩij ¼ n
0
i andhence

∑
m

i¼1
n
0
i ¼ n

λi set of jobs allotted to machine i

λo an optimal schedule

IDi(λi) inserted idle time before processing of jobs on machine i in λi /*
holds in the case of unrestricted version */

Cij(λi) completion time of job j in λi, on machine i, j= 1, 2,…, ni
′

C mean completion time of all jobs

Ci λið Þ mean completion time of the jobs corresponding to those
assigned to machine i in λi

Pk(λi) process time of job k in the set of jobs allotted machine i

The problem is to find an optimum schedule to minimize
the variance of job-completion times (for the restricted case),
given by:

CTVr ¼ 1

n

Xm
i¼1

X
j∈λi

Ci j λið Þ−C

 �2

ð4Þ
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where

C ¼ 1

n
∑
m

i¼1
∑
j∈λi

Ci j λið Þ

Ci j λið Þ ¼ ∑
j

k¼1
Pk λið Þ ∀ j≤n

0
i and i≤m

The problem is to find an optimum schedule to minimize
the variance of job-completion times (for the unrestricted
case), given by:

CTVu ¼ 1

n

Xm
i¼1

Xn0i
j¼1

Ci j λið Þ−Ci λið Þ
� �2

ð5Þ

where

Ci λið Þ ¼ 1

n0
i
∑
j∈λi

Ci j λið Þ ; and

Ci j λið Þ ¼ IDi λið Þ þ ∑
j

k¼1
Pk λið Þ; j≤n

0
i

5.2 Preliminary results

Some conjectures are presented here on the basis of the review
of literature. Most of these conjectures hold true for the unre-
stricted version of Pm||CTV (see Li, Chen, and Sun [12] and
Srirangacharyulu and Srinivasan [13] for these conjectures).
These are used in the proposed heuristics in this paper.

Conjecture 1: In an optimal schedule, the m longest jobs,
namely, jobs J1, J2,…, Jm are each scheduled first on each of
the m machines for the Pm|Unres|CTV problem.

Conjecture 2: In an optimal schedule, the job sequence on
each of the m machine is V-shaped for both versions of the
parallel-machine CTV problem.

Conjecture 3: Under λo, the schedule on each machine is
optimal for both versions of the parallel-machine problem.

Conjecture 4: Under λo, the mean completion time on each
machine is very close to each other in the restricted case and
the same in the unrestricted case.

5.3 Proposed heuristic methods for the Pm||CTV problem

In this section, two heuristics are proposed for solving the
parallel-machine scheduling problem for both restricted and
unrestricted cases. The proposed pattern-based heuristics,
namely, Secant Curve Heuristic (SCH) and Frog Curve
Heuristic (FCH), are used to allocate the jobs to the machines.
Once the assignment is done, the heuristic (SMH1) proposed
for 1||CTV problem is used to schedule jobs allotted to each
machine. The CTVof all jobs are evaluated without inserting
idle times before the start of first job on each machine for the
restricted case, and with the inserted idle times on machines
before the first job for the unrestricted case. The allocation
pattern in the SCH resembles a series of cup and an inverted
cup alternatively, like the secant curve and hence the name,
Secant Curve Heuristic. On the other hand, the FCH depicts

Table 1 Comparison of proposed heuristic SMH1 with the existing methods in the literature for the 1||CTV problem instances given by
Srirangacharyulu and Srinivasan [13]

Problem EC1.1 EC1.2 JJK MP SMH VS SMH1 Optimum

P(1)15 38,987.63 38,985.42 38,922.78 38,932.49 38,923.17 38,922.78 38,923.13 38,922.65a

P(2)15 20,153.71 20,120.11 20,102.51 20,103.36 20,102.51 20,102.51 20,102.38a 20,102.38a

P(3)15 29,238.49 29,218.86 29,217.56 29,217.56 29,217.56 29,217.56 29,217.09a 29,217.09a

P(4)15 32,604.78 32,595.29 32,551.71 32,553.66 32,551.71 32,551.71 32,551.32a 32,551.32a

P(5)20 64,399.43 64,399.42 64,343.54 64,343.54 64,344.33 64,343.55 64,341.63a 64,341.63a

P(6)20 51,831.66 51,828.79 51,739.55 51,739.55 51,739.24 51,739.55 51,737.55 51,736.99a

P(7)25 107,618.56 107,617.34 107,559.77 107,561.11 107,560.09 107,559.76 107,559.71 107,559.44a

P(8)25 67,388.08 67,388.09 67,359.22 67,359.27 67,359.23 67,359.23 67,358.88a 67,358.88a

P(9)25 91,102.48 91,080.87 91,019.21 91,019.60 91,020.15 91,019.20 91,019.78 91,018.42a

When we have executed the SMH (reported by [13]), we obtain the CTVas given in the table. Heuristics solution yielded by EC1.1, EC1.2, JJK, andMP
are given in the table, as reported by [13]. Legends: EC1.1 and EC1.2 ([2]), JJK ([4]), MP ([8]), SMH ([13]), and VS ([11] also used by [12])
a Optimal solution

Table 2 Comparison of proposed heuristic SMH1 with SMH and VS
for the randomly generated 1||CTV problem instances

Problem SMH VS SMH1 Optimum

P(10)30 165,404.50 165,404.38 165,404.20 165,404.18a

P(11)30 123,921.51 123,921.17 123,920.51a 123,920.51a

P(12)35 208,382.33 208,382.14 208,382.19 208,382.05a

P(13)35 218,745.22 218,744.85 218,744.82 218,744.47a

P(14)40 224,741.84 224,741.99 224,741.55 224,741.18a

P(15)40 299,287.92 299,287.42 299,287.12 299,286.96a

P(16)45 277,054.72 277,053.24 277,052.75 277,052.47a

P(17)45 314,287.44 314,287.43 314,287.43 314,287.16a

P(18)50 495,310.01 495,309.94 495,309.58 495,309.56a

P(19)50 387,939.88 387,939.88 387,939.88 387,939.63a

Legends: SMH ([13]) and VS ([11]; also used by [12])
a Optimal solution
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the view of a frog and hence the name, Frog Curve Heuristic
(FCH). The rationale behind the proposed heuristics is load
balancing across all the machines in the first stage, followed
by scheduling of jobs on each machine for the minimumCTV.
Both these methods ensure that all machines get almost equal
number of jobs to process. The allocation indirectly balances
the load on each machine (because the jobs are arranged in the
LPT order before the allocation cycle). Both the proposed
heuristics (since SMH1 is used for phase 2 of SCH and
FCH) are presented in the following section; hereafter SCH
is referred to as SCH+SMH1 and FCH as FCH+SMH1 in
this paper. Numerical illustrations of the SCH+SMH1 and
FCH+SMH1 heuristics are given in Appendix C.

5.3.1 Step-by-step procedure: secant curve heuristic
for the Pm||CTV problem, called SCH+SMH1
(refer to Fig. 1)

Step 1 Arrange the jobs in the LPT order; call them J1,
J2, …, Jn.

Step 2 In the first round, jobs J1 to Jm are each assigned to
machines 1 tom respectively; afterwards, jobs Jm+1 to
J2m are each assigned to machinesm to 1 respectively
(this assignment pattern is illustrated in Fig. 1).

Step 3 In the second round, job J2m+1 to J3m are each
assigned to machines m to 1 respectively, and after-
wards jobs J3m+1 to J4m are each assigned to ma-
chines 1 to m.

Step 4 Repeat the pattern in Step 2 and Step 3 until all jobs
are assigned to machines.

Step 5 Once the job-machine allocation is done, the jobs on
each machine are scheduled using the proposed heu-
ristic (SMH1) for the 1||CTV problem given in
Section 4.1.

Step 6 Using the job-completion times, CTV is calculated,
depending on the restricted and unrestricted versions
of the parallel-machine problem.

5.3.2 Step-by-step procedure: frog curve heuristic
for the Pm||CTV problem, called FCH+SMH1
(refer to Fig. 2)

Step 1 Arrange the jobs in LPT order; call them J1, J2,
…, Jn.

Step 2 Assign J1 to Jm each in the first round, to machines 1
to m respectively, and Jm+1 to J2m each in the second
round to machines 1 to m respectively in the same
order.

Step 3 Assign J2m+1 to J3m each in the first round to ma-
chines m to 1 respectively, and J3m+1 to J4m each in

the second round to machines m to 1 in the same
order respectively.

Step 4 Repeat the pattern in Step 2 and Step 3 until all jobs
are assigned to machines.

Step 5 This way of assignment resembles a frog (by shape)
for each assigning cycle (the assignment pattern is
illustrated in Fig. 2).

Step 6 Once the job-machine allocation is done, the jobs on
each machine are scheduled using the proposed heu-
ristic SMH1 in Section 4.1.

Step 7 Using job-completion times, CTV is calculated for all
jobs, depending on the restricted and unrestricted ver-
sions of the parallel-machine problem.

5.4 Computational study for Pm||CTV problem

As indicated earlier, the present paper is motivated by a real-
world case study. The manufacturing process of the dampers
consists of two lines, Hub and Pulley. The semi-finished prod-
ucts from these two lines are later assembled to get the final
finished product; refer to Sivasankaran and Shahabudeen [24]
for detailed review of literature on balancing assembly line for
parallel-machine scheduling problem. The sequences of oper-
ations involved in these two lines are in general: turning, dril-
ling, CNC-Lathe, and broaching. The bottleneck operation is
identified at the CNC-Lathe. Moreover, the CNC-Lathe work-
station had two identical CNC-Lathe. Hence, the problem is
solved using the Pm||CTV heuristics (considering both ver-
sions of the Pm||CTV problem), presented in this paper.

The proposed heuristics are compared with the existing
heuristics proposed by Srirangacharyulu and Srinivasan [13]
(calledMMRH in the case of restricted version of the parallel–
machine scheduling problem, and MMUH in the case of the
unrestricted version of the parallel-machine scheduling prob-
lem – essentially both heuristics are the same except for the
difference in the computation of the CTV) and Li, Chen, and
Sun [12] (called WAVS in the case of unrestricted version of
the parallel-machine scheduling problem). The existing heu-
ristic by Srirangacharyulu and Srinivasan [13] employs a two-
phase procedure: allocation phase involving the allocation of
jobs to different machines followed by the sequencing phase
involving the determination of sequence of jobs on a given
machine. In the earlier section, the superior performance of
our proposed sequencing heuristic (i.e., SMH1) in comparison
to the sequencing heuristic by Srirangacharyulu and
Srinivasan [13] (called SMH) has been proved. In view of this
observation and in order to enhance the performance of
MMRH/MMUH, the job-allocation phase is retained in the
MMRH/MMUH, but SMH is replaced with SMH1 in the
job-sequencing phase. This improved version of
MMRH/MMUH is called MMRH1/MMUH1 in this paper.
By the same logic, in view of the demonstration of the
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superior performance of SMH1 in comparison with the per-
formance of the single-machine sequencing heuristic (called
VS—also proposed by Ye et al. [11]) by Li, Chen, and Sun
[12] (see Table 1 for details), the job-allocation phase is
retained in the WAVS, but the VS method is replaced with
SMH1 for the second phase. This improved version of
WAVS is called WAVS1 in this paper.

The performance of all four methods is tested, by solving
the real-world case involving 100 orders of four different
types of damper. The order quantities are drawn from a uni-
form distribution with the order quantity, OQ ∈ (100, 1000).
The processing time at the bottleneck location is about 400 s
(approx. 7 min). The best sequence in which these orders are
taken up for production is derived using all four heuristics
presented in the previous section. The SCH+SMH1 is found
to give the best sequence for this case study. Moreover, 100
problem instances with different order quantities were simu-
lated further to compare the methods. It is observed that all
four heuristics are capable of giving the best sequence in more
than one problem instance, though the MMRH+SMH1 ap-
pears to perform consistently better in most of the cases. The

SCH+SMH1 and FCH+SMH1 give the best sequence in
about 29 instances, whereas, the WAVS+SM1 give the best
sequence in about 19 problem instances. The findings from
the case study have motivated us to further explore the perfor-
mance of the proposed heuristics across various sizes of the
problem, i.e., varying the number of orders/jobs, number of
machines, and processing time.

The performance of all four methods is tested by
conducting experiments on two types of problem instances,
namely: Type-1 and Type-2. The problem instances are clas-
sified in to Type-1 and Type-2 problems, based on the number
of jobs and the number of machines. The problem instances
are classified into two types to explore the sensitiveness of the
proposed methods with respect to the problem size. All the
experiments are carried out separately for both restricted and
unrestricted versions of CTV problems. For problem instances
of Type-1, we consider five different numbers of jobs: n ∈ {20,
40, 60, 80, and 100}. Furthermore, for each job size, we con-
sider different number of machines: m ∈ {2, 4, 6, and 8}. For
each combination of m and n, we generate 10 problem in-
stances with processing times drawn from a uniform
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Fig. 1 Assignment pattern of
SCH+SMH1 (the arrow shows
the direction of sequential
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distribution with the job-processing times P ∈ {(1, 100), (1,
200), (1, 300), (1, 400), and (1, 500)}, respectively. Therefore,
a total of 1000 problem instances are used to evaluate the
heuristics under consideration using Type-1 problem in-
stances. For problem instances of Type-2, we consider four
different numbers of jobs: n ∈ {200, 300, 400, and 500}. For
each problem instance, we consider different number of ma-
chines:m ∈ {10, 20, 30, 40, and 50}. For each combination of
m and n, we generate 10 problem instances with processing
times drawn from a uniform distribution with the job-
processing times: P ∈ {(1, 100), (1, 200), (1, 300), (1, 400),
and (1, 500)}. Altogether, a total of 1000 problem instances
are used to evaluate the heuristics considering the Type-2
problem instances. Type-2 problem instances correspond to
the large-sized problems, in comparison to Type-1 problem
instances. Thus, these types of problem instances represent a
variety of problem settings to evaluate the performance of
heuristics under study. All parallel-machine heuristics under
study require comparable and negligible computational effort
(less than or equal to 1 s) to obtain a solution for all the
problem instances. Hence, the computational time is not ex-
plicitly given in the tables.

5.4.1 Performance measures used for Pm||CTV problem

The two different performance measures used to evaluate the
proposedmethods are presented in this section. Since the CTV
problem is NP-hard, the performance of all four heuristics is
compared with a good upper bound (UB) obtained using the
proposed hybrid multi-machine genetic algorithm (HMMGA)
(see Appendix A for details). Note that the purpose of propos-
ing HMMGA is solely for obtaining a good upper bound on
CTV (i.e., UB). The main purpose of the present work is to
present deterministic heuristics for both the versions of the
parallel-machine scheduling problems. The performance mea-
sures used to compare all the four heuristic methods are
discussed below,

(a) Mean competitive ratio (MCR):
The mean competitive ratio (presented by [12, 20]) is

used to measure the performance of each of the four
heuristics. The method with minimum competitive ratio
is superior over the other methods on an average. The
mean competitive ratio (MCR) is calculated as below:

Mean competitive ratio MCRð Þ
¼ CTVi − CTVUBð Þ=CTVUB � 100ð Þ=N ; ð6Þ

where
N=Number of problem instances, and CTVi is the

CTV yielded by the ith heuristic under evaluation

(i= 1: SCH+SMH1, i= 2: FCH+SMH1, i= 3: WAVS1,
i= 4: MMRH1/MMUH1).
(b) Number of times the best known solution (NTBKS):

The number of problem instances where a heuristic
provides the solution same as the best UB, given by
HMMGA.

5.4.2 Type-1 problem (Pm|Res|CTV: Type-1
and Pm|Unres|CTV: Type-1)

The performance evaluation with respect to Type-1 problem
instances for both versions of Pm||CTV problem (1000 prob-
lem instances each) is given in Table 3.

Table 3 presents the comparison of all the four heuristics with
the UB obtained by using HMMGA for the Pm|Res|CTV: Type-
1 problems. With respect to both measures, the MMRH1 per-
forms better than the other heuristics for Type-1 problems of the
restricted version. SCH+SMH1 fares second best for this type of
problems based on both measures. Table 3 also presents the
comparison all the four heuristics with the UB obtained by using
HMMGA for Pm|Unres|CTV: Type-1 problems. Out of 1000
problems, with respect to the MCR performance measure,
FCH+SMH1 perform better than the rest of the heuristics
followed closely by WAVS1, which is the second best, based
on the MCR measure of performance. MMUH1 performs better
based on the NTBKSmeasure and followed by SCH+SMH1 as
the second best for Type-1 problems of the unrestricted version.
MMRH1 performs better for Type-1 problems (since the alloca-
tion phase inMMRH1 is based on balancing the load across each
machines, this approach tends to work well for small-sized

Table 3 Comparison of the heuristics for Type-1 problems, using the
HMMGA solution as the reference UB

Heuristic Method Pm|Res|CTV: Type-1 Pm|Unres|CTV: Type-1

MCR NTBKS MCR NTBKS

SCH+SMH1 1.4277b 114b 1.3014d 147b

FCH+SMH1 2.4143d 28d 0.3312a 11d

WAVS1 1.8062c 46c 0.3881b 126c

MMRH1/MMUH1 0.8257a 196a 0.8032c 181a

a Best performing heuristic with respect to given measure of performance
is ranked from 1 to 4
bMCR: a lower value indicates better performance; NTBKS: a higher
value indicates a better performance
cWAVS1 is the combination of allocation rule presented by [12] and the
SMH1 heuristic propsoed in this paper
dMMRH1 is the combination of allocation rule presented by [13] and the
SMH1 heuristic proposed in this paper as a sequencing rule, with respect
to Pm|Res|CTV
eMMUH1 is the combination of allocation rule presented by [13] and the
SMH1 heuristic proposed in this paper as a sequencing rule, with respect
to Pm|Unres|CTV
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problems); whereas, the other three heuristics attempt to assign
an almost equal number of jobs to all machines.

5.4.3 Type-2 problem (Pm|Res|CTV: Type-2
and Pm|Unres|CTV: Type-2)

The performance evaluation with respect to Type-2 problem
instances for both versions of Pm||CTV problem (1000 prob-
lem instances each) is given in Table 4.

Table 4 presents the comparison of all the four heuristics with
the UB for the Pm|Res|CTV: Type-2 problems. The SCH+
SMH1 performs better than all the other heuristics with respect
to MCR and NTBKS. In fact, SCH+SMH1 gives the best solu-
tion for 503 problems out of 1000 problems, which is about 50
percent. TheMCR values clearly indicate that SCH+SMH1with
0.0648 is far better when compared with the other methods.
FCH+SMH1 appears to performs better than MMRH1 and
WAVS1 with respect to the MCR performance measure for the
Pm|Res|CTV: Type-2 problems. MMRH1 gives 207 times the
best solution, and is ranked the second best among the heuristics
for the restricted version of Type-2 problems. Table 4 also com-
pares the heuristics for Pm|Unres|CTV:Type-2 problems based on
the final solution obtained by the heuristic methods. Out of 1000
problems, SCH+SMH1 gives the best solution for 466 problem
instances (i.e., same as UB obtained by using HMMGA: see
Appendix A). In fact, with respect toMCR, SCH+SMH1 clearly
outperforms the rest of the heuristics and shows its superiority
over the existing methods. MMUH1 performs fairly well and is
second best based on the MCR performance measure and
WAVS1 is the second best when the NTBKS measure is consid-
ered for the unrestricted version of Type-2 problems.

6 Conclusion

In this paper a new heuristic, called SMH1, is proposed to
solve the single-machine CTV problem. Its performance is
compared with the existing heuristics, and the proposed heu-
ristic is shown to perform better than the existing ones. For the
parallel-machine CTV problem, two new allocation proce-
dures are proposed, namely, SCH + SMH1, and FCH+
SMH1. The SMH1 is used for the sequencing phase in both
the proposed heurist ics for the Pm|Res|CTV and
Pm|Unres|CTV problems. Another contribution of this paper
is the proposal of a genetic algorithm (called Hybrid Multi-
Machine Genetic Algorithm) that is used to obtain a good UB
on CTV in both versions: restricted and unrestricted of the
Pm||CTV problem. The computational testing has been done
for both restricted and unrestricted versions using 2000 prob-
lems respectively. The MMRH1/MMUH1 heuristic (namely,
the heu r i s t i c employ ing the a l loca t ion ru le o f
Srirangacharyulu and Srinivasan [13] and the sequencing rule,
SMH1 proposed in this paper) performs fairly good for Type-
1 problem instances for the restricted version of the parallel-
machine scheduling problem, followed, by SCH+SMH1 as
the second best among the other heuristics. Similarly, for the
unrestricted version FCH+SMH1 performs better based on
the MCR measure. On the other hand, SCH+SMH1 outper-
forms the rest of the heuristics for Type-2 problem instances
(i.e., large-sized problems) for both versions of the Pm||CTV
problem based on the two performance measures (i.e., MCR
and NTBKS).

This paper considers the identical case of parallel-machine
CTV problem. The proposed heuristics for identical parallel
machines can be modified and adapted to suit other non-
regular measures like mean squared deviation (MSD) and
flow time variance (FTV), and also to solve the non-
identical parallel-machine problem in future research
attempts.

7 Appendix A: hybrid multi-machine genetic
algorithm (HMMGA) for Pm||CTV problem

A genetic algorithm is proposed for the sake of obtaining a
good upper bound (UB) on the CTV, so as to evaluate the
goodness of solutions given by the proposed heuristics and
the existing heuristics, which are deterministic and computa-
tionally quick heuristic algorithm. The proposed HMMGA is
used to solve the allocation phase of Pm||CTV problem. The
sequencing phase is solved using SMH1. The main difference
between the GA proposed by [13, 25] and the one presented in
this work lies in the basic structure of the chromosome. The
chromosome used by Srirangacharyulu and Srinivasan [13]
has the sequence on each machine and also the number of jobs
allotted to each machine. This way of representation uses

Table 4 Comparison of the heuristics for Type-2 problems, using the
HMMGA solution as the reference UB

Heuristic Method Pm|Res|CTV: Type-2 Pm|Unres|CTV: Type-2

MCR NTBKS MCR NTBKS

SCH+SMH1 0.0648a 503a 0.0219a 466a

FCH+SMH1 0.0946b 87c 0.1159d 0d

WAVS1 0.3557d 73d 0.0606c 242b

MMRH1/MMUH1 0.1913c 207b 0.0571b 157c

a Best performing heuristic with respect to given measure of performance
is ranked from 1 to 4
bMCR: a lower value indicates a better performance; NTBKS: a higher
value indicates a better performance
cWAVS1 is the combination of allocation rule presented by [12] and the
SMH1 heuristic proposed in this paper
dMMRH1 is the combination of allocation rule presented by [13] and the
SMH1 heuristic proposed in this paper as a sequencing rule, with respect
to Pm|Res|CTV
eMMUH1 is the combination of allocation rule presented by [13] and the
SMH1 heuristic proposed in this paper as a sequencing rule, with respect
to Pm|Unres|CTV
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more memory than our proposed GA because our chromo-
some consists of m genes less than their chromosome. All
the offspring are subjected to repair mechanism throughout
the GA procedure of Srirangacharyulu and Srinivasan [13],
whereas in our GA, every generated offspring is always fea-
sible (see Step 4 and Step 5, given below for details).

The four heuristics presented in Section 5.4 are used in the
initial population of HMMGA. The UB from the HMMGA is
used as the reference for evaluating the goodness of the pro-
posed heuristics.

Step 1 Initialization:
In this paper, 16 parent chromosomes are random-

ly generated and four parent chromosomes are ob-
t a i n e d f r o m WAVS , S CH , F CH , a n d
MMRH/MMUH heuristics respectively in the initial
population.

Step 2 Representation:
In the HMMGA, the number of genes constituting

each chromosome is equal to the number of jobs to be
scheduled. The value of the ith gene of the chromo-
some represents the machine on which the job i is
processed. For example, for a 14-job, 3-machine
problem, a chromosome based on SCH would be as
follows: Chromosome 1: {1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2,
1, 1, 2}.

Step 3 Fitness function:
Each string gives only the job-machine assign-

ment and not the final schedule on each of the ma-
chines. The SMH1 is used to schedule the jobs on
each machine. The completion time of job i on ma-
chine j (Cij) is evaluated based on this schedule. The
CTVof all jobs are evaluated, depending on the ver-
sion of the parallel-machine CTV problem. The fit-
ness of chromosome is given by 1/(1+Z), where Z is
the CTVof the corresponding chromosome.

Step 4 Crossover operation:
The roulette wheel procedure is used to select

chromosomes for the crossover operation. The
single-point crossover operator is used with
Variable Crossover Rate (VCR), i.e., depending on
the current generation, the VCR varies. VCR is var-
ied so that more parent chromosomes participate in
the crossover operation in comparison to the off-
spring, as the generation progresses. The crossover
is repeated for a number of times such that the num-
ber of new offspring produced is equal to the popu-
lation size. Let lc and kc denote the step size and the
crossover index respectively. The levels of crossover
and the current generation with the VCR are related
as follows:

VCR ¼ 1− 1þ kcð Þ � lcð Þ ðA1:1Þ

where 0<VCR<1, lc=0.05, and

kc ¼ current generation

total numberof generations
� 4

� 
ððA1:2ÞÞ

/*For example, if the current generation is 120, and with the
total number of generations=200, VCR is given as follows:

kc ¼ 120

200
� 4

� 
¼ 2 ;

VCR ¼ 1− 1þ 2ð Þ � 0:05 ¼ 0:85
It is evident that 0.75≤VCR≤0.95 holds for any given

generation.*/
Note: since the single-point crossover operator is used,

the new offspring contains only feasible job-machine com-
bination.

For example, let Parent 1: {1, 2, 3, 3, 2, 1, 1, 2, 3, 3,
2, 1, 1, 2} and Parent 2: {1, 2, 3, 3, 2, 1, 3, 2, 1, 1, 2, 3,
3, 2} represent two parent chromosomes and Child 1 and
Child 2 represent the offspring generated using the cross-
over operation. Let the randomly generated crossover point
be 8, then:

Child 1: {1, 2, 3, 3, 2, 1, 1, 2, 1, 1, 2, 3, 3, 2} and
Child 2: {1, 2, 3, 3, 2, 1, 3, 2, 3, 3, 2, 1, 1, 2}

It is observed that both offspring are feasible, and hence
they do not need a repair mechanism.
Step 5 Mutation:

The gene-wise mutation is used in our HMMGA.
The variable mutation rate (VMR) is used instead of
regular mutation, i.e., based on the current genera-
tion, the VMR varies. Excited mutation (which pro-
motes a higher amount of diversity in the population)
is used, and this helps the heuristic to possibly come
out of the local optimum. The excited mutation is
invoked only if the on-hand best solution does not
improve over the last fifty successive generations
during the GA cycle. Excited mutation rate (EMR)
is used to select chromosomes for excited mutation.

Let lm and km denote the step size and the mutation
index respectively. VMR is given as follows:

VMR ¼ lm � 1þ kmð Þ ; ðA1:3Þ

where

0 < VMR < 1
lm ¼ 0:05 ; and

km ¼ current generation

totalnumberof generations
� 4

�  ðA1:4Þ

/*For the example given in Step 4, VMR is calculated as
follows:
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We havelm=0.05 ; km=2 ; and hence,VMR=0.15.
It is evident that 0.05 VMR 0.25 holds for any given gen-

eration.*/
/*Note: For a 14-job, 3-machine problem, consider the fol-

lowing sequence (based on SCH heuristic):
Chromosome: {1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2}.
Let the excited mutation rate (EMR) be 0.5, and con-

sider the case when the on-hand best solution has not
improved for the last fifty successive generations (say
from, 51st generation to the 100th generation). All the
chromosomes in the current population are subjected to
the excited mutation, with EMR of 0.5. One gene is
chosen at random from the selected chromosomes for
mutation, i.e., let the 4th gene be the chosen one for
mutation. The other values that gene 4 can take are
machine 1 and machine 2. If, Gene 4 (J4) is re-
assigned to machine 1 randomly, then the mutated chro-
mosome is given as follows:

Mutated chromosome: {1, 2, 3, 1, 2, 1, 1, 2, 3, 3, 2,
1, 1, 2}.

This procedure is repeated for all the remaining chro-
mosomes in the population. */

Note: as long as each gene of the mutated chromo-
some is an integer between 1 and m, the feasibility of
the chromosome will be maintained and this is ensured
throughout the mutation operation.
Step 6 Elitism:

To ensure that the best chromosomes of a popula-
tion are not lost during the selection strategy for the
next generation, the best 10 chromosomes (out of the
parent chromosomes and offspring) of the population
are transferred to the next generation. This is done to
ensure that the best chromosome is not lost during the
transition from one generation to the next. This is
referred to as elitism.

Step 7 Reproduction:
The size of the population is brought back to the

population size at the end of every generation. For
example, in our HMMGA, 10 chromosomes are se-
lected based on elitism and out of the remaining chro-
mosomes (consisting of the leftover parent chromo-
somes and offspring), 10 chromosomes are selected
randomly for the next generation.

Step 8 Termination:
The HMMGA is terminated when either of the

two conditions is satisfied:

& the process has reached the pre-defined limit
with respect to the maximum number of gener-
ations (i.e., 1000);

& the best chromosome of the population has not shown
an improvement for a number of successive genera-
tions, which is greater than or equal to the stagnation
threshold (i.e., 500).

Upon termination, the best chromosome of
the current population is presented as the heuris-
tic solution of the problem, called UB to evalu-
ate the performance of heuristic algorithms in
the main work.

Parameters:
Parameters used in the HMMGA: population

size = 20; number of generations = 1000; and ex-
cited mutation rate = 0.5 (all these are obtained
after pilot runs). Details are not reported to save
space and also because the primary purpose of
the GA is to obtain a good UB on CTV to
evaluate the deterministic heuristic solutions.

8 Appendix B: a numerical illustration
of the proposed heuristic SMH1

The implementation of the SMH1 heuristic is explained with
the help of a numerical example.

Consider the 10-job problem in Eilon and Chowdhury [2]
with processing times of 19, 18, 16, 13, 10, 9, 8, 5, 2, and 1,
respectively. Let the jobs be called J1, J2,…, and J10, such that
P1≥P2≥…≥Pn.

Let an initial solution (for the purpose of obtaining the
starting upper bound) be obtained from an arbitrary sequence
given as follows:β={1−3−4−8−9−10−7−6−5− 2} and
CTV (β =491.81) (see Step 0 in the Section 4.1).We have
π={1−3−… −2}.

There are seven unscheduled positions in π. Do the follow-
ing by placing job J10 (Jn) in positions

n
2

� �
−2

� �
; n

2

� �
−1

� �
; n

2

� �� �
; n

2

� �þ 1
� �

; n
2

� �þ 2
� �

; and n
2

� �þ 3
� �

, seven
possible sequences are generated, and the steps presented be-
low are repeated for each of these positions.

/*Note: When job J10 is placed in positions n
2

� �
−2

� �
, a

complete feasible sequence is obtained, and hence Step 3
and Step 4 given in Section 4.1 are ignored*/

For the illustrative purpose, let us consider the following
sequence with job J10 placed in position 6.

Let j=4, i.e., job J4 is placed in the first and the last un-
scheduled positions of π respectively to obtain π1 and π2,

π1 and π2 be the two partial sequences derived from π, and
given as follows:

π1= {1− 3−4−−−10−−−−2} and π2 ={1−3−−−−10
−−−4−2}.
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Let σ1 and σ2 be two feasible sequences generated
by placing jobs in the unscheduled positions of π1 and
π2 as follows respectively. As for σ1, a feasible com-
plete sequence is generated by placing the unscheduled
jobs with respect to π1, taken one at a time, alternately
in the unscheduled positions to the right extreme side
and left extreme side of J10. This is done so in order to
have a V-shaped property of the final full sequences. As
for σ2, a feasible complete sequence is generated by
placing the unscheduled jobs with respect to π2 (taken
one at a time), alternately in the unscheduled positions
to the left extreme side and right extreme side of the
partial sequence. For example, with job J10 placed in
position six in both π1 and π2, and with the consider-
ation of job J4, we have σ1 and σ2 obtained from π1
and π2 respectively given as follows:

σ1 = {1− 3− 4− 6− 8− 10− 9− 7− 5− 2} and σ2 = {1− 3
−5−7−9−10−8−6−4−2}.

We have CTV(σ1) = 487.24 and CTV(σ2) = 488.36 as the
completion time variances of the two complete sequences σ1
and σ2 (see Step 3.5 in Section 4.1).

Since CTV(σ1) <CTV(σ2)π=π1, and henceπ={1−3−4−
− − 1 0 − − − − 2 } ; s e t β ′ ← σ 1 a n d h e n c e
CTV(β′) = CTV(σ1) = 487.24 (see Step 3.5 in SMH1
heuristic).

Since CTV(β′) <CTV(β),
β=β′ and
β={1− 3− 4− 6− 8− 10− 9− 7− 5− 2} and hence CTV

(β) =487.24 (see Step 3.6 in SMH1 heuristic).
Set j= j+1; if j< (n−1), repeat the above procedure for

every j.
For Job J5: (j=5):
σ1 = {1− 3− 4− 5− 7− 10− 9− 8− 6− 2} and σ2 = {1− 3

−4−6−8−10−9−7−5−2}.
CTV (σ1) = 498.6, CTV σ2 =487.24, andπ={1−3−4−−

−10−−−5−2}.
For Job J6, we have the following:σ1 = {1−3−4−6−8

−10−9−7−5−2} and σ2 = {1−3−4−7−9−10−8−6−5
−2}.CTV (σ1) = 487.24, CTV (σ2) = 486.44,π={1−3−4−
−−10−−6−5−2},

Since CTV(σ2) <CTV(σ1)
β′ ← σ2 and hence CTV(β′) =CTV(σ2) = 486.44.
Since CTV(β′) <CTV(β),β=β′ andβ= {1− 3− 4− 7− 9

−10−8−6−5−2} and hence CTV (β) = 486.44.
For Job J7, we have:σ1 = {1−3−4−7−9−10−8−6−5

− 2 } a n d σ 2 = { 1 − 3 − 4 − 8 − 9 − 1 0 − 7 − 6 − 5
−2}.CTV(σ1 = 486.44), CTV((σ2) = 491.81), andπ={1−3
−4−7−−10−−6−5−2}.

For Job J8 (i.e., we proceed up to j<n−1):σ1 ={1−3−4
−7−8−10−9−6−5−2} and σ2 = {1−3−4−7−9−10−8

− 6 − 5 − 2}.CTV (σ1) = 486.56, CTV (σ2) = 486.44,
andπ={1− 3− 4− 7−− 10− 8− 6−5− 2}.Therefore, β={1
−3−4−7−9−10−8−6−5−2} and CTV (β) = 486.44.

Next, this solution is checked for further improvement by
using Lemma 1 or Lemma 2, i.e., by swapping the compli-
mentary pairs. For example, since job J9 and J10 are compli-
mentary pairs, swapping the results in the following
sequence:β″={1−3−4−7−10−9−8−6−5−2} and CTV
(β″) = 486.86 (see Step 4 in SMH1 heuristic).

Since CTV(β″) >CTV(β), the sequence β is not updated.
By swapping the complimentary pairs J6 and J7, the fol-

lowing sequence for β″ is obtained.
β″ = {1 − 3 − 4 − 6 − 9 − 10 − 8 − 7 − 5 − 2} and CTV

β″ =486.4.
Since CTV(β″) <CTV(β), we have
CTV(β) =CTV(β″) = 486.4.
In the same manner, other feasible complimentary pairs

are checked for possible improvement. The above steps
are repeated for every sequence generated with respect to
seven possible positions of J10 and the final β and
CTV(β), yielding the solution of the proposed heuristic,
SMH1 is obtained.

In this problem, the best sequence is obtained when job
J10 is placed in position 6 and with application of the
swapping technique presented in Lemma 2, the best solu-
tion with CTV, 486.4 with β={1−3−4−6−9−10−8−7
−5−2} is obtained.

9 Appendix C: an illustrative example
for SCH+SMH1 and FCH+SMH1

Consider a 14-job, 3-machine problem. For the purpose of
easy understanding and presentation, the nomenclature of
jobs J1, J2, …, and J14, such that P1≥P2≥P3≥…≥P14 is
used. Table 5 presents the allocation pattern of the jobs on
the three machines using the SCH+SMH1 heuristic and
Table 6 presents the allocation of the jobs on three machines
using the FCH+SMH1 heuristic. The allocation pattern is
the same for both versions of the parallel-machine problem.
The SMH1 is used to solve the sequencing phase of the
Pm||CTV problem.

Table 5 Allocation of
jobs to machines using
SCH+SMH1

Machine Jobs

M3 J3 J4 J7 J12
M2 J2 J5 J8 J11 J14
M1 J1 J6 J9 J10 J13
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