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Abstract In this paper, we propose an architectural design
and software framework for fast development of descriptive,
diagnostic, predictive, and prescriptive analytics solutions for
dynamic production processes. The proposed architecture and
framework will support the storage of modular, extensible,
and reusable knowledge base (KB) of process performance
models. The approach requires developing automated
methods that can translate the high-level models in the reus-
able KB into low-level specialized models required by a vari-
ety of underlying analysis tools, including data manipulation,
optimization, statistical learning, estimation, and simulation.
We also propose an organization and key structure for the
reusable KB, composed of atomic and composite process

performance models and domain-specific dashboards.
Furthermore, we illustrate the use of the proposed architecture
and framework by prototyping a decision support system for
process engineers. The decision support system allows users
to hierarchically compose and optimize dynamic production
processes via a graphical user interface.

Keywords Smart manufacturing . Data analytics . Domain
specific user interface . Optimization . Reusable knowledge
base . Process performancemodels

1 Introduction

Smart manufacturing (SM) requires the collaboration of ad-
vanced manufacturing capabilities and digital technologies to
create highly customizable products faster, cheaper, and
greener. According to [1], “Next-generation software and
computing architectures are needed to effectively mine data
and use it to solve complex problems and enable decision-
making based on a wide range of technical and business pa-
rameters.” These software and computing architectures need
capabilities to support the development of analysis and opti-
mization solutions. These capabilities need to be designed for
multiple operational levels, including manufacturing units,
cells, production lines, factories, and supply chains [2].

The required analysis and optimization capabilities can be
broadly classified as descriptive (what happened?) [3, 4], di-
agnostic (why did it happen?) [5, 6], predictive (what will
happen?) [7, 8], and prescriptive (how can we make it hap-
pen?) analytics [9–11]. However, the current manufacturing
practice is that analysis and optimization solutions are typical-
ly implemented from scratch, following a linear methodology.
This leads to high-cost and long-duration development and
results in models and algorithms that are difficult to modify,
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extend, and reuse. A key contributor to these deficiencies is
the diversity of computational tools, each designed for a dif-
ferent task such as data manipulation, statistical learning, data
mining, optimization, and simulation. Because of this diversi-
ty, modeling using computational tools typically requires the
use of specialized low-level mathematical abstractions and
languages. As a result, the same manufacturing knowledge
is often modeled multiple times using different specialized
abstractions, instead of being modeled only once using a uni-
form abstraction. Furthermore, the modeling expertise re-
quired for the low-level abstractions and languages is typically
not within the realm of knowledge of manufacturing users
such as operators and process engineers.

Addressing the described limitations of current practice is
the focus of this paper. More specifically, the contributions of
this paper are as follows. First, we propose an architectural
design and framework for fast development of software solu-
tions for descriptive, diagnostic, predictive, and prescriptive
analytics of dynamic production processes. The architecture
adopts (1) the top layer of domain-specific modeling and an-
alytics’ graphical user interface (GUI) and (2) the low-level
layer of computational tools. The uniqueness and novelty of
the proposed architectural design and framework is its
middleware layer, which is based on a reusable, modular,
and extensible knowledge base (KB) of process performance
models. Reusability of modular KB models could lead to con-
siderable reduction in the development cost, time, and the
required level of expertise. The key technical challenge lies
in the development of a middleware analytics engine. This
engine comprises algorithms and automatic methods that
translate high-level uniform representations of performance
models in the reusable KB into low-level specialized models
required by each of the aforementioned underlying tools.

Second, we propose the organization and the key structure
of the reusable KB, which consists of (1) an extensible library
of atomic process performance models of unit manufacturing
processes, (2) a library of composite process performance
models, which can be constructed from the atomic process
performance models using a GUI, and (3) a library of analyt-
ical views and dashboards designed for specific types of anal-
ysis for domain-specific users.

Third, to illustrate the use of the proposed design and
framework, we prototype a decision support system that al-
lows process engineers to (1) hierarchically compose dynamic
production processes via a GUI and (2) perform deterministic
and stochastic optimization of dynamic production processes.
Users can pose optimization queries against atomic or com-
posite process performance models without the need of math-
ematical or optimization modeling. The deterministic optimi-
zation is implemented by automatic translation of perfor-
mance process models into formal optimization models
expressed in Optimization Modeling Language (OPL) and
solved using the International Business Machines (IBM)

Corporation CPLEX mixed integer linear programming
(MILP) solver, as described in [12]. The stochastic optimiza-
tion is implemented by a heuristic algorithm from [13] based
on a series of deterministic approximations, which significant-
ly outperforms existing algorithms based on stochastic simu-
lation. The graphical domain-specific modeling environment
is implemented using the generic modeling environment
(GME) [14].

The paper is organized as follows. Section 2 discusses the
needs and challenges encountered in implementing analysis
and optimization solutions. Section 3 provides the design of
the architecture and framework that is based on reusable KB
of process performance models. Section 4 extends the previ-
ous section by exemplifying the reusable KB. Section 5 intro-
duces the prototype for the domain-specific SM decision sup-
port system. Section 6 discusses the implementation architec-
ture for the prototype. Section 7 gives a more detailed discus-
sion on related work and its limitations that we address in the
paper. Finally, Section 8 concludes and discusses future work.

2 Required analysis and optimization capabilities

To discuss the required analysis and optimization capabilities
inmore detail, we use the diagram of the Tesla car manufactur-
ing process example as depicted in Fig. 1. Aluminum coils are
the input of the manufacturing process and are fed into two
uncoiling machines that work in parallel to flatten the coils
into aluminum plates. The plates are then sent to four different
cutting machines to prepare for the four parts of a car: the left
side, the underbody, the front, and the right side. After being
cut, the aluminum plates are sent to die press machines after
which they will be reinforced and welded. After assembly, the
finished body is then washed, coated, and painted before the
final operations are performed to produce a car.

Different analysis and optimization capabilities are re-
quired to analyze the performance of the production line and
to achieve SM goals. These capabilities can be classified as
descriptive, diagnostic, predictive, and prescriptive/
optimization analytics.

Descriptive capabilities are needed to create a temporal
sequence of sensor data automatically or semi-automatically.
In the car manufacturing process, examples of sensor data
include (a) line speeds of the uncoiling machines; (b) CO2

emissions, water consumption, energy consumption, and tem-
perature of the individual machines or the entire plant; and (c)
levels of the work-in-progress inventories. This collected data
may be filtered and aggregated over time and manufacturing
levels. In addition, some preprocessing or transformation of
certain sensor data may be performed to improve
visualization.

Diagnostic capabilities are needed to detect undesirable
deviations from what is considered normal behavior.
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Detecting such deviations requires continuous testing for any
significant statistical difference between the predicted and ob-
served values of important metrics. The data needed for this
testing comes from the descriptive tasks described above. For
instance, after determining the minimum and maximum ac-
ceptable values of a metric, such as total energy consumed for
the uncoiling machine, the testing can detect if the observed
value obtained from sensor data is within these bounds. If it is
not, then the process operator will be notified and asked to
find the causes of the problem and take corrective actions to
eliminate them.

Predictive capabilities are needed to estimate and learn the
values of various performance metrics as a function of ma-
chine and process controls. These capabilities often come in
the form of statistical learning techniques such as regression
analysis. For example, a production engineer may want to
learn the energy consumption of a die press machine as a
function of its pressing speed and nominal pressure. The en-
gineer may use the learned results to predict future perfor-
mance of the process. The engineer might also use this result
together with a stochastic simulation to predict the increase in
the energy consumption of the die press machine if, for exam-
ple, the pressing speed is increased by 15 %.

Prescriptive capabilities, which include optimization tech-
niques such as mathematical programming (MP) and con-
straint programming (CP), are needed to choose among alter-
native actions. For instance, upon discovering a spike in total

energy consumed and fixing the machine’s parameters, the
operator may need to (1) determine new machine settings
within the allowed bounds and (2) rebalance the workload
distribution to meet the production schedule and minimize
the total energy consumption.

As depicted in Fig. 2, a typical software architecture to
implement the analysis and optimization capabilities includes
(1) a top layer of a domain-specific GUI for manufacturing
users and (2) a bottom layer of specialized tools and lan-
guages. The core implementation challenge, however, lies in
the translation of the top-layer tasks into the low level of
abstractions of the tools at the bottom layer (the question mark
in Fig. 2). We will describe a variety of tools and then discuss
the core implementation challenge in more detail in Sect. 7.

3 Architectural design and framework based
on reusable KB of process performance models

To overcome the challenges in developing SM analysis and
optimization capabilities, we advocate for a paradigm shift
from the nonreusable modeling approach, which is a linear
task-centric methodology of gathering requirements, identify-
ing data sources, and developing one of models and algorithm
using a range of modeling languages and tools to perform
analysis (see Fig. 3) to a new one. The key idea is to adopt
the approach more commonly used in database management

Fig. 1 Tesla car manufacturing
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systems (DBMSs). In a DBMS, a central data repository is
updated continuously from multiple sources. DBMS users
pose declarative data manipulation queries—using one of sev-
eral query languages—against the database. The DBMS en-
gine translates the declarative queries into efficient, low-level,
data processing code. In the case of SM analysis and optimi-
zation solutions, there is a need to manage not only the data,
but also the analytical knowledge. Rather than posing declar-
ative data manipulation queries, our goal is to pose analytical
queries needed to execute descriptive, diagnostic, predictive,
and prescriptive/optimization tasks.

To achieve this goal, we have developed the SM analysis
and optimization conceptual architecture shown in Fig. 4. The
uniqueness and novelty of the proposed architecture is that it is
centered on a reusable, modular, and extensible KB of process
performance models (the middle layer in Fig. 4).

The key technical challenge in realizing a system based on
this architecture lies in developing specialized algorithms that
automatically translate the high-level, uniform representation
of manufacturing models in the KB into the low-level, spe-
cialized models required by each of the underlying tools. The
analytical models (AMs) in the KB are mathematical models
that represent data, schema, parameters, variables, functions,
constraints, and uncertainty. Using these models is easy and
done through the aforementioned analytical queries. However,

creating these reusable models requires multiple levels of
knowledge and expertise. We classify these models in the
KB into three libraries of atomic process performance models,
composite process performance models, and analytical views,
according to types of knowledge or expertise required for
developing these models.

3.1 Atomic models

Atomic models, i.e., atomic process performance models (in
the middle of KB in Fig. 4), require the most expertise and
effort to build; however, they are also the most reusable ones.
The atomic model library contains a classification hierarchy of
prebuilt performance models for atomic manufacturing pro-
cesses. An atomic process is an end process in which there is
no subprocess. Each performance model contains the process
parameters, control variables, performance metrics, and

Fig. 2 Challenges in implementing analytics functionality using tools

Fig. 3 Conventional approach to analytics solutions
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feasibility constraints—as well as quantification of uncertain-
ty associatedwithmetrics and constraints. For instance, for the
injection molding process, the metrics of energy consumption
per part, cycle time, and throughput can be expressed as a
function of (1) parameters such as the number of cavities,
the volume of the part, and the material characteristics and
(2) control variables such as injection pressure and flow rate.

Building atomic process performance models requires
knowledge in process engineering and data manipulation lan-
guages. Domain-specific, process engineering knowledge in-
cludes an understanding of the equations defining perfor-
mance metrics and constraints. The knowledge of data manip-
ulation languages is needed to encode data transformation and
equations. However, building atomic process performance
models does not require expertise in optimization, MP, or
statistical learning.

Once built, the atomic process performance models can be
used by both end users and process engineers. Operational end
users will invoke analytics-core functions of compute, predict,
learn, simulate, and optimize to run the models. They will also
use the various analytical views described later in this section
to monitor the performance of the process, against both the
atomic process performancemodel and historical performance
data. Process engineers use these atomic process performance

models as the basis for creating composite performance
models of composite processes.

3.2 Composite models

A composite process is recursively composed of atomic pro-
cesses and the associated aggregators, information flows, and
timing constraints. The composite process performance model
library contains performance models of such composite pro-
cesses at different levels of granularity, such units, cells, lines,
factories, and enterprises. Constructing composite process
performance models is the usual task of manufacturing pro-
cess engineers (MPEs); to construct such models, an MPE
only needs to specify the processes involved in the design
and the rules for composition. Rules specify the flow of ma-
terials, parts, products, and information through the processes.
Composite process performance models can be constructed
simply by using a drag-and-drop GUI. Figure 5 shows an
example of such a model built using a GUI for the Tesla car
manufacturing (first explained in Fig. 1).

System-level metrics and feasibility constraints can be de-
termined from the metrics and constraints of its subprocesses,
recursively. The metric computation and feasibility constraint
evaluation are done by the system using the corresponding

Fig. 4 Proposed conceptual architecture
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atomic and composite process performance models that use
the model composition template. Thus, a composite process
performance model, just like an atomic process performance
model, can be thought of as having the same characteristics,
namely, parameters, control variables, metrics, and feasibility
constraints. It can be used recursively for analysis or as a
component of a higher-level process.

Once built, the operational use of composite process per-
formance models is similar to the use of atomic process per-
formance models; i.e., end users can use the analytics-core
functions or analytical views to perform analytical tasks on
these models. Analytical views are dashboard-like templates,
which are implemented using the analytics-core functions
(compute, predict, learn, simulate, and optimize) together with
a data manipulation language. As noted above, this idea is
similar to how relational database views are constructed from
database tables using SQL.

3.3 Analytical views

Analytical views can be implemented by a data analyst who
has the required analytics knowledge and can use a data ma-
nipulation language such as SQL or JSONiq. However, the
analyst does not need to have any expertise in mathematical
modeling, domain knowledge, or equation writing. Examples
of analytical views include (1) dashboard of the energy con-
sumed over a period of time, (2) diagnosis of the statistical
difference between the expected and observed power con-
sumption, (3) visualization of the supervisory control and data

acquisition (SCADA) data, (4) parameter calibration of the
power consumption as a function of machine controls, (5)
composite process performance model metric computation
as a function of individual machine metrics, (6) scheduling
of a job to meet the demand, (7) optimizing the machine op-
erations to minimize the power consumption such that the
demand is satisfied, and (8) what-if analysis to find the impact
on demand satisfaction and power consumption if one of the
machines was switched off.

The analytics-core methods (compute, predict, learn, sim-
ulate, and optimize) are part of the Analytics Engine (see
Fig. 4). Implementing these methods involves and requires
reduction and compilation techniques, as well as specialized
optimization and learning algorithms. However, once imple-
mented, the analytics-core methods will allow fast and easy
implementation of domain-specific analytical views, without
the need to understand the lower-level abstractions of the un-
derlying computational tools. Furthermore, they allow
manufacturing end users to directly pose analytical queries
against the atomic and composite process performance
models, thus enabling their reusability. A more detailed de-
scription of the reusable KB along with some guidelines to
model the AMs is described in the next section.

3.4 JSON and JSONiq

There are a number of data models and corresponding data
manipulation languages that we can choose from. They include
(1) the relational model and SQL; (2) the XML data model and

Fig. 5 Tesla car manufacturing
composite process performance
model diagrams
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XQuery; and (3) the JavaScript Object Notation (JSON) data
model [15] and JSONiq [16]. We believe that the “flat” rela-
tional model and SQL are not sufficiently flexible for modeling
manufacturing processes and systems. Out of XML and JSON,
we decided to use the JSON data model because it is more
compact and lightweight than the XML data model and be-
cause it is broadly used today for data analytics and data inte-
gration. This subsection briefly overviews JSON and JSONiq.
Examples of JSON and JSONiq appear in Sect. 4.

JSON is a lightweight, data interchange format that facili-
tates structured data interchange between all programming
languages. It defines a small set of structuring rules for the
portable representation of structured data. JSON format is text
only, just like XML. Therefore, JSON is not only easy for
machines to parse and generate but also easy for humans to
read and write [15].

JSON Schema is a JSONmedia type for defining the struc-
ture of JSON data. It provides a contract for what JSON data is
required for a given application and how to interact with data.
JSON Schema can be used to validate if a given JSON docu-
ment (an instance) satisfies a certain number of criteria. At its
core, the JSON schema is made up of data structures such as
object, array, number, string, Boolean, and null. With these
simple data types, all kinds of structured data can be repre-
sented. JSONSchema itself is written in JSON. JSONSchema
is data itself, not a computer program. Using JSON data sche-
ma, one is able to provide guidelines and data formats needed
to create a JSON data model for the inputs (parameters and
control variables) of either an atomic unit process or a com-
posite process. In addition, through JSON data schema, one
can represent the input constraints for the values of the KB
modules in the data model.

JSONiq is a query and processing language specifically
designed for JSON data models. The main source of inspira-
tion behind JSONiq is XQuery, which has been proven to be a
successful and productive query language for semi-structured
data such as XML [15]. JSONiq, however, can do more than
queries; it can describe data processing programs created from
transformations, selections, joins, data enrichment, informa-
tion extraction, information cleaning, and so on [16]. In addi-
tion, A JSONiq program is an expression; the result of the
program is the result of the evaluation of the expression [15].

4 Reusable KB

The proposed architecture contains a KB that contains multi-
ple AMs, which may include data, schema, parameters, vari-
ables, functions, constraints, and uncertainty. Modules in the
KB are of three types: atomic model (atomic process perfor-
mance models) type, composite model (composite process
performance model) type, or analytical view type. The atomic
process performance model (atomic model) library will map

to the different types of manufacturing machines or processes.
The atomic model library can be organized differently for
different use cases. In this section, we show one such organi-
zation. In addition, we provide an example JSON input struc-
ture and JSONiq physics equations for the injection-molding
atomic process performance model. We also describe general
guidelines for developing and storing atomic process perfor-
mance models. Then, we provide an example for the compos-
ite process performance model based on the Buffered
Temporal Flow Processes (BTFP) by giving the JSON code
snippets of the different components of the composite process-
es. Finally, we give an example for the analytical view of a
deterministic optimization that can be used against the atomic
or composite process performance models in the KB.

4.1 Example of atomic model library

Figure 6 shows an example organization of the atomic
models . These models may include a range of
manufacturing processes such as casting, forming, join-
ing, machining, molding, and additive manufacturing.
Casting process involves pouring a liquid material into
a mold, which contains a hollow cavity of the desired
shape, and then allowing the liquid to solidify. Examples
of casting include die casting and sand casting. Forming
process uses suitable stresses to deform plastic materials
to produce different shapes. Examples of forming include
bending, pressing, and rolling. Joining process connects
metals together to create parts, assemblies, or large-scale
structures. Examples of joining include sintering and sol-
dering. Machining process removes material from a
workpiece to produce parts based on NC programs.
Examples of machining include milling and drilling.
Molding is the process of shaping liquid or pliable raw
material using a mold. Examples of molding include
foam molding and inject ion molding. Addit ive
manufacturing is a process that fabricates products by
adding layer-upon-layer of material. Examples of this
process include 3D printing and powder-based fusion.
To understand how the processes are modeled and stored
in the KB, we use injection molding as an example next.

4.2 Example of atomic process performance model:
injection molding

We use JSON and JSONiq to describe the atomic process per-
formance models (Fig. 7). An example JSON input structure
and JSONiq physics equations are provided for the injection
molding machine. The injection molding process consists of
heating thermoplastic material until it melts and then forcing
this molten material into a mold (die) where it cools and solid-
ifies [17]. Consequently, the injection molding process consists
of three major subprocesses: (1) melting, injecting, or filling;
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(2) cooling; and (3) ejection and resetting. The resulting cycle
time, tcycle can be formulated as according to [17–19]:

tcycle ¼ tin j þ tcool þ treset ð1Þ

where tinj is the injection time, tcool is the cooling time, and treset
is the reset time.

Using process parameters, machine parameters, andmaterial
parameters, one can estimate a number of key performance
metrics including cycle time, energy use, water consumption,
and part throughput. For example, the energy required for melt-
ing Emeltone-shot volume of plastic is as follows:

Emelt ¼ Pmelt � V shot

Q
ð2Þ

where (Pmelt) is the power consumed by melting, Vshot is the
shot volume, and Q is the flow rate of plastic.

The JSON structure defined for the atomic process perfor-
mance model contains all the process parameters, control var-
iables, constraints, and coefficients. Figure 5 shows the
JSONiq code for computing key performance indicators
(KPIs) of the injection molding process using the JSON input
data. For instance, Eq. (2) is encoded as a variable, $E_melt, in
JSONiq and illustrated in the figure as $E_melt:= ($P_melt *
$V_shot) div $Q. Note that values defined by the function
sample in Fig. 5 including $T_inj, $T_ej, and $Q are random
variables and so are all the derived variables such as $E_melt.
The JSONiq structure includes three parts: top, middle, and
bottom. At the top, there is a query header where we define
namespace and import the relevant modules; in the middle, we
extract and transform the data from the JSON document into
JSONiq, and at the bottom, we define the functions, for, let,
where, order by, return (FLWOR) expressions, and the equa-
tions to compute the quantity of interests.

Each process may have dependent variables including met-
rics and KPIs such as total cycle time, energy consumption,
and cost. Using the JSON document, we create the inputs, the
functions, and the equations needed to compute these depen-
dent variables for each subprocess. Note that computations
and equations are encoded in JSONiq with parameters and
inputs imported from the JSON data model; the process-
dependent variables, as a function of parameters and control
variables, are encoded in JSONiq.

4.3 Example of composite process performance model:
Tesla prep

In this subsection, we provide an example composite process
performance model based on the BTFP Tesla car manufactur-
ing described in Sect. 2. BTFP is a class of processes where
the states of the machines, inventories, and the whole process
change over time until process completion. BTFP can be used
to model either atomic machines or an entire manufacturing
floor. In the latter case, BTFP processes need to capture the
variables, metrics, and constraints of all the entities on the
manufacturing floor. Figure 8 shows the associated JSON
structure including all the parameters, variables, metrics, and
temporal information for both atomic and composite
processes.

The JSON structure is an analytical module object for the
prep composite process. This structure contains the Tesla time
setting and defines the temporal setting for the Tesla prep
process. In BTFP processes, time is divided into time intervals
of duration Δt, where time intervals start and end at time
points (t). A time interval (also known as a period) is denoted
by pi + 1= (ti, ti + 1). In this example, there are 18 periods
(noPeriods) and the time starts from time point 0 (lastTP).

Fig. 6 An illustration of the atomic model classification hierarchy
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The JSON structure also contains the subprocess for the
uncoiling 1 machine. This structure provides the parameters,
variables, and metrics for the uncoiling 1 machine. They are
inputs (I), outputs (O), machine capacity, metric type (i-
_metrics), metric values (i_metricValues), number of inputs
required per output produced (ii_inputPerOutput), the incom-
ing and outgoing flow objects (itemFlows), the speed (control
variable) of themachine at each period (pi_throughputControl),
the amount of items accumulated in each period
(pi_accumulateAmount), and the number of items left over in
each period (ti_leftOver). The atomic process performance
model may also have coefficients such as those for piecewise
l inear funct ions for calcula t ing the cost metr ic
(i_metricPWLcoefficients). The speed of the machines may be
stochastic, and the parameters to the random value function are
a part of the machine model (i_throughputDistribution).
Although only the structure of the uncoiling 1 machine is
shown here, the other subprocesses have a similar structure
with different parameter, variable, and metric values.

Finally, the JSON structure contains the composite process
performance model for the prep process (lines 3 to 19 in

Fig. 8) that encapsulates the reference to the time settings
and the subprocesses discussed above. The structure also con-
tains the parameters, variables, and metrics for the composite
Tesla prep process such as its inputs (I), outputs (O), the pro-
cess demand (i_demand), metric type (i_metrics), metric
values (i_metricValues), and the incoming and outgoing flow
objects (itemFlows). Additionally, the prep process also con-
tains the structures for the storage and distribution aggregators
(inventoryAggr), e.g., a2 in Fig. 5, input distribution
aggregator (inputAggr), e.g., a5 in Fig. 1, and output distribu-
tion aggregator (outputAggr). Due to lack of space, these
structures have been left out in Fig. 8. However, more details
about these and other BTFP components can be found in [12].

4.4 Example of analytical view: deterministic optimization

Analytical views allow users to perform analytical tasks on all
of the models described above. Figure 9 shows the determin-
istic optimization analytical view in the JSON structure for the
teslaPrepOptimizationInput, which is similar to the one de-
scribed in Fig. 8. The difference is that the control variables

…

                             … 

                                     …

…

Fig. 7 Injection molding atomic
process performance model: a
JSON data representation and b
JSONiq formulation
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(e.g., throughputControl of the uncoiling 1 process) and the
dependent variables (e.g., periodQty of the itemFlows) are
annotated to be determined by the optimization engine.
Using this structure, the analytical view defines the type of
analysis to be performed on the Tesla prep process. In this
example, it is MILP deterministic optimization. This JSON

Fig. 8 JSON structure for the Tesla prep composite process performance model

Fig. 9 JSON structure for the deterministic optimization analytical view
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structure may also contain other parameters pertaining to the
selected analysis type, such as the objective function
(objective). Analytical views may have additional parameters
relevant to a specific analysis.

5 Prototype of SM decision support system

To illustrate the use of the proposed design and framework, we
prototype a decision support system that allows process engi-
neers to (1) compose hierarchically dynamic production pro-
cesses via a GUI and (2) perform deterministic and stochastic
optimization of dynamic production processes. Before
discussing the design and implementation of the prototype
(the How), we first discuss the system functions (the What),
which are based on users’ needs. In this section, we discuss
users’ needs and roles and the system’s functions and seman-
tics. In some sense, functions are associated with the roles and
semantics expresses the needs. We also describe a typical case
scenario that involves users’ needs, roles, system’s functions,
and semantics.

5.1 High-level system functionality and key user roles

The key system function is to enable all analytical tasks such
as what-if analyses and performance optimizations to be exe-
cuted timely and accurately. The idea is that new analytical
tasks will not need to be implemented entirely from scratch
every time a user requests one. Rather, new tasks will be
implemented using pre-existing, reusable, “component”
models of all machines and all processes. These component
models are stored in a prebuilt model library and used to
construct the composite process models. The same composite
process models can be used by different users performing
different roles for different analytical tasks.

From the previous discussion, it is clear that functions are
executed by users with different roles. There are, as shown in
Fig. 10, four roles: analytical view modeler, atomic process
performance modeler, composite process performance mod-
elers, and manufacturing end users.

An analytical view modeler designs and describes analyti-
cal views in terms of the core analytical functions. Analytical
view modelers can develop different descriptive, diagnostic,
predictive, and prescriptive analytical views.

An atomic process performance modeler creates physics-
based models that describe the operations of machines and
atomic process performance models that predict the outputs
of the machines. Both model types must be based on either
expert knowledge of the domain or the knowledge from other
atomic process performance models.

A composite process performance modeler must under-
stand the process plan to (1) determine the required atomic
or composite process performance models and (2) the

materials and information that flow among those models.
Composite performance modelers have access to a pre-built
library that contains atomic process performance model com-
ponents as well as higher-level composite process perfor-
mance models.

A manufacturing end user must submit a request to the
system in the form of declarative analysis queries against pre-
viously constructed process models. Of course, manufacturing
users can fill some or all these roles. For example, MPEs can
play all the roles, whereas manufacturing operators and busi-
ness managers can only play the role of manufacturing end
users. Manufacturing end users can perform various analyses
of the manufacturing processes that have been defined by
other modelers.

To describe the functionality of the system in more detail,
consider GUI screen captures of the system depicted in
Figs. 11 and 12. The screen is split into four parts. The left
part is a window for a KB ofmanufacturingmodels, organized
into folders by analytical views, atomic process performance
model, and composite process performancemodel. In the mid-
dle is the workspace window used for constructing composite
processes and performing analytical tasks. The right part is a
window used to input data for the component selected in the
workspace or display the results of the component selected.
The top part contains buttons to dispatch the manufacturing
processes and analytics view to the analysis engine. We now
describe each of these parts and the corresponding
functionality.

5.2 The KB

The KB/repository (left window in Fig. 11) consists of librar-
ies of analytical views, core analytical functions, models of
machines available at a manufacturing facility, and models of
composite manufacturing processes. Note that manufacturing
process models may be complex and involve an arbitrary hi-
erarchy of subprocesses. At the end of that process will be an
atomic process for every machine within the manufacturing
facility.

There is a one-to-one correspondence between the library
described here and the SM KB described in Sect. 3. There are
folders containing analytical views, the analytical core, atomic
models (i.e., atomic process performance models), and com-
posite models (i.e., composite process performance models).
The analytic view folder contains analytical view functions
such as monitors, dashboard, and scheduling. The analytical
core folder contains functions such as compute, predict, learn,
simulate, and optimize. The atomic model folder contains a
classification hierarchy of prebuilt performance models for
atomic UMP. Finally, the composite model folder contains
performance models of composite processes at different levels
of granularity—manufacturing units, cells, lines, factories,
and supply chains.
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While implementation of performance models for atomic
and composite processes may be complex, their meaning for
manufacturing modelers and end users is much simpler. Here
is what manufacturing users need to understand.

1 Correspondence between models and their physical
counterparts—machines or processes—There will be a
computational model, either atomic or composite, for ev-
ery physical machine and process used in a manufacturing
facility.

2 Input and output flows—Output flows correspond to
things produced by machines and processes; input flows
correspond to things consumed by the machines and pro-
cesses. Eachmachine and process may havemultiple input
and output flows. These flows act as interfaces and can be
either informational or physical.

3 Process parameters and controls. Each atomic process
performance model of a machine will include a number
of parameters. Some parameters describe the machine’s
behavior, and other parameters describe the machine’s di-
rect control capabilities.

4 Process-dependent variables as a function of parameters
and controls. Each process may have dependent variables

including metrics and KPIs. Users need to understand
what the metrics mean but are not required to understand
the mathematics behind it.

5 Process feasibility constraints. Each process may have real
feasibility constraints that limit their capabilities and per-
formance. Atomic models capture these constraints, which
are only an approximation of their real-world counterparts.

5.3 Process composition scenario

To describe what users need to understand about composite
processes performance models, we focus on the Tesla prep
composite process and a related performance objective: find
the speed of different machines that minimizes cost. The
atomic model folders of the model library include a built-in
model template for the machines that enable the production of
the Tesla car. Using these atomic process performance models
and aggregators, a composite process performance modeler
can easily be created to minimize the production cost. Below
is a typical case scenario to define a new composite process by
a composite process performance modeler:

Fig. 10 Potential roles of a
domain-specific SM DSS
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1 The modeler (1) identifies the required subprocesses ac-
cording to the process plan, (2) selects their appropriate
models from the library, and (3) drags and drops them on

the workspace using the GUI. For example, in Fig. 11,
there are ten subprocesses: two uncoilings, four cuttings,
and four die press. Note that the modeler can use these

Fig. 11 Drag and drop screen capture of the proposed system showing composition of Tesla prep

Fig. 12 Drag and drop screen capture showing composition of Tesla assembly
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atomic process performance models to formulate compos-
ite process performance models or he or she can use an
existing relevant composite process performance model to
build a larger model. For example, if the modeler wanted
to show the entire Tesla car manufacturing floor in a com-
posite process performance model, then the modeler
would use the composite process performance models of
Tesla prep (Fig. 11) and Tesla assembly (Fig. 12) as
subprocesses.

2 The modeler identifies the input flows to the subprocesses
and the output flows from them. In the example, all pro-
cesses incur a cost and here are the material inputs and
outputs for each process:

& Uncoiling process: The input is aluminum coil and
the output is an uncoiled aluminum plate

& Cutting process: The input is the uncoiled aluminum
plate and the output is a cut aluminum part for the left,
right, front, or the underbody.

& Die press process: The input is the aluminum part, and
the output is the aluminum part of appropriate shape

3 If the composite process performance model is of BTFP
type (as shown in Fig. 11), then the modeler identifies the
aggregators (buffers) required between the processes.
There are typically two types of physical aggregators: in-
ventory and transportation. For instance, in Fig. 11, a1 is a
transportation aggregator distributing the aluminum coils
among the uncoiling machines; a2 is inventory aggregator
storing coiled and uncoiled aluminum plates.

4 The user connects subprocesses in the workspace using the
connector components (directed arcs). Each connector sig-
nifies the flow of a particular item (material, part, product,
energy, etc.). Implicitly, they also signify the balance of the
input and output flows. Figure 11 shows the workspace
after the completion of this step for the example process.

5 The modeler creates a uniquely named module (with a
unique namespace) for the created composite process and
stores it in the library under a selected folder for future use.

The panel to the right of Fig. 11 is where the data and
the parameters of the existing subprocesses, aggregators,
and flows can be instantiated or modified. This can be
done by clicking the appropriate icon and instantiating or
modifying its associated data structure, displayed in right
window panel. Some of these parameters may be deci-
sion variables in an optimization problem; they would be
marked as “dvars” in the atomic process performance
model data structure. This window panel also serves as
a display for the results when the analytics task succeeds.
To view the results, the end user can click on the sub-
process of interest and the associated value will be
shown in this window panel.

5.4 Performing analytics tasks

The user can perform different analytics tasks such as com-
pute, predict, learn, simulate, and optimize by selecting the
process models of interest and clicking the buttons at the top
of Fig. 11. In addition, the user can perform what-if analysis,
diagnostics, and optimization using an analytical view created
by the analytical view modeler in the KB. To do this, the user
drags the appropriate analytics view into the workspace and
then presses the “run” button on the top panel in Fig. 11. Here,
we discuss two key functionalities that are available to the
manufacturing user: compute and optimize.

5.4.1 Compute

The user invokes the “compute” function against a predefined
process model. To perform computation, all parameters, con-
trol variables, and subprocesses must be instantiated. For the
Tesla example, the only control variables are the speeds of
uncoiling, cutting, and die press machines. The compute func-
tion performs the following actions:

1 Compute each process-dependent variable from the pro-
cess parameters and controls

2 Evaluate each process feasibility constraint to true or false
from the process parameters and controls. If all feasibility
constraints evaluate to true, we say that the process in-
stance is feasible.

3 Create a copy of the instantiated process where all depen-
dent variables and feasibility constraints are instantiated to
constants computed in 1 and 2.

4 Optionally store the resulting instantiated process model
with a new unique name in the manufacturing model li-
brary under a folder of users’ choice.

5.4.2 Optimize

The user invokes the “optimize” function against a predefined
process model. To perform optimization, all model parame-
ters, except control variables, must be instantiated. For each
model, its parameters will be displayed at the right-hand side
of the window. In addition, control variables and dependent
variables are displayed along with their minimum and maxi-
mum bounds, which, by default, are negative and positive
infinity if the variable is not constrained. The user can choose
bounds by adding constraints on any or all variables. The user
can also assign a particular variable to be constant by setting
both minimum and maximum bounds to be the same value.
Then, the system performs the following tasks:

1 If there does not exist a feasible instantiation of process
control variables, an instantiation that would make all
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feasibility constraints evaluate to true, the system reports
status infeasible to the user. For example, if the throughput
demands on the output flow are too high for the limited
production capacity of the machines in the composite pro-
cess performance models, it is infeasible.

2 Otherwise, if a feasible instantiation exists, the system
finds the optimal instantiation of all control variables for
the given optimization problem. For example, for the pro-
cess in Fig. 11, a problem is to find the values for all
control variables that minimize the cost while meeting all
feasibility and demand constraints.

3 The system computes the instantiated process instance
with the instantiation of control variables as described in
the compute function.

4 The user can then store the resulting instantiated (optimal)
process instance, under a new unique name, in the
manufacturing model library for future use. The instanti-
ated model has the process controls with optimal values.

Next, we describe the overall system architecture, explain
all the system components (what is under the hood), and brief-
ly discuss the implementation of the domain-specific SM KB
in the next section.

6 Prototype implementation architecture

The implementation architecture for the prototype of the
domain-specific SM DSS is shown in Fig. 13. As described
in Sect. 3, the proposed architecture allows the manufacturing
end users to pose and solve manufacturing problems using a
GUI that provides a standardized view of the SM KB. The
GUI is based on the generic modeling environment (GME)
and contains the SM KB. End users will use the GUI to build
models and perform analytics on the model using an analytical
view. GME contains the meta-model that defines the rules and
constraints for building the model. Additionally, GME will
also contain existing atomic and composite process perfor-
mance models that the user can use to build new models. A
number of analytical views such as deterministic optimization,
stochastic optimization, estimation, learning, and simulation
in the SM KB are available for users to use.

The left half of the architecture in Fig. 13 describes
dispatching of the job to the underlying tools, and the right
half shows the results returned from the tools to GME. The
GME components of the model built using the GUI and the
analytical view are translated into a standard data format such
as JSON. The models are then dispatched via the web services
to the backend JSONiq engine. The JSONiq engine deter-
mines the type of analytics to be performed and converts the
JSON model and analytics parameters into the input required
by the analytical tools. After the analytical tools derive a so-
lution to the problem, this solution is translated back into

JSON via the JSONiq analytics engine. The JSON is then
converted into GME components for display at the GME
frontend. We now describe the system components in greater
detail.

6.1 Domain-specific modeling environment (user
interface)

A “domain-specific modeling environment” (DSME) is a vi-
sual interface that a domain expert can use to build comput-
able representations of systems in their domain. The DSME
provides (1) visually intuitive icons pointing to models that
represent elements from the domain, (2) the ability to graph-
ically arrange and connect these models when needed, and (3)
a library of models that can be used to represent a wide range
of systems within the domain. The DSME is designed to be
intuitive for domain experts who only understand how sys-
tems in their domain are constructed. This means that users do

Fig. 13 Overall implementation architecture
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not need a deep understanding of the analytics performed on
these systems.

The DSME for BTFP was designed using GME, a tool for
creating custom DSMEs. A DSME is specified in GME by
constructing a unique meta-model, which describes the vari-
ous objects, properties, and relationships in the domain. The
meta-model for BTFP defines objects such as processes,
aggregators, and flowports, which can be used to build
models of manufacturing systems. Figure 14 shows a portion
of the BTFP meta-model. This portion of the meta-model
specifies that a process can be of two types, atomic and com-
posite. Composite processes can contain atomic or other com-
posite processes. The figure also shows that processes can
contain flowports, which can be of type input or output.
Flowports can be connected to aggregators to form connec-
tions that model the flow of material or parts between process-
es and aggregators. Other details of the meta-model are omit-
ted for brevity.

Once the meta-model has been built, GME can be used to
build the actual models of real-world objects in the domain.
This is possible because GME can be reconfigured to function
as a DSME for the BTFP domain. Manufacturers can build
representations of their systems by constructing an instance
model in the BTFP domain within GME. GME provides a
palette of the objects that are defined in the meta-model. The
user can use these objects to construct the instance models.
Figure 15 shows an instance model constructed in the BTFP
domain in GME. This model shows an input port called
“plywood_in” at the top. The material flows through this port
to the input aggregator “a1.” The aggregator allocates the
material to the two processes “sand1” and “cut1.” The visual

model makes it easy for users to understand how the overall
system looks and operates. After constructing the instance
model, the user may invoke a variety of analytical tools and
perform analytical tasks to derive further insights about the
system.

6.2 Model translation

The instance model in GME provides a generic graphical rep-
resentation of the system. Before this representation can be
used as the basis for executing analytical algorithms, it is
translated into a format that will be understood by the analyt-
ical software applications. The BTFP instance models in
GME are translated into a JSON representation, which can
then be input to the analytics algorithms on the back-end serv-
er. This translation is executed at the click of a button on the
GME interface. In addition to specifying the instance model,
the domain-specific environment for BTFP in GME also al-
lows users to specify their analytics objectives and the type of
analytics that they would like to perform.

The JAVA program that handles the model translation (1)
packages all the information into a single JSON file and (2)
sends it to the analytics engine. The response from the analyt-
ics engine is also in the form of a JSON file. This is translated
back into a GME model and shown visually to the end user.

6.3 JSONiq analytics engine

The JSONiq analytics engine takes the JSON model as input,
interprets it into the required tasks, and transforms each task to
the appropriate input for the underlying tool. The JSONiq

Fig. 14 A portion of the BTFP meta-model
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interpreter uses the configuration object provided in the input
of JSON analytics task to decide the kind of composition to
use for the composite process performance model. The com-
position takes all the parameters, variables, metrics, and con-
straints and embeds them into a standardized JSONiq data
structure. The JSONiq engine will then use the configuration
object to decide the type of analytics tool to use and convert
this data structure and analytics parameters as inputs for that
tool. For instance, if IBM CPLEX is used for MILP

deterministic optimization, the JSONiq engine will convert
the data structure into the OPL model and data files. After
the optimization result is derived, the JSONiq engine will do
the opposite transformation, i.e., from the tool output to the
result JSONiq data structure. Finally, the engine will convert
the resulting data structure into the output JSON file and send
it back to the user via the web service interface.

6.4 Analytical tools

As described in Sect. 2, there are a number of tools available to
solve analytical problems and we describe two such tools as
follows.

6.4.1 Tool 1: deterministic optimization using IBM CPLEX
MILP solver

The first tool is IBM CPLEX (OPL studio) for deterministic
MILP optimization. The BTFP processes’ composition is
used. Figure 16 shows the transformation of the incoming
analytical task to the input generation for IBM CPLEX. A
number of different optimization problems can be formulated
and solved as a MILP. The model parameters are translated
into an OPL data file. The decision variables, constraints,
physics equations, and objective function are translated into
an OPL model file. There are two possible results of the opti-
mization: no feasible solutions or the optimal solution.

6.4.2 Tool 2: stochastic optimization using iterative heuristic
optimization simulation algorithm

The second tool is the iterative heuristic optimization simula-
tion (IHOS) algorithm for stochastic optimization discussed in
[11]. An overview of this algorithm is given in Fig. 17. To
model and query a manufacturing process in the real world, it
is critical to consider the stochastic nature of the variables of

Fig. 15 An instance model constructed in the BTFP domain in GME

Fig. 16 Deterministic MILP
optimization using CPLEX (OPL
Studio)
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the process model. In this algorithm, the JSON data
from the JSONiq engine is fed to a two-phase IHOS
algorithm. Using this data, the algorithm approximates
the total cost of running the entire hierarchical process
when the actual throughput of the machines is stochas-
tic. The main idea behind these algorithms is multiple
iterations of optimization through a series of stochastic
simulations.

For the example, the optimization solver finds the expected
throughputs of the machines such that the demand is satisfied
at each period while minimizing the cost. The stochastic sim-
ulation adds noise to the mean throughputs and checks wheth-
er the probability of satisfying the demand at each period lies
within a predetermined confidence interval. A heuristic is used
to vary the demands such that the optimizer can give more
realistic mean throughputs in the following iteration. A num-
ber of candidate mean throughputs are simulated to ensure (1)
the probability of satisfying the demand remains within the
desired confidence interval and (2) the cost is approximately
minimal. In this way, the algorithm uses the model knowledge
in both optimization and stochastic simulation to provide an
optimal setting for the throughputs of the machines. The pro-
cess operator can then apply the optimal setting in production.

The authors conducted an initial experimental study to
compare the proposed algorithm with four simulation-based
optimization algorithms: Nondominated Sorting Genetic
Algorithm 2 (NGSA2) [20], indicator-based evolutionary al-
gorithm (IBEA) [21], Strength Pareto Evolutionary Algorithm
2 (SPEA2) [21], and Fast Pareto Genetic algorithm (FastPGA)
[22]. The study shows that IHOS significantly outperforms the
other algorithms in terms of optimality of results and compu-
tation time; in particular, in 64 s, the cost achieved by IHOS is
5 % of the cost achieved by competing algorithms. For the

total run time, in 1500 s, the cost achieved by IHOS is 80% of
the cost realized by the competing algorithms. More details
about the results can be found in [12].

7 More related work and its limitation

In this section, we further discuss related work mentioned in
the Sect. 1.

The implementation of the analysis and optimization capa-
bilities typically uses a variety of computational tools, which
are shown at the bottom layer in Fig. 2. They include

& Domain-specific end-user-oriented tools, e.g., strategic
sourcing optimization modules within procurement appli-
cations [23]

& Data manipulation languages, such as Structured Query
Language (SQL) [24, 25], XQuery [26, 27], and JSONiq
[28]

& Simulation tools and languages including discrete event
simulation, system dynamics simulation, such as
JModelica (based on Modelica), AnyLogic, and
Simulink [29, 30]

& Optimization modeling languages, such as A Modeling
Language for Mathematical Programming (AMPL) [31],
The General Algebraic Modeling System (GAMS) [32],
and OPL [33] for MP and CP

& Statistical learning languages and interfaces, such as
Predictive Model Markup Language (PMML) [34–36]
and the Portable Format for Analytics (PFA) [37]

& Modeling languages for complex physical systems, such
as Modelica [29].

Fig. 17 Stochastic optimization using iterative heuristic optimization simulation algorithm
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Discussion on the strengths and weaknesses of these cate-
gories of tools as compared to our proposed architecture is as
follows:

Domain-specific tools are designed for, and usually do a
good job in executing, a particular well-defined task in a par-
ticular industry sector. For example, tools that support
manufacturing scheduling would not be used to schedule
visits to a doctor’s office. Nor do these domain-specific tools
support compositionality, which is defined to be the ability to
make optimal system-wide performance predictions from op-
timal predictions of the systems components, whereas the ar-
chitecture proposed in this paper is designed for
composability.

Simulation tools, on the other hand, are usually applicable
to many different tasks in many different industry sectors.1

They have this advantage because of their modeling expres-
sivity, flexibility, and object-oriented (OO) modularity. While
simulation models and tools cannot solve optimization prob-
lems by themselves, they can be used in a heuristically guided,
trial-and-error optimization technique. However, for problems
expressed in closed analytical forms, such simulation-based
optimization techniques are inferior to optimization tech-
niques based onMP or CP, e.g., mixed-integer linear program-
ming (MILP) [38]. Furthermore, simulation languages were
not designed for easy data manipulation the way that data
manipulation languages such as SQL, XQuery, and JSONiq
[28] are, whereas the architecture proposed in this paper al-
lows the use of the best available tools and algorithms includ-
ing MP.

MP and CP optimization models are built using modeling
languages such as AMPL, GAMS, or OPL [31–33]. These
languages and techniques use a range of sophisticated algo-
rithms that leverage the mathematical structure of optimiza-
tion problems. As a result, they significantly outperform
simulation-based optimization, in terms of optimality and ex-
ecution time. However, MP and CP optimization models are
not modular, extensible, and reusable and do not support
compositionality. They also do not support low-level granu-
larity of simulation models. Furthermore, some MP- or CP-
based optimization algorithms have high worst-case compu-
tational complexity. Therefore, these algorithms may not scale
up for large-size optimization problems, whereas the architec-
ture proposed in this paper does allow modularity, extensibil-
ity, reusability, and composability.

The Sustainable Process Analytics Formalism (SPAF) [10]
was proposed to make optimization modeling more modular
and extensible, akin an OO simulation model. However,
SPAF was not designed to be easily integrated with tools that
perform data manipulation, statistical learning, or predictive
analytics. We did address these limits in the proposed
architecture.

Similarly, the statistical learning languages and tools were
not designed for easy data manipulation; others such as SQL,
XQuery, and JSONiq are significantly better. A recent stan-
dardization effort by the Data Mining Group (DMG) to ad-
dress this deficiency is their development of PMML [39].
PMML is an XML-based standard language used to represent
predictive and descriptive models, as well as pre- and post-
processed data. PMML allows for the interchange of data
models among different tools and environments, mostly by
avoiding proprietary issues and incompatibilities. Besides
neural networks and decision trees, PMML allows for the
representation of many other data-mining models.

PFA [40], similar to PMML, is a JSON-based specification
for statistical models, but whereas PMML’s focus is on statis-
tical models in the abstract, PFA’s focus is on the scoring
procedure itself. PMML can only express a fixed set of pre-
defined model types whereas PFA represents models and an-
alytic procedures more generally by providing generic pro-
gramming constructs.

Modeling languages for complex physical systems are de-
signed to reuse knowledge. Modelica, for example, allows a
detailed level of abstraction, including OO code and differen-
tial equations [29]. Modelica by itself is not a language for
performing optimization, learning, or prediction. But, there
are tools such as JModelica for simulation and Optimica for
simulation-based optimization [30]. However, because of the
low level of abstraction allowed in Modelica, general
Modelica models cannot be reduced automatically to MP or
CP models that can be solved by MP or CP solvers.

As a result of the discussed limitations such as each ana-
lytics task is implemented from scratch, as a one-off effort; is
not modular or reusable; requires mathematical, operations
research (OR), and domain expertise that are not within the
realm of manufacturing users; is high cost; requires a long
development cycle; is difficult to modify or extend, the devel-
opment of analysis and optimization solutions today is
important.

8 Conclusion

In this paper, we proposed an architectural design and frame-
work for fast development of software solutions for descrip-
tive, predictive, diagnostic, and prescriptive analytics of dy-
namic production processes. We also proposed an organiza-
tion of, and key structure of, a reusable KB, which consists of
three libraries: atomic process performance models, compos-
ite performance models, and analytical views and dashboards.
Finally, we also showed a prototype of a decision support
system to demonstrate the principles of the proposed architec-
tural framework.

The proposed architectural framework and the analytics
engine follow the ideas from the Decision Guidance1 Individual simulation models, however, do not possess this capability.
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Analytics Language (DGAL) and framework proposed in [41]
which, in turn, build on prior work on decision guidance and
optimization languages. In particular, the unification of com-
putation and equation syntax comes from CoJava [42], SC-
CoJava [43], and DGQL [44], CoReJava [39, 45], and DGAL
and DG-Query [40]. These languages are designed to add
deterministic optimization and machine learning to Java,
SQL, and XQuery code, respectively. Additions are imple-
mented via automatic reduction to MP, CP, or specialized al-
gorithms. In addition, DGAL fits into the framework of, but is
more general than, Decision Guidance Management Systems
proposed in [46]. Finally, the concept of centralized analytical
KB (AKB) is borrowed from our previous work on SPAF
[10], which was limited to MP or CP optimization only.

The results reported in this paper are only a first step toward
reusability andmodularity in SM analysis and optimization.We
plan to work on extending the analytics engine with reduction
algorithms, stochastic simulation, statistical learning, and un-
certainty quantification based on the recent advances in these
areas. We also plan to extend optimization algorithms for dy-
namic production processes with more refined unit process
performance models. Furthermore, we plan to prototype an
AKBon an industry case study for process performancemodels
and systematic guidelines for its creation, extension, and reus-
ability for the diverse analytics tasks. Finally, we plan to work
on case studies with industrial partners to demonstrate the pro-
ductivity gains of the proposed architectural design and
framework.
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