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Abstract An efficient approach for milling stability and
surface location error (SLE) prediction with varying time
delay and cutter runout effect is presented in this paper.
Firstly, based on the tooth trochoid motion, the paper pro-
poses a varying time delay model during cutter/workpiece
engagement with taking cutter runout into account, estab-
lishes a milling dynamic model under arbitrary feed direc-
tion, and then derives the state transition matrix in one cutter
rotation period by using the Cotes numerical integration
formula. The milling stability of the dynamics system are
obtained by using Floquet theory. According to the fixed
point theory, the displacement response of the dynamic sys-
tem and the method for solving the SLE are both developed.
Later, a series of numerical and experimental works are
conducted. The numerical verification shows that the pro-
posed method can achieve a faster convergence rate and
higher calculation efficiency than other previous methods.
Meanwhile, the prediction of stability and SLE are in good
agreement with the experimental results, and have a high
accuracy for stability prediction when cutter runout and
varying time delay considered. In the end, the numerical
studies show that the milling stability and SLE strongly
depends on the actual milling conditions, including milling
parameters, cutter runout, cutter geometric parameters, and
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asymmetric structural dynamic parameters, which are help-
ful for milling process optimization.
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Nomenclature

XYZ Global coordinate system
XrYrZr Tool rotation coordinate system
XfYfZf Local feed coordinate system
ψ Feed directional angle
R Nominal tool radius
ρ, λ Cutter runout value and angle
ϕi,j (t) Rotation angle of the j th axial disk

element on the ith tooth
τi,j (t) Time delay item of j th cutting disk

element on ith tooth at moment
hi,j (t) Instantaneous uncut chip thickness

of j th cutting disk element on ith
tooth at moment

mx, my, cx, cy, kx, ky Modal mass, damping and stiffness
in the and directions

τ̄ (t) Average time delay for all in-cut
tooth at moment

kt , kr Shearing specific cutting force
coefficient in tangential and radial
direction

n, aD, ap, ft Spindle speed, radial immersion
ratio, axial depth of cut, and feed
per tooth

m Discretized time intervals
Φ System transition matrix
SLE Surface location error
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1 Introduction

High efficiency and accuracy machining is the eternal goal
for manufacturing industry. Chatter and resonance during
milling process are two main unfavorable factors for fur-
ther improving machining efficiency and accuracy. Chatter
is a self-excited vibration as a result of dynamical interac-
tion between tool and workpiece, and resonance is a forced
vibration coming from external incentive acting on milling
system. Unless avoided, otherwise, it would lead to poor
surface finish and even tool breakage. Actually, in order
to obtain good processing quality, milling process should
be operated under stable condition [1, 2]. Hence, evalu-
ating if the milling parameters satisfied high-performance
machining or not is becoming as a problem for manufac-
turer. Currently, a lot of researches have been conducted on
milling stability and surface accuracy.

For milling stability, Tlusty et al. [3], Tobias [4, 5], and
Merrit [6], as pioneers in the study of chatter, proposed
the regeneration modulation mechanism, employed a time
delay displacement variable to couple cutting force and tool
dynamic response, then put forward the milling dynamic
model as a delay differential equation, and finally draw
a stability diagram lobe to distinguish stable and unstable
regions within parameter domain. As the delay dynamics
model has infinite dimensional state space, and existing
mathematical method cannot obtain an analytical solution.
In decades of development, researchers have developed
many methods to study the stability characteristics of the
differential equations for milling process. Early, Tlusty and
Ismail [7, 8] numerically investigated the stability prediction
through direct time domain simulation of dynamic response,
but the calculation process is time consuming. For fre-
quency domain methods, Altintas et al. [9, 10] developed
the ZOA method to calculate stability diagram analytically.
The calculation speed is very fast, but the high order har-
monics of periodic direction matrix are ignored, which
results in a poor prediction accuracy, especially under the
low radial immersion milling condition. Then, Merdol and
Altintas [11] expanded their research work and proposed
a multi-frequency method, in which the high order expan-
sion of the direction matrix is considered, but an iterative
search process for chatter frequency is needed. For the dif-
ferential equation based methods, Insperger and Stépán [12]
operated time delay item in delay differential equation by
zero order discretization processing, then transformed the
dynamics equation to a series of ordinary differential equa-
tions, proposed the semi-discretization method for stability
prediction. Later, Insperger and Stépán [13] proposed the
first-order semi-discretization method to improve the accu-
racy of the algorithm. Different from the semi-discretization
method, Ding et al. [14] discretized both the time delay item
and state item, and proposed the full-discretization method.

Subsequently, Ding et al. [15] and Quo et al. [16] fur-
ther proposed the second and third-discretization methods.
Besides, Ding et al. [17] and Zhang et al. [18] considered
the state equation as an initial value problem of differential
equation, and used numerical integration method to obtain
milling stability.

It is worth noting that all above works are studied under
the assumption with only one constant time delay in the
milling dynamics equation. This constant time delay is
equal to the tooth passing period. Actually, the tooth motion
trajectory is a trochoidal equation [19], the time delay is
related to the milling parameters and the cutter geometric
parameters, and is a periodic time varying variable. When
considering the tooth motion, Long et al. [20] pointed out
the feed velocity would affect the time delay, especially dur-
ing the tooth entry/exit stage, and then proposed a varying
time delay milling dynamics model to analyze the influence
of feed velocity on milling stability. Based on Balachan-
dran’s model, Song et al. [21] studied the stability during
micro-milling process. For the varying time delay milling
dynamics model, the calculation time for state transition
matrix is too long. In order to improve calculation effi-
ciency, an equivalent time delay was used to reflect the vary-
ing time delay effect caused by the motion of tool and obtain
a high efficiency algorithm for stability prediction during 5-
axis ball-end milling process [22]. Additionally, Seguy et al.
[23] studied the stability of multi-time delay milling sys-
tem with spindle speed variation, and Sellmeier et al. [24]
analyzed the influence of multi-time delay on milling stabil-
ity using non-constant pitch cutter. What should be noted is
that these studies have not considered the cutter runout fac-
tor. Cutter runout would result in the changes of real cutting
radius, so the current tooth maybe cut the workpiece which
is left by several previous tooth. At this point, the time delay
between the teeth is no longer the same, and its revolution
will be equal to the tool rotation period, no longer the tooth
passing period. Wan et al. [25] demonstrated an improved
version of semi-discretization method, in which the influ-
ence of multiple time delays caused by cutter runout and
nonconstant pitch cutter on milling stability is considered.
But the method does not consider the periodical variant
characteristics of the time delay.

Once the milling process is stable, it is very important to
study machining accuracy and its relationship with param-
eters. It is well known that the machining error of the parts
is formed by the macroscopical motion of the tool relative
to the workpiece superimposing the microscopical vibration
of tool induced by cutting force. Considering the dynamic
excitation process, Montgomery and Altintas [26] analyzed
generation process of machined surface based on mecha-
nistic cutting force model. Later, Altintas et al. [27, 28]
further analyzed the influence of cutter runout and dynamic
response on surface topography. Ismail et al. [29] focused
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on the generation of milled surfaces with cutter runout,
vibration and flank wear effects. Schmitz et al. [30] used
the surface location error (SLE) to describe the machin-
ing precision, and analyzed the surface roughness and SLE
with different milling parameters through simulation cases.
Later, Schmitz [31] proposed a numerical method for the
surface generation, but this method is time consuming and
is not conducive to the rapid calculation of SLE. Recently,
Surmann et al. [32, 33] have proposed an approach to pre-
dict the surface topography by considering the vibration of
cutter, but without cutter runout. It can be seen that SLE is
an effective index to characterize the machining errors, but
at present, the research on SLE with taking tooth trochoid
motion and cutter runout into account is relatively little.

The above literature review indicates that the current lack
of comprehensive consideration of time varying delay and
cutter runout on the milling stability, and the influence of
cutter runout on SLE is also relatively short. Because of
the complexity of the state transformation matrix for the
varying time delay dynamics system, the stability analy-
sis is much time consuming. This paper adopts the mean
value of the varying time delay to reflect its time varying
effect. Based on a high order accuracy of the numerical inte-
gration formula, the paper presents an efficient method to
predict the stability and SLE during milling process with
the consideration of tooth trochoid motion and cutter runout
effect. The main content of this paper is as follows: fol-
lowing the introduction, Section 2 firstly presents a periodic
varying time delay model considering the tooth trochoid
motion and cutter runout effect. Based on the Cotes numer-
ical integration formula, the paper further gives an efficient
method for milling stability and SLE. Section 3 firstly illus-
trates the efficiency of stability prediction without cutter
runout, and then examine the prediction accuracy with cutter
runout through experiments. Section 4 numerically studies
the influence of milling parameters, cutter runout parame-
ters, cutter geometry parameters, and asymmetric structure
dynamics parameters on milling stability and SLE. Finally,
the presented study is summarized in the conclusions.

2 Milling dynamics analysis

2.1 Cutter/workpiece engagement with cutter runout
effect

A general milling process is shown in Fig. 1a. In order to
describe the tool motion process, XYZ is defined as the
global stationary coordinate system attached to the work-
table where the workpiece geometry boundary and tool path
are described. XrYrZr is created as the tool rotation coordi-
nate system attached to the tool system with its origin fixed
at the tool center point and only do translational motion

Fig. 1 General milling process. a Cutter motion process. b Tool
geometry with cutter runout

relative to XYZ. XfYfZf is the local feed coordinate sys-
tem. Xf is aligned with the feed direction of the theoretical
tool path and the angle between Xf and X is ψ . Cut-
ter runout is quite common in machining process, which
can be described by the runout value ρ and runout angle
λ as shown in Fig. 1b. To conveniently describe the cut-
ter/workpiece engagement process, the axial cutting part of
the tool is divided into Na disk elements with an equivalent
axial length along the tool axis. As shown in Fig. 1a, since
several teeth may fail cut workpiece due to cutter runout, the
instantaneous uncut chip thickness hi,j (t, mi) for the cur-
rent cutting point is the distance between point S and the
point T with the same position angle of previous mi th tooth.

With consideration of cutter runout effect, the actual
tooth cutting radius is

Ri,j =
√

R2 + ρ2 − 2Rρ cos
(
π − λ − γ 0

i − (j − 1)β0
)
(1)

where R is the nominal tool radius. β0 is the flag angle for
one cutting element due to tool helix angle. γ 0

i is the nominal
pitch angle between ith tooth and 1th tooth.
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At time t , the current cutter position is shown as Fig. 1a.
The rotation angle φi,j (t) of the j th axial disk element on
the ith tooth is expressed as follows.

φi,j (t) = 2πΩ

60
t − γi,j − (j − 1)β0 (2)

where Ω is the spindle speed. γi,j is the actual pitch
angle between ith tooth and 1th tooth. At this moment, the
coordinate of point S in XYZ can be given by
[

Sx,i,j

Sy,i,j

]
=

[
orx(t)

ory(t)

]
+

[
Ri,j sin(φi,j (t))

Ri,j cos(φi,j (t))

]
(3)

Similarly, at time t − τi,j (t, mi), the coordinate of point
T in XYZ can be given by
[

Tx,i−mi,j

Ty,i−mi,j

]
=

[
orx(t − τi,j (t, mi))

ory(t − τi,j (t, mi))

]

+
[

Ri−mi,j sin(φi−mi
(t − τi,j (t, mi))

Ri−mi,j cos(φi−mi
(t − τi,j (t, mi))

]

(4)

Meanwhile, the coordinate of point T inXYZ can also be
expressed as
[

Tx,i−mi,j

Ty,i−mi,j

]
=

[
orx(t)

ory(t)

]

+
[

(Ri,j − hi,j (t, mi)) sin(φi,j (t))

(Ri,j − hi,j (t, mi)) cos(φi,j (t))

]
(5)

By combining Eq. 4 with Eq. 5, the following equation
can be achieved.

[
orx(t− τi,j (t, mi))
ory(t− τi,j (t, mi))

]
+

[
Ri−mi,j sin(φi−mi

(t − τi,j (t, mi))
Ri−mi,j cos(φi−mi

(t − τi,j (t, mi))

]

=
[

orx(t)
ory(t)

]
+

[
(Ri,j − hi,j (t, mi)) sin(φi,j (t))
(Ri,j − hi,j (t, mi)) cos(φi,j (t))

]
(6)

As cutter do translational motion along Xf with a feed
velocity of fv , we can obtain Eq. 7.
[
orx(t)

ory(t)

]
−

[
orx(t−τi,j (t, mi))

ory(t−τi,j (t, mi))

]
=

[
cosψ

sinψ

]
fvτi,j (t, mi)

(7)

Besides, the rotation angle φi−mi,j (t − τi,j (t, mi)) in
Eq. 6 can be derived as

φi−mi,j (t − τi,j (t, mi)) = φi,j (t) − 2πΩ

60
τi,j (t, mi)

+γi,j − γi−mi,j (8)

Owing to Δ = γi,j − γi−mi,j − 2πΩ
60 τi,j (t, mi) ≈ 0, we

can employ sinΔ ≈ Δ. As a result of combining Eqs. 6–8,
the time delay τi,j (t, mi) can be determined by

τi,j (t, mi) = Ri−mi,j (γi,j − γi−mi,j )

Ri−mi,j
2πΩ
60 + fv cos(ψ + ϕi,j (t))

(9)

Furthermore, the instantaneous uncut chip thickness
hi,j (t, mi) can be shown as

hi,j (t, mi) = sin(ϕi,j (t) + ψ)fvτi,j (t, mi) + Ri,j

−Ri−mi,j cos

(
2πΩτi,j (t, mi)

60
− γi,j

+γi−mi,j

)
(10)

The actual instantaneous uncut chip thickness at cur-
rent tooth position is the maximum between zero and the
minimum of all possible chip thickness defined by Eq. 10
over mi = 1, 2, ..., Nt , which is mathematically expressed
by Eq. 11. Ultimately, the time delay item τi,j (t) can be
determined with mi .

hi,j (t) = max(0,min(hi,j (t, mi))) mi = 1, 2, · · ·Nt (11)

As mentioned above, it can be seen that the time delay
item is a varying parameter with time, not a constant one.
Here is a numerical case to address this problem clearly.
Figure 2 shows the instantaneous chip thickness and time
delay item during cutter/workpiece engagement of a three

Fig. 2 Cutter/workpiece engagement with cutter runout effect, Nt =
3, n = 6000 rpm, ft = 0.1 mm/tooth. a Instantaneous chip thickness. b
Time delay item. c Time delay for 1st tooth
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teeth cutter with runout effect. In this simulation for the slot
milling, the spindle speed n is 6000 rpm, and the feed per
tooth ft is 0.1 mm/tooth. It can be concluded that the chip
thickness and time delay item between different teeth would
change evidently in the milling case with cutter runout. Due
to cutter runout, tooth maybe lost of cut at some local cut-
ter rotation angle, as a result, the delay time for other tooth
would change suddenly as shown in Fig. 2b. Furthermore,
from Fig. 2c, we can know that the time delay for one fixed
tooth is also changeable at different angle position. Obviously,
the time delay of the proposed method is less than the tradi-
tional constant one when cutter rotation angle is under than
90◦, but greater when cutter rotation angle is upper than 90◦.

2.2 Milling dynamics model

Generally, the cutter is assumed flexible while the work-
piece is considered rigid in the 2-DOF milling dynamics

model, the dynamic system of the machine tool with regen-
erative effect can be expressed by a n-dimensional linear
non-autonomous DDE model

Mq̈(t)+Cq̈(t)+Kq(t)= Kc(t)[q(t − τ̄ (t)) − q(t)] + F(t)

whereM=
[

mx 0
0 my

]
,C =

[
cx 0
0 cy

]
,K =

[
kx 0
0 ky

]
(12)

with mx, my, cx, cy, kx , and ky denote the modal mass,
damping and stiffness in the X and Y directions, respec-
tively. q = [x, y]T denotes the displacement vector. τ̄ (t)

is the average time delay for all in-cut tooth which can be
derived as (Fig. 3)

τ̄ (t) = 1

NaNt

∑
i

∑
j

τi,j (t) (13)

In Eq. 12,Kc(t)[q(t − τ̄ (t))−q(t)] represents the regen-
erative effect item, in which Kc(t) denotes the directional
cutting force coefficient matrix expressed as follows.

Kc(t) = db
∑

i

∑
j

g(φi,j (t))

[ −kt sin(φi,j ) cos(ϕi,j ) − kr sin(φi,j )
2 − kt cos(φi,j )

2 − kr sin(φi,j ) cos(φi,j )

kt sin(φi,j )
2 − kr sin(φi,j ) cos(φi,j ) kt sin(φi,j ) cos(φi,j ) − kr cos(φi,j )

2

]
(14)

where kt and kr are the tangential and the normal spe-
cific cutting force coefficients, respectively. The window
function g(φi(t)) is defined as

g(φi(t)) =
{
1 if θen < φi,j < θex

0 otherwise
(15)

where θst and θex are the entry and exit angles of the j th
cutting element of the ith cutter tooth, respectively.

F(t) = [Fx, Fy]T represents the nominal cutting forces,
which can be expressed as

F(t) = db
∑

i

∑
j

g(φi,j (t))

[−kt cos(φi,j ) − kr sin(φi,j )
kt sin(φi,j ) − kr cos(φi,j )

]
hi,j (t)

(16)

2.3 Efficient method for milling stability and SLE
prediction

With the aid of state space theory, let P(t) = Mq̇ + Cq
/
2,

set state item X(t) = [q(t) P(t)]T , Eq. 12 can be
transformed into

Ẋ(t) = AX(t) + B(t)[X(t − τ̄ (t)) − X(t)] + C(t)

where A =
[ −M−1C

/
2 M−1

CM−1C
/
4 − K −CM−1/2

]

B(t) =
[

0 0
Kc(t) 0

]

C(t) =
[

0
F(t)

]
(17)

In above equation, A is a constant matrix standing for
the time invariants of the milling dynamic system. B(t) and
C(t) are periodic matrixes with the spindle rotation period
T . In order to obtain the stability lobes of the dynamic sys-
tem, the first step is to divide T into m time intervals, i.e.,
T = mτ . Now, the discretized time point is

tk = t1 + (k − 1)τ (k = 1, 2, ..., m + 1) (18)

Then, the response of Eq. 17 can be solved as an initial value
problem

X(t) = X(tk) +
∫ t

tk

G(t)dt (19)

where G(t) = F(t)X(t) + B(t)X(t − τ̄ (t)) + C(t) with
F(t) = A − B(t). As a numerical integration method,

Fig. 3 2-DOF milling dynamics model
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Cotes integration formula can be utilized to approximate
this initial value problem by

∫ t

ti

G(t)dt ≈ (t − tk)

N∑
k=0

G(tk)C
N
k (20)

where CN
k is Cotes coefficients.

In order to achieve a high calculation accuracy, let N =
4, Eq. 19 is then derived as follows.

X(tk+4) = X(tk) + 2τ

45
(7G(tk) + 32G(tk+1) + 12G(tk+2)

+32G(tk+3) + 7G(tk+4)) (21)

Substituting G(tk), G(tk+1), G(tk+2), G(tk+3), and
G(tk+4) into Eq. 21, we can obtain
[
I − 14τ

45
Fk+4

]
Xk+4 − 64τ

45
Fk+3Xk+3 − 8τ

15
Fk+2Xk+2

−64τ

45
Fk+1Xk+1 −

[
I + 14τ

45
Fk

]
Xk

= 14τ

45
{Bk+4X(tk+4 − τ̄ (tk+4)) + Ck+4}

+64τ

45
{Bk+3X(tk+3 − τ̄ (tk+3)) + Ck+3}

+8τ

15
{Bk+2X(tk+2 − τ̄ (tk+2)) + Ck+2}

+64τ

45
{Bk+1X(tk+1 − τ̄ (tk+1)) + Ck+1}

+14τ

45
{BkX(tk − τ̄ (tk)) + Ck} (22)

After time discretization at each time interval,X(t−τ̄ (t))

can be approximated by linear interpolation. For X(tk+s −
τ̄ (tk+s)) (s = 0, 1, .., 4), using interpolation method, we
can get

X(tk+s − τ̄ (tk+s)) = ws,lXk+s−rk+s

+ws,l+1Xtk+s−rk+s−1 (s = 0, 1, .., 4)

(23)

where rk+s = int(τ̄ (tk+s)
/
τ).

ws,l and ws,l+1 are the interpolation coefficients, its
value can be obtained by

ws,l =
{

(τ − τ0)
/
τ (l = rk+s + 4)

0 otherwise

ws,l+1 =
{

τ0
/
τ (l = rk+s + 5)
0 otherwise

(24)

where τ0 = τi,j (tk+s) − rk+s · τ .
Now, Eq. 22 can be further derived as

Xk+4 =
4+m∑
l=1

E1,lXk+4−l +
4∑

s=0

Gk+sCk+s (25)

where

E1,1 = 64τ

45

[
I − 14τ

45
Fk+4

]−1

Fk+3

E1,2 = 8τ

15

[
I − 14τ

45
Fk+4

]−1

Fk+2

E1,3 = 64τ

45

[
I − 14τ

45
Fk+4

]−1

Fk+1

E1,4 =
[
I − 14τ

45
Fk+4

]−1 [
I + 14τ

45
Fk

]

E1,l = w0,l
14τ

45
Bk + w1,l

64τ

45
Bk+1 + w2,l

8τ

15
Bk+2

+w3,l
64τ

45
Bk+3 + w4,l

14τ

45
Bk+4 (l = 5, 6, ..., 4 + m)

G1,1 = 14τ

45

[
I − 14τ

45
Fk+4

]−1

,G1,2= 64τ

45

[
I − 14τ

45
Fk+4

]−1

,

G1,3 = 8τ

15

[
I − 14τ

45
Fk+4

]−1

,

G1,4 = 64τ

45

[
I − 14τ

45
Fk+4

]−1

,G1,5 = 14τ

45

[
I − 14τ

45
Fk+4

]−1

Based on Eq. 25, using the expanded state vector yk =
col(Xk+3,Xk+2, ...,Xk−m), a discrete map can be defined
as

yk+1 = Ekyk + GkCk (26)

where

Ek =

⎡
⎢⎢⎢⎣

E1,1 · · · E1,m+3 E1,m+4

I · · · O O
...

. . .
...

...

O · · · I O

⎤
⎥⎥⎥⎦

Gk =

⎡
⎢⎢⎢⎣

G1,1 · · · G1,5 O
O · · · O O
...

. . .
...

...

O · · · O O

⎤
⎥⎥⎥⎦

And the state transition relationship for one period of the
system is shown as

ym = Φy0 + G (27)

where

Φ = Ek−1Ek−2...E1E0

G = Gm−1Cm−1 +
m−2∑
i=0

Em−1...Em+iGiCi

According to Floquet theory [22], the stability of the
system can be determined: if the moduluses of all the eigen-
values of the transition matrix Φ are less than unity, the
system is stable; otherwise, it is unstable. When the milling
system is stable, the steady state response can be achieved
from the fixed points as

y∗ = (I − Φ)−1G (28)
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Table 1 Milling process
parameters Modal parameters Direction Modal mass (kg) Damping ratio Modal stiffness (N/m)

X 0.468 0.037 8.138×106

Y 0.511 0.031 8.647×106

Cutting force coefficients kt (N
/
mm2) kr (N

/
mm2)

840 568

Cutter runout parameters ρ (μm) λ (◦)
13.3 26.2

The actual surface profile can be obtained by sub-
tracting the tooth envelope from workpiece, expressed as
Ssurf (xu, zv). Then the SLE, which represents the devia-
tion between the actual surface profile Sd

surf and the desired
surface profile , can be calculated by

SLE = S̄surf (xu, zv) − Sd
surf (29)

3 Verification

In this section, two verification cases are illustrated to test
the accuracy and the efficiency of the proposed method. The
first one is to compare convergence rate of the proposed
stability prediction without cutter runout with other stabil-
ity prediction methods. Computer programs of the proposed
approach are all written in MATLABs 7.10 and run on the
same personal computer. The second one is to examine the
prediction accuracy of the proposed method in milling pro-
cess with cutter runout through experiments. The dynamic
parameters of tool system are obtained by impact testing as
shown in Table 1. These verification cases are carried out by
down milling with a three teeth cylindrical end cutter with
a diameter of 10 mm and a helix angle of 30◦. The mate-
rial of workpiece is aluminium alloy 7075-T651. Besides,
cutting force coefficients and cutter runout parameters can
be achieved by calibration experiments which are also illus-
trated in Table 1. The feed directional angle ψ is set as zero,
which namely the cutter feeds along in X the direction. The
experimental setup is shown in Fig. 4.

3.1 Numerical verification

The rate of convergence is one of the most important param-
eters for high performance arithmetic. Just as literatures, the
local discretization errors of the SDM with zero-order and
first-order SDM are o(τ 2) [12] and o(τ 3) [13], respectively,
and the local discretization errors of the FDM with first-
order, second-order, and third-order are o(τ 2) [14], o(τ 3)

[15], and o(τ 4) [16], respectively. Meanwhile, the local
discretization error of Zhang’s numerical integral methods
(NIM) is o(τ 5) [18]. For the proposed method using the

Cotes integration formula, its local discretization error is
o(τ 7), higher than all above mentioned methods. In order
to illustrate the rate of convergence more clearly, a 2-DOF
milling system with dynamic parameters listed in Table 1
is applied here, the machining parameters are chosen as:
aD = 0.5, Ω = 5000 rpm, down milling with two dif-
ferent depth of cut as ap = 2 and 0.5 mm, respectively.
Figure 5 demonstrates the convergence of the critical eigen-
values with respect to different time interval m for the
zero-order SDM, the first-order SDM, the first-order FDM,
the third-order FDM, the Zhang’s NIM, and the proposed
method. In Fig. 5, the differences of the approximate mod-
ulus of the critical eigenvalue |μ| and the exact one |μ0|
are presented as the function of the computational param-
eter m, where |μ0| is determined by using the first-order
SDM with m = 400. The results show that the proposed
method converges faster than others and it means that the
presented method need less time interval with the same local
discretization error compared with the literatures methods.

In order to illustrate the accuracy of the presented
method, we take the 2-DOF dynamic system as an exam-
ple to predict stability lobes compared with the zero-order
SDM, the second-order FDM, and the Zhangs NIM. The sta-
bility lobe computed by first-order SDM with m = 400 is

Fig. 4 Experimental setup
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Fig. 5 Convergence of the critical eigenvalues with respect to m using
different methods

taken as the exact lobe of the dynamic system. This stability
lobe is utilized to be compared with the presented method
and other methods with three different time intervals of 20,
60, and 100. The stability prediction results and time con-
suming are both shown in Fig. 6. The stability charts are
calculated over 200 × 100 sized grid on the square with the
boundaries of the rotational speed n ∈ [3000, 8000] rpm
and the axial depth of cut ap ∈ [0, 8] mm. In the aspect
of calculation accuracy, the stability lobes predicted by the
proposed method is more rapidly close to the exact stabil-
ity limit than other methods with the same number of time
interval. It indicates that the presented method is feasible
and can be taken as an alternative for accurately predict-
ing stability lobes with small number of time interval. In
the aspect of time consuming, it can be seen that the run-
time of the zero-order SDM with m = 20, 60, and 100
are 42.7, 98.8, and 161.4 s, respectively. For the second-
order FDM, its corresponding runtime are 33.5, 70.5, and
130.9 s. For the Zhangs NIM, its runtime are 20.7, 43.7,
and 81.3 s and the proposed method takes about 24.5,
50.1, and 96.6 s. It can be concluded that the runtime of
the proposed method is not obviously increase than the
Zhangs NIM, and what should be pointed out is that since

matrix exponentials is avoided in this method, its runtime
is remarkably decrease compared with the zero-order SDM
and the second-order FDM. The decrease percent can reach
about 40.1 and 26.2 %, respectively, with m =100.

3.2 Experimental verification

For the experimental verification in this section, the paper
firstly predicts the stability in the milling case without cut-
ter runout, and compares it with stability without taking
cutter runout into account. As shown in Fig. 7a, a lobe
upward shift phenomenon is found for the stability with cut-
ter runout effect (ρ = 13.3 μm, λ = 26.2◦) compared with
no cutter runout case. Then, a series of milling experiments
are further performed. The instantaneous cutting forces are
measured by a Kistler 9265B dynamometer. The milling
force component in the Yf direction is transformed by FFT,
and then the frequency characteristic is used to judge the
occurrence of chatter or not. The analysis results are also
plotted in Fig. 7a. It can be seen that experimental results
have a good agreement with the prediction stability diagram
with cutter runout effect. Meanwhile, the prediction result
neglecting cutter runout fails to match the experiments in
some local regions because there is an evident distinction
between measured data and predicted one. The above anal-
ysis indicates that the proposed method can reach a high
accuracy for stability prediction.

As shown in Fig. 7b, we further study the milling force
frequency characteristic and formed surface topography for
four specified cases. The four different cutting conditions
are defined as test A (n = 6450 rpm, ap = 3.2 mm), B
(n = 6850 rpm, ap = 3.2 mm), C (n = 12, 900 rpm,
ap = 6.5 mm), and D (n = 13, 300 rpm, ap = 6.5 mm),
which are corresponding with Fig. 7a. The results show that
the simulated milling force frequency characteristic agree
closely with the measured one in magnitude. In tests A and
C, except the tooth pass frequency, there has a remarkable
chatter frequency near the main modal of tool system, which
reveals that the milling process has occurred quasi-periodic
bifurcation. We can also obtain the same conclusion from
the obvious surface topography fluctuation in simulation
and experiment. However, the frequency characteristic in
tests B and D only has tooth pass frequency, and the simu-
lated surface topography is regular, so the milling process is
stable. Besides, the simulated SLE in stable milling cases is
compared with the experimental one. The contour profile of
the workpiece surface is measured by a non-sphere contour
measuring instrument PGI. The simulated and experimen-
tal SLE are −39.2 and −44.6 μm, respectively, for test B,
and are 184.7 and 169.4 μm, respectively, for test D. It can
be concluded that there exist a little distinction between the
simulated data and the experimental one and the proposed
method can ensure the accuracy for SLE prediction.
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Fig. 6 Stability prediction using different methods with time interval number m of 20, 60, and 100

4 Stability and SLE analysis under different
cutting conditions

Based on the above prediction method, the paper numeri-
cally analyzes the stability and SLE under different milling

conditions in this section. The influence factor includes
milling parameters, cutter runout parameters, cutter geo-
metrical parameters, and dynamics of asymmetrical tool
system. All analysis are conducted in this section with the
same cutter and dynamic system in previous test.
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Fig. 7 Experimental
verification for milling stability
and SLE
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4.1 Influence of milling parameters

During the milling process without cutter runout, all teeth
can participate into cutting with the same cutting state. As
shown in Fig. 8, the milling stability and SLE are illustrated
with different feed per tooth ft during down milling. The
feed per tooth ft are set to 0.05, 0.25, and 0.5 mm/tooth,
respectively, and the radial immersion aD is 0.3. Figure 8a
shows the stability varies with different feed per tooth and
there exist a lobe rightward shift phenomenon. This con-
clusion differ from the traditional result where the feed per
tooth has no effect on stability. But according to the anal-
ysis of tool motion during cutter/workpiece engagement in
Section 2, the time delay item is larger than that in tra-
ditional dynamic model during down milling. The bigger
the feed per tooth is, the larger of this deviation. At last,
the stability diagram shifts to high spindle speed direction
to obtain a uniform time delay for ensuring the same crit-
ical axial depth of cut. For SLE in Fig. 8b, a large feed
per tooth will generate a high milling force, resulting in
a big SLE at the same spindle speed. Besides, the SLE is
obviously dependent on spindle speed, when tooth pass fre-
quency is equal to the natural frequency of the tool system,

A
x

ia
l 

d
ep

th
 o

f 
cu

t 
a p

 (
m

m
)

0

2

4

6

8

Spindle speed n (K rpm)
5 7 9 11 15

10

13

S
L

E
 (

m
)

-200

400

0

200

Spindle speed n (K rpm)
5 7 9 11 1513

(a)

(b)

      ft=0.05mm/tooth
      ft=0.25mm/tooth
      ft=0.50mm/tooth

      ft=0.05mm/tooth
      ft=0.25mm/tooth
      ft=0.50mm/tooth

Fig. 8 Stability and SLE with different feed per tooth, aD = 0.3. a
Stability. b SLE, ap = 1 mm

e.g., n = 13,000 or 6500 rpm, the one and two times har-
monics of the tooth pass frequency is near to the natural
frequency of the tool system, then the milling process will
resonate which lead to a large SLE and a poor machining
accuracy. Moreover, the dynamical response at some local
spindle speed in down milling process produce a negative
value of SLE, which indicates over-cut on workpiece sur-
face. In practice, a negative SLE is more undesirable than a
positive one, so it is important for a suitable spindle speed
selecting.

Figure 9 shows the effect variation of milling type and
radial immersion on stability and SLE. The radial immer-
sion aD is set as 0.1, 0.5, and 0.9 mm for both down and up
milling. The feed per tooth ft is 0.1 mm/tooth. It can be seen
from Fig. 9a that there is a distinct deviation in stability dia-
gram between down and up milling at low radial immersion
milling process, and the stability in down milling is located
at right side of that in up milling. Additionally, the deviation
gradually disappears with the increase of radial immersion.
From the time delay item equation in Section 2, a reason-
able explanation for this phenomenon is that the time delay
in down milling is bigger than that in up milling, and this
disparity is remarkable at low radial immersion milling,
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but fades away at high radial immersion milling. Moreover,
Fig. 9b shows the milling types and radial immersion have
an important influence on SLE and these quantitative anal-
ysis can provide a theory basis to choose reasonable milling
parameters.

4.2 Influence of cutter runout

For the milling case with cutter runout effect, the actual
tooth radius changes from its desired one, then the instan-
taneous chip thickness and time delay item also varies as a
result. Besides, the cutting state for all teeth are not same
with each other. When cutter runout value is large, some
teeth maybe lost of cut. Withal, the cutting state for all teeth
will be different with different feed per tooth and radial
immersion. For different cutter runout values during down
milling, Fig. 10 shows the critical cutting state for all teeth
with the combination of feed per tooth and radial immer-
sion. Taking runout value of 20 μm and runout angle of 0◦ as
an example, the whole milling parameters region is divided
into three parts, the above one indicates all three teeth are in
cut, the middle one indicates only two teeth are in cut, and
the bottom one indicates only one tooth is in cut. The teeth
tends to lost of cut in low radial immersion milling case. For
different cutter runout values, the cutting state region will
change. During the increase of cutter runout value, the three
teeth cutting region would minish, and the one tooth cutting
region would augment.

Figure 11 shows the variation of stability and SLE
affected by cutter runout parameters. The radial immersion
aD is 0.3 during down milling and the feed per tooth ft is
0.03 mm/tooth. As seen in Fig. 11a, the stability diagram
changes evidently when runout value increases from 0 to
40 μm with runout angle of zero. For the milling case with
small runout value, the cutting state for all teeth are in-cut,
the stability diagram has little change at some local region,
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and the stability topology is invariant. When the runout
value increases to 20 μm, it can be deduced that only two
teeth are in-cut based on Fig. 10, then its incentive mecha-
nism of the dynamic system is not same with that in milling
case with small runout value, which results in the change of
stability topology. For a large runout value of 40 μm, only
one tooth is in-cut in this milling condition, thus the stabil-
ity topology change entirely. It can be concluded that cutter
runout will disturb the incentive mechanism of milling pro-
cess, and the lager the runout value is, the higher of critical
axial depth of cut, then which results in the lobe upward
shift phenomenon. Figure 11b details the variation of SLE
under different cutter runout value. It is observed that the
over-cut phenomenon increases evidently with the increase
of runout value. Moreover, cutter runout would arouse some
new incentive frequency for milling forces, e.g., the fun-
damental frequency of spindle speed and its high order
harmonics, the accuracy of formed surface will deteriorate
when these harmonics induce system resonance. As shown
in Fig. 10b, when spindle speed is 9750 and 7500 rpm, the
4 and 5 times harmonics of spindle rotation frequency coin-
cide with the natural frequency of the tool system, then we
can see the SLE increase rapidly.
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4.3 Influence of cutter geometrical parameters

Figure 12 shows the simulation results of stability and SLE
corresponding to three different tooth helix angle β, e.g.,
0◦, 15◦, and 30◦. The influence of radial immersion is syn-
thetically considered here. The radial immersion aD is set
as 0.05 and 0.5, respectively, and the feed per tooth ft is
0.1 mm/tooth during down milling operation. In order to
analyze conveniently, the boundary of axial depth of cut
is preset as [0,100] mm. As plotted in Fig. 12a, it can be
seen that the period doubling lobe appears when the tooth
helix angle is zero, but it disappears when tooth helix angle
equals to 15◦ and 30◦. Some milling experiment cases have
been conducted to verify the milling stability with tooth
helix angle of 0◦. As helix angle would affect cutting force
coefficients, and the local stability shows a disagreement
trend between experiment and simulation. Regardless of
this reason, the whole comparison results reveal that predic-
tive capability of the proposed method with different helix
angle. For the milling case with large radial immersion,
the influence of tooth helix on stability is weak. The rea-
son for this consequence is that the stability diagram is low
in this milling condition which results in an insignificant
impact of tooth helix angle. Figure 12b analyzes the SLE
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under two different milling parameters (caes 1: aD = 0.05,
ap = 10 mm; caes 2: aD = 0.5, ap = 1 mm). Since large
tooth helix angle is more avail for cutter/workpiece engage-
ment during tooth entry and exit stage, which can decrease
cutter response. As seen from Fig. 12b, the larger the tooth
helix angle is, the smaller the SLE is, especially for the res-
onance region for both milling cases with large or low radial
immersion.

Figure 13 gives the stability and SLE for nonconstant
pitch cutter. The pitch angle for the three teeth cutter is
120◦ − Δθ ∼ 120 ∼ 120◦ + Δθ . In the milling simula-
tion, the radial immersion aD is 0.3 and the feed per tooth
ft is 0.1 mm/tooth. When the pitch angle variable is set to
20◦ and 40◦, the stability changes evidently compared with
constant pitch cutter. Furthermore, the SLE for nonconstant
pitch cutter is more complex. This result can be attributed
to the intricate incentive mechanism in milling process with
nonconstant pitch cutter.

4.4 Influence of dynamics parameters in asymmetrical
tool system

In practice, as the various structure of tool system, the
dynamics in the X and Y directions maybe different. The
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modal parameters of this orthogonal axis can affect the
milling stability and SLE, and the influence is different
under different tool feed directional angle. For comparison,
here the paper only analyzes minimum critical axial depth
of cut and maximum SLE. The radial immersion aD is 0.3
and the feed per tooth ft is 0.1 mm/tooth.

In this study, the boundary of feed directional angle is
set as ψ ∈ [0◦, 360◦]. The asymmetrical percent of modal
mass, stiffness, and damping are all equivalent to 20 %. The
minimum critical axial depth of cut of the milling system are
shown in Fig. 14a, c, e, and the maximum SLE are shown in
Fig. 14b, d, f.
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Taking asymmetrical modal mass as an example, as seen
from Fig. 14a, b, both minimum critical axial depth of
cut and maximum SLE of a symmetrical system are circle
curves with different feed directional angles, which means
that feed direction has no effect on milling process for sym-
metrical system. When the modal mass in the Y direction
is bigger or smaller than X direction with 20 %, the min-
imum critical axial depth of cut and maximum SLE are
irregular diagram with multi-extremum. For the case with
my = 0.8mx , the minimum critical axial depth of cut would
reach its local maximum at ψ = 30◦, 130◦, 210◦, 310◦ and
local minimum at ψ = 85◦, 175◦, 265◦, 355◦, and the local
maximum is about three times of local minimum. Mean-
while, the maximum SLE would reach its local maximum
at ψ = 12◦, 96◦, 192◦, 276◦ and its local minimum at ψ =
60◦, 140◦, 240◦, 320◦, and the local maximum is about 1.5
times of its local minimum. For the case with my = 1.2mx ,
the distribution topology of minimum critical axial depth of
cut and maximum SLE is a result of rotating and scaling of
the milling case with my = 0.8mx .

The results of asymmetrical modal stiffness are shown in
Fig. 14c, d. As the influence of modal stiffness and mass on
natural frequency are contrary, so we can see that the influ-
ence variation of minimum critical axial depth of cut and
maximum SLE for asymmetrical modal stiffness is opposite
to the milling case with asymmetrical modal mass. Besides,
the effect of asymmetrical modal damping on the mini-
mum critical axial depth of cut and maximum SLE is given
in Fig. 14e, f. The curve distribution topology is similar
to an ellipse. Contrasting to modal mass and stiffness, the
modal damping affect milling dynamics is more slight thus
its variation tendency is more gentle. The above analysis
indicates that the stability and SLE have close relationship
with the asymmetrical tool system, and the feed direction
has an important influence on machining performance. So,
the study in this section can provide a theoretical guide for
feed direction selection in an asymmetrical dynamic milling
system.

5 Conclusion

This paper presents an efficient approach for milling stabil-
ity and SLE prediction with varying time delay and cutter
runout effect, which is validated by numerical and experi-
mental cases, and the efficiency and accuracy are ensured.
The stability and SLE under different milling conditions,
including milling parameters, cutter runout, cutter geome-
try, and asymmetric milling system, are also studied. The
main conclusions are as follows:

(1) The time delay item is a periodic varying variable as
a result of tooth trochoid motion, which resulting in

the lobe leftward or rightward shift phenomenon. Cut-
ter runout alters the tooth cutting state and lead time
delay occur change suddenly, and which can disturb
the incentive mechanism of milling process to obtain a
higher critical axial depth of cut.

(2) Due to Cotes numerical integration formula, the local
discretization error of the proposed stability predic-
tion method is o(τ 7), which is higher and converging
faster than all existing methods. The proposed method
for stability and SLE prediction are in good agreement
with the experimental results, and have a high accu-
racy for stability prediction with taking cutter runout
and varying time delay into account.

(3) Large cutter runout can lead tooth to lost of cut, and
then change the stability topology entirely. Besides,
when the excitation frequency of the milling force is
equal to the natural frequency of the system, there is
a sharp increase for the SLE, and this phenomenon
also occurs for the new frequency coming from cutter
runout effect.

(4) Under the milling process with asymmetric structure,
the minimum critical axial depth of cut and max-
imum SLE represents multi-extreme variation with
feed direction angle, and these extremes would deviate
from coordinate axes, which is very important for tool
path planning and parameters selection.
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