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Abstract To simulate welding induced transient thermal
stress and deformation of large scale FE models, an
accelerated explicit method (ACEXP) and graphical pro-
cessing units (GPU) parallel computing program of the
finite element method (FEM) were developed. In the
accelerated explicit method, a two-stage computation
scheme is employed. The first computation stage is
based on a dynamic explicit method considering the
characteristics of the welding mechanical process by
controlling both the temperature increment and time
scaling parameter. In the second computation stage, a
static equilibrium computation scheme is implemented
after dynamic thermal loading to obtain a static solution
of transient thermal stress and welding deformation. It
has been demonstrated that the developed GPU parallel
computing program has a good scalability for large-
scale models of more than 20 million degrees of free-
dom. The validity of the accelerated explicit method is
verified by comparing the transient thermal stress and
deformation with those computed by an implicit FEM.
Finally, welding deformation and residual stress in a
structure model assembled from nine high-strength steel
plates and 26 weld lines were efficiently analyzed by
ACEXP and GPU parallel computing within 45 h. The
computed welding deformation agreed well with mea-
sured results, and a good accuracy was obtained.

Keywords Accelerated explicit method . GPU parallel
computing . Thermal stress .Welding deformation . Large
scale models .Welded structure

1 Introduction

It is well known that welding residual stress and deformation
have a significant influence on fatigue strength of welded joints
[1]. Lai et al. [2] investigated the failure modes of fatigue crack-
ing in welded structures. Dong and Hong [3] proposed the mas-
ter S-N curve in the fatigue analysis for welded joints in large
engineering structures. All these researches indicated that the
computation for welding deformation and residual stresses in
welded structures is essential for strength evaluation. Early pio-
neers in the computational weldingmechanics Ueda et al. [4–6],
Hibbit et al. [7], Goldak et al. [8], and Jonsson et al. [9] started
their researches and applications of the finite element method in
the 1970s–1980s. Since Ueda and Yamakawa [4] proposed a
thermal elastic–plastic material model for welding thermal stress
based on the static implicit finite element method, the implicit
finite element method was mainly used for welding thermal-
mechanics coupling simulations. Brown and Song [10] simulat-
ed the welding deformation and residual stresses of 1-m ring
structure, which was a large model at that time. Lindgren et al.
[11] reduced the computer time by applying dynamic meshing
scheme to the implicit FEM. Nishikawa et al. [12] reduced
computation time with a fast iterative substructure method
(ISM) in which the global FE model was divided into a small
model with large linear zones and a large model with small
nonlinear zones according to the transient temperature distribu-
tion during welding. Lindgren [13] indicated that parallel com-
puting used in implicit finite element methods can reduce the
computer time and that used in explicit finite element methods
had better scalability. Murakawa et al. [14], Deng et al. [15],
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Wang et al. [16], andMa et al. [17] computed welding distortion
in large structures by both thermal elastic plastic FEM and effi-
cient inherent strain method. Vega et al. [18] investigated the
thermal deformation induced by line heating using inherent de-
formation parameters. Goldak and Asadi [19] presented some
computation approaches to welding procedure optimization to
minimize the welding deformation. They suggested that parallel
computing is a key technology for both computational welding
mechanics and optimization processing to reduce the computa-
tion time. Recently,Murakawa et al. [20] developed the inherent
strain-based ISM named as i-ISM in which a temporary con-
straint on nodal displacements located in the zones away from
the welding line was applied in the thermal elastic–plastic FE
analysis. Since this temporary constraint has little effect on local
plastic strains (inherent strain) near the welding zone, the final
welding deformation and stresses without this constraint can be
obtained by releasing it elastically. Huang et al. [21] modified
the ISM and implemented large strain terms for the welding
deformation computation in lap joints of thin plates. With the
aid of the implicit FEM enhanced by ISM, Ma et al. [22, 23]
analyzed residual stresses in butt joints due to laser arc hybrid
welding and the effect of jig constraint on reduction of welding
deformation. Furthermore, Ma et al. [24] considered martensite
phase transformation in the analysis of flash butt welding in-
duced residual stresses of high-carbon rail steels. Generally, the
implicit FEM with an accurate material model for thermal elas-
tic–plastic behaviors considering the phase transformation has a
good accuracy in computing welding distortion and residual
stress. On the other hand, the implicit FEM needs the large
computer memory and its computing time for large-scale
models is very long. Therefore, the implicit FEM is mainly
employed to simulate the welding-induced thermal elastic–plas-
tic behaviors in small-scale models.

Compared with the implicit FEM, Hallquist [25] developed a
dynamic explicit FEM for computational impact mechanics.
Since the explicit FEM needs a small amount of computer mem-
ory and its parallelized program has a good performance, it has
been successfully used to simulate dynamic phenomena of very
large automobile structures under impact loading. Mahin et al.
[26] tried to simulate welding thermal stresses using the dynamic
explicit method with a scaled mass and stress relaxation scheme.
Although a small-scale two-dimensional FEmodel was selected,
the computation time was not short. This is because the welding
cooling time is too long to use the conventional dynamic explicit
FEMwith very small explicit time step. Ma et al. [27] employed
a dynamic explicit FEM with a mass scaling technique and
multi-CPU for the prediction of welding-induced buckling dis-
tortions in a butt joint of thin aluminum sheets. Ma and Umezu
[28] summarized the techniques of using commercial dynamic
explicit FEM software for the simulation of the welding thermal
deformation. However, the commercial dynamic explicit FEM
software cannot consider the welding characteristics such as the
filling of the welding metals. Recently, Shibahara et al. [29]

proposed an idealized explicit finite element method using an
assumedmassmatrix and a dampingmatrix for the simulation of
the quasi-static welding thermal stress and deformation.
Ikushima et al. [30] employed graphical processing units
(GPU) for parallel computation and simulated welding residual
stresses produced in a large-scale multi-pass butt-welded joint of
thick plates. The existing approach of the explicit FEM to
welding induced thermal elastic–plastic behaviors under fast
heating and slow cooling process, used a very small explicit time
step or an assumed large mass, the computing time and the
accuracy for the large welding deformation of thin-walled struc-
tures become main issues which must be solved.

In the current work, an accelerated explicit method with a
two-stage computation scheme was developed for simulating
transient thermal stress as well as deformation occurring in
welding heating and cooling processes. The first computation
stage is based on the dynamic explicit FEM considering the
characteristics of welding mechanical processes by controlling
both the temperature increment and time scaling parameter. In
the second computation stage, a static equilibrium computation
scheme based on a dynamic relaxation algorithm was imple-
mented after thermal loading in order to obtain a static solution
of transient thermal stress and welding deformation. In this two-
stage computation scheme, a damping parameter is automatical-
ly determined using the transient radial eigenvalue computed
from nodal velocities of the finite element model. The scalability
of developed GPU parallel computing program for large scale
models of more than 20 million degrees of freedom was tested.
The validity of the developed accelerated explicit method was
verified by comparing the transient thermal stress and welding
deformationwith those obtained by an implicit FEM. Finally, the
welding deformation and residual stress in a structure model
assembled from nine high-strength steel plates and 26 weld lines
were computed, and the results were compared with measured
ones.

2 Accelerated explicit method with a two-stage
computation scheme

2.1 General dynamic explicit FEM

A general equation of motions of particles in vector form
according to Newton’s laws of motion is given as follows:

Ma ¼ F ð1Þ

In the Eq. (1), M, a, and F are a mass matrix, an accelera-
tion vector, and a force vector of particles, respectively.

In the dynamic explicit method, the force vector includes the
external force vector Fext at current time (t+dt), the internal
residual force vector Fint at previous time (t), and the damping
force Fdamp in controlling dynamic vibration for quasi-static
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problems. Therefore, the Eq. (1) can be extended to Eq. (2).

Ma t þ dtð Þ ¼ Fext t þ dtð Þ−F int tð Þ−Fdamp tð Þ ð2Þ

If the above motion equation is combined with FEM, the
diagonal mass matrix M, the equivalent external nodal force
Fext(t+dt), the equivalent internal nodal force Fint(t), and the
damping nodal force Fdamp(t) can be computed by following
equations,

M ¼
Z

Vol
ρ NiNif gT ⋅dVol ð3Þ

Fext t þ dtð Þ ¼ Pconcentrate t þ dtð Þ þ Ppressure t þ dtð Þ ð4Þ

F int tð Þ ¼
Z

Vol
B⋅σ tð Þ⋅dVol ð5Þ

Fdamp tð Þ ¼ C⋅v tð Þ ð6Þ

Where, ρ, Ni, Vol are the mass density of materials, the
shape function of element and the volume of finite element
model; the external nodal force Fext(t+dt) includes the con-
centrated nodal force Pconcentrate, the nodal force due to exter-
nal pressure Ppressure, and others such as the contacting nodal
force; B is a matrix describing the relation between strains at
integration points and nodal displacements in an element; σ is
the stress vector in elements.

To solve the motion in Eq. (2), a very small time increment
dt given by the following equation must be used according to
the Courant-Frederic’s-Lewy Condition [31].

dt≤
Le
c

ð7Þ

Where, the Le in the above equation is the equivalent length
of elements, and c is the propagation speed of stress wave in
materials given by following equation.

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E 1−νð Þ
1þ νð Þ 1−2νð Þ

1

ρ

s
ð8Þ

Where, E and v are the Young’s modulus, and Poisson’s
ratio.

2.2 Accelerated explicit method with a two-stage
computation scheme

It is well known that the time increment dt used in the explicit
FEM, which is calculated by Eq. (7), is the order of 10−7 s for
steels if the element size is about 1.0 mm. If the real loading time
is the order of more than 1000 s, the computation cycles of
explicit FEM can be the order of more than 10+10 and the com-
putation may not ended within the acceptable time. Since the
time of a welding thermal process can be the order of hours, the
standard explicit FEM is quite difficult to adopt to simulate the
thermal stress and welding deformation. To simulate mechanical

phenomena occurring in welding thermal cycles, a two-stage
computation scheme, using the explicit FEM on the accelerated
explicit time domain and an equilibrium computation for static
solution, was developed as schematically shown in Fig. 1. The
accelerated explicit time domain ΔtACEXP is determined with
consideration of both the real time interval Δtreal and tempera-
ture increment in welding thermal cycles. This simulation meth-
od is here called the accelerated explicit method abbreviated to
ACEXP for easy description in the following sections. If the 2nd
stage equilibrium computation is skipped, the method becomes
an explicit method for dynamic solution under the accelerated
time domain. By the way, the thermal conduction analysis was
performed before the stress analysis and is not discussed here.

2.2.1 Accelerated explicit time domain

To apply the explicit method to mechanical phenomena under
the long time (e.g., 1000 s or more) thermal loading process
shown in Fig. 2, the real time has to be scaled or accelerated
many times without changing the thermal loads as schematically
shown in Fig. 3. To distinguish the very small explicit time
increment dt determined by Eq. (7), the real time increment de-
noted by Δtreal. The corresponding time interval in the acceler-
ated explicit analysis is denoted by ΔtACEXP. The symbols for
real time and the time for the ACEXP method are denoted by
treal, tACEXP, respectively.

In this developed explicit method for stress and strain sim-
ulation, the accelerated explicit time interval ΔtACEXP corre-
sponding to the real time intervalΔtreal is set by Eq. (9a) using
the combination of the time-based scaling parameter tscale and
the temperature increment dT based time converting scheme
with the consideration of the characteristics of welding ther-
mal cycles.

ΔtACEXP ¼ Δtreal

tscale
þ ΔTmax

dT
dt ð9aÞ

Real time and temperature

Stage1: Explicit FEM
in accelerated time domain

Stage2: Equilibrium 
computation for static solution

Δt ACEXP = function (Δt , ΔT)

Time = time +  Δt
Temp = temp + ΔT

Fig. 1 A two-stage computation scheme of accelerated explicit method
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Where, ΔTmax is the maximum temperature change in the
real time interval Δtreal and dt is the explicit time given by
Eq. (7).

The first term in the Eq. (9a) uses the conventional
mass scaling technique summarized by Ma and Umezu
[28]. The second term is based on the temperature in-
crement control method used in the implicit FEM [20].
Based on this time accelerating scheme, the explicit
computation cycles or the computation time at the first
stage will be controlled by the two parameters tscale and
dT. Their combination is better to control both the com-
putation accuracy and computation time which is pro-
portional to the explicit cycles. The parameters tscale and
dT can be approximately set to about 1000.0 and
0.1~1.0, respectively.

If the accelerated explicit time interval ΔtACEXP was set,
the total computing cycles Tcycles of the explicit method can be
determined by Eq. (9b).

Tcycles ¼ ΔtACEXP
.
dt ¼ 1

tscale

Δtreal

dt
þ ΔTmax

dT
ð9bÞ

2.2.2 Equilibrium computation scheme for static solution

Usually, the dynamic explicit solution does not satisfy the
static mechanical equilibrium condition. Therefore, to obtain
the static solution of welding thermal stress and deformation,
an equilibrium computation is necessary. The implicit iteration
scheme or a dynamic relaxation algorithm with repeating ex-
plicit cycles can be employed. Here, the dynamic relaxation
algorithm based on the explicit computing method is selected.
To save the computation time without losing the accuracy, the
equilibrium computation can selectively conduct once every
certain step intervals Nc as shown in Fig. 4.

During the equilibrium computation, the ratio Eratio of ki-
nematic energy to internal energy and the ratio Uratio of the
normalized displacement increment to the normalized total
displacement of the FE model are defined by Eqs. (10)–(11),
respectively. If the ratios Eratio and Uratio are less than their
tolerances Etol and Utol, respectively, the results computed by
ACEXP can be considered as a static solution.

Eratio ¼

XNodes
i¼1

1

2
mv2

XNE

ie¼1

σ⋅ε⋅Ve

< Etol ð10Þ

U ratio ¼

XNodes
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δux2 þΔuy2 þΔuz2

q

XNodes
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ux2 þ uy2 þ uz2

q < U tol ð11Þ

The tolerances Etol and Utol are the order of 10−4 for the
accurate equilibrium computation.

T

100 1000

realt
realtΔ

(sec)

ΔT
m
ax

Fig. 2 An example of welding thermal cycle in the real time domain

T

0.1 1.0
ACEXPtACEXPtΔ

(sec)

ΔT
m

ax

Fig. 3 An example of thermal cycle in the accelerated explicit time
domain

Explicit
time

dtTcyclest Ac ⋅=Δ

Nc Nc Nc Nc

Temperature

Explicit
cycles

Nc

: Equilibrium computations
Fig. 4 Selective equilibrium
computation scheme at the certain
thermal step intervals Nc
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2.2.3 Estimation of transient radial eigenvalue for damping
parameter

It was reported by Ma and Umezu [28] that the effect of
dynamic vibrations on the welding deformation can be well
controlled by applying a mass damping force given by follow-
ing equation based on the minimum radial eigenvalue ωmin.

Fdamp tð Þ ¼ 2:0ωmin⋅M ⋅v tð Þ ð12Þ

To get the minimum radial eigenvalue ωmin of a global FE
model, generally, the eigenvalue analysis based on the implicit
FEM has to be performed previously. If the degrees of free-
dom of FEmodels become too large, the memory requirement
and computation timewill be very long. On the other hand, the
minimum eigenvalue computed by the implicit FEM may not
fit the transient welding deformation mode which is changing
during welding and subsequent cooling processes. For these
reasons, an explicit estimation method for the dynamic eigen-
value was suggested by Papadrakakis [32]. By referring to this
method, a transient radial eigenvalue ωdef(t) corresponding to
the transient welding deformation mode at time (t) is comput-
ed by Eq. (13). The parameter g(t) in Eq. (13) is computed
using the integrated velocity from all nodes of a global FE
model defined by Eqs. (14)–(15).

ωde f tð Þ ¼ 1−g tð Þj j
dt⋅

ffiffiffiffiffiffiffiffi
g tð Þp ð13Þ

g tð Þ ¼ vg tð Þ
vg t−dtð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vxg tð Þ2 þ vyg tð Þ2 þ vzg tð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vxg t−dtð Þ2 þ vyg t−dtð Þ2 þ vzg t−dtð Þ2

q ð14Þ

vxg tð Þ ¼

XNodes
i¼1

Mivxi tð Þ

XNodes
i¼1

Mi

; vyg tð Þ ¼

XNodes
i¼1

Miv
y
i tð Þ

XNodes
i¼1

Mi

; vzg tð Þ

¼

XNodes
i¼1

Mivzi tð Þ

XNodes
i¼1

Mi

ð15Þ

Where, vg(t) and vg(t−dt) are the integrated velocities at
time (t) and at time (t+dt), respectively.

Using the transient radial eigenvalue ωdef(t), the damping
force in the developed accelerated explicit method is given by
the following equation.

Fdamp tð Þ ¼ 2:0ωde f tð Þ⋅M ⋅v tð Þ ð16Þ

2.3 Stress and strain computation

When the acceleration a(t+dt) at the nodes of FEM using
Eq. (2) is obtained, the nodal velocity v(t+dt), the nodal dis-
placement increment du(t+dt) can be easily computed in se-
quence by Eq. (17) and Eq. (18), respectively.

v t þ dtð Þ ¼ v tð Þ þ a t þ dtð Þ⋅dt ð17Þ
du t þ dtð Þ ¼ v t þ dtð Þ⋅dt ð18Þ

Then, the strain increment dε(t+ dt) at the integration
points of elements can be computed by following equation.

dε t þ dtð Þ ¼ B⋅du t þ dtð Þ ð19Þ

Where, B is the matrix describing the relationship between
strain and nodal displacement in an element.

The thermal stress σ(t+dt) can be computed based on ther-
mal elastic plastic theory using the following equation:

σ t þ dtð Þ ¼ σ tð Þ þ D Tð Þ⋅ dε−dεT−dεp� � ð20Þ

Where, the dεT,dεp and D(T) are the thermal strain incre-
ment, plastic strain increment, and material elastic matrix, re-
spectively. The thermal strain increment and plastic strain in-
crement are given by Eq. (21) and Eq. (22), respectively.

dεT ¼ α Tð Þ⋅dT þ dD Tð Þ
dT

D−1 Tð Þ⋅σ tð Þ⋅dT ð21Þ

dε
p
¼

σtry t þ dtð Þ−σY T þ dT ; ε
p� �

3G Tð Þ þ H 0 Tð Þ ; dεpi j ¼ dε
p ∂σ
∂σi j

ð22Þ

Where, α(T), G(T) and H ' (T) are the transient thermal ex-
pansion coefficient, shear modulus, and plastic work harden-
ing tangent coefficient of materials at the temperature (T). σY is
the yield stress of materials changing with the temperature and
equivalent plastic strain. σtry t þ dtð Þ is the elastically trial
equivalent stress when a radial return algorithm is employed
for the stress update.

2.4 Flow chart of accelerated explicit FEM program

Based on the proposed accelerated explicit method, a FEM
programwas developed. The flow chart of accelerated explicit
FEM program is shown in Fig. 5. The left side of the flow
chart shows the main loop in which a temperature file for
welding thermal cycles is read, the accelerating time interval
ΔtACEXP is determined and results are written out. The right
side of the flow chart expresses the computation procedures
from nodal acceleration to stress update of the accelerated
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explicit FEM. Since the work in the right side is just simple
calculations, the parallel computing using multi-cores of CPU
or GPU will greatly reduce the computation time.

When the thermal cycles for all nodes were read from a saved
temperature file computed by thermal conduction FEM and the
accelerated explicit time intervalΔtACEXP was set, the accelera-
tion a(t+dt) can be easily computed using Eq. (2) with a very
small explicit time step dt. Then, the velocity, displacement in-
crement, strain increment, and stress are computed in sequence.
When the accumulated explicit time∑dt reached the accelerated
time intervalΔtACEXP, the stabilization computation started. The
new scheme used in this accelerated explicit method is empha-
sized in the flow chart by a light blue background. The compu-
tations are continued until the real time reached the end time
defined in the input data.

Since this article is only focused on the analyzing method for
transient thermal stress and welding deformation, the

descriptions of implicit FEM for welding thermal conduction
analysis are neglected. The nodal temperature and its change
with time during welding and cooling processes are saved into
a temperature file for stress and strain calculation using the
ACEXP method.

2.5 GPU parallel computing FEM program

Generally, a personal computer (PC) has 4–8 CPU cores and a
GPU board has more than 1000 cores (2496 cores for GPU
Tesla-k20) for computation. Therefore, the computation per-
formance should be greatly improved if the GPU parallel com-
puting FEMprogram is developed. However, the memory of a
GPU board is limited within 5GB-12GBwhich is much small-
er than main PC’s physical memory. Therefore, how to save
memory usage is an important issue in programming for GPU
parallel computing. The developed parallel computing FEM
program using both CPU and GPU was shown in Fig. 5. The

+

+++

tBt ++ε

∑∑

END

READ Input data
Mesh data
Material properties
Boundary conditions
External force 
Welding conditions

START

Thermal conduction results
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)()()(
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N
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Equilibrium computation
(Once every Nc steps)

dTTdtttt scale
realACEXP // maxΔ⋅+Δ=Δ
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Fig. 5 Flow chart of accelerated
explicit FEM program and its
GPU parallel computing
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tasks in the left part of Fig. 5 are assigned to CPU, and those in
the right part are assigned to GPU, respectively. Firstly,
the heat conduction calculation with a large time step
was performed in advance and the output data with tem-
perature history was saved as a temperature file. Then,
the temperature file becomes an input file for the subse-
quent stress analysis. CPU reads and writes data in time
controlling loop and GPU conducts thermo-elastic–plastic
calculation of nodal forces, nodal displacements, strains,
and stresses in elements.

Using the FE models of fillet welds with DOFs changing
from 0.7 million to 22 million represented in Fig. 6, the rela-
tion between DOFs of FE models and computation time of
each accelerate explicit cycle was investigated as shown in
Fig. 7. The marks ● and ■ in Fig. 7 show the computation
time per explicit cycle using one GPU (tesla-k20) and one
core CPU (Core i7), respectively. From the results of the all
testing models, GPU computation time per cycle is about 1/25
of CPU. In the other word, the parallel computing efficiency
using one GPU is 25 times compared with one CPU. This
accelerated ratio is quite good.

3 Verification of ACEXPmethod using a basic model

3.1 Descriptions of a basic bead welding model

To verify the accuracy of the proposed accelerated explicit meth-
od, a sectionmodel of a very long beadwelding plate of themild
steel is selected from a book [6] as shown in Fig. 8a. The model
dimensions in the x, y, and z directions are 1, 250, and 15 mm,
respectively. Considering the symmetry of the thermal stress
and deformation in the width direction (y) of the weld line,
a half model was employed. The mesh division and dis-
placement boundary conditions are shown in Fig. 8b. Only
one solid element in the welding direction (x) is divided
and the x-displacement Ux at all nodes is constrained to
describe the plane strain state of the model. In the thermal
conduction simulation, an implicit FEM code JWRIAN
enhanced by an iterative substructure method [20] was
employed and a volume heat source with a uniform distri-
bution in the rectangle prism (5.0 × 3.0 × 1.0 mm) was as-
sumed. The total volume heat generation rate is 450 (J/s),
and the heating time is 0.3333 s. The material physical

Table 1 Material physical-mechanical properties of the mild steel and their change with temperature

Temperature [°C] 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0

Mass density [t/mm3] 7.82E-9 7.79E-9 7.72E-9 7.66E-9 7.61E-9 7.61E-9 7.61E-9

Specific heat [J/t/°C] 408E+ 3 533E+ 3 658E+ 3 783E+ 3 908E+ 3 908E+ 3 908E+ 3

Conductivity [J/mm/s/°C] 0.05317 0.0515 0.0465 0.0382 0.0265 0.0625 0.0625

Heat transfer coef [J/mm2/s/°C] 1.0E-5 2.0E-5 4.0E-5 8.0E-5 15.0E-5 25.0E-5 25.0E-5

Thermal expansion α [1/°C] 1.0E-5 1.0E-5 1.0E-5 1.0E-5 1.0E-5 1.0E-5 1.0E-5

Young’s modulus E [MPa) 2.0E+ 5 2.0E+ 5 2.0E+ 5 2.0E+ 5 2.0E+ 4 2.0E+ 4 2.0E+ 3

Poisson’s ratio υ 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Yield stress SY [MPa] 200.0 200.0 200.0 200.0 2.0 2.0 2.0

Plastic hardening Etan [MPa] 2.0E+ 3 2.0E+ 3 2.0E+ 3 2.0E+ 3 2.0E+ 2 2.0E+ 2 2.0E+ 2

(b) A finite element model of the transverse section in a bead-on-plate weld

(a) A long bead on plate weld

Ux=0 for all nodesQ=450[J/sec], heating time =0.3333sec

250mm

15
m

m

1mm

P

Co

Uy=0 Uz=0

Fig. 8 A basic model of a long
bead-on-plate weld
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properties (mass density, specific heat, thermal conductiv-
ity, heat transfer coefficient, linear thermal expansion co-
efficient), mechanical properties (Young’s modulus,
Poisson’s ratio, Yield stress and linear hardening coeffi-
cient of plasticity) of the mild steel, and their change with
temperature are shown in Table 1 [6]. The Young’s modu-
lus, yield stress, and linear hardening coefficient of plas-
ticity of the mild steel at the room temperature are 2.0E +
05 MPa, 200 MPa, and 200 MPa, respectively. With in-
creasing temperature, Young’s modulus and Yield stress
decrease. When the temperature is higher than about
800 °C which is so called the mechanical melting temper-
ature, the Yield stress is assumed to be 1 % of the value at
the room temperature.

3.2 Welding thermal cycles and temperature distribution

Figure 9 shows the thermal cycle at the pointCo in the welding
zone computed by an implicit FEM code JWRIAN [20] for
thermal conduction. Themaximum reached temperature in the
thermal cycle at the point Co is 1576 °C which is slightly
higher than the melting point of steel (1500 °C). Since the
material in the thermal conduction analysis was assumed to
be at the solid state and metal flow was not considered, the
peak temperature is slightly higher than the melting point of
the mild steel (1500 °C). The slightly higher temperature than
the melting point has little influence on the welding distortion
and residual stress [6]. The distribution contour of the maxi-
mum reached temperature around the welding zone is also
shown in the same figure. The heat affected zone (>723 °C)
marked by a solid line can be easily observed.
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Fig. 11 Welding deformation
mode during welding and cooling
by ACEXP method
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3.3 Transient radial eigenvalue

This basic bead welding model is close to a simple cantilever
beam. The eigenvalue of the bending deformation mode in the
z direction can be easily calculated using the Eq. (23) based
the classical elastic vibration theory if the material properties
(mass density scaled 1000 times, Young’s modulus, and
Poisson’s ratio) at the room temperature shown in Table 1
are used.

ωde f ¼ λ1
2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

ρ⋅Area

s
¼ 1:8752

2502
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2:0� 105
� �� 153⋅1

.
12

� �

1000� 7:8� 10−9
� �� 15� 1ð Þ

vuut ≈39 rad
.
sec

h i

ð23Þ

The estimated transient radial eigenvalue ωdef(t) by
Eqs. (13)–(15) and its change with time are shown in
Fig. 10. When the time is less than about 100 s, the transient
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eigenvalue is larger. When the time is longer than about 100 s,
the transient radial eigenvalue saturates to a constant value.
For the comparison, the constant eigenvalue computed by
Eq. (23) and that computed by eigenvalue analysis using com-
mercial FEM software LS-DYNA are also represented in the
same figure. A good agreement among the computed radial
eigenvalues by three methods was obtained when the temper-
ature becomes low in the cooling process.

3.4 Welding deformation and thermal stresses

To verify the proposed ACEXP method, the welding induced
thermal stress and deformation were computed and compared
with the results by the implicit FEM. In the ACEXP compu-
tation, the time scaling factor tscale and temperature increment

dT used in Eqs. (9a) and (9b) are set to be about 1000.0 and
0.1, respectively.

The transient deformation modes and the distribution of the
z-displacement Uz (mm) during welding and after cooling,
computed by the ACEXP method, are shown in Fig. 11. The
z-displacement Uz(t) at the right edge point P of the model
and its historical change with time are shown in Fig. 12. The
welding deformation marked by cycles in Fig. 12 is the results
computed by the implicit FEM. It can be easily observed that
the results by the ACEXP method agreed very well with the
implicit FEM. The vertical changes in the displacement-time
curve shown in Fig. 12 represent the displacement due to the
equilibrium computation for static solutions.

Figure 13 shows the historical changes of the transient
thermal stresses Sxx and Syy in an element of the welded zone
during heating and cooling process. The thermal stresses com-
puted by ACEXP method agreed very well with the results by
the implicit FEM. Figure 14 represents the distributions of

Tack welds

Fig. 17 The tack welded structure before regular welding

Fig. 18 Welding of the steel structure of construction machinery Fig. 19 Welding line numbers ①~㉖ and welding sequence

2204 Int J Adv Manuf Technol (2016) 87:2195–2211



stresses Sxx and Syy through the thickness direction. The
residual stresses computed by both the ACEXP method and
implicit FEM are close each other.

3.5 Effect of controlling parameters

The transient computation of the ACEXPmethod is controlled
by three parameters which are a time scaling parameter tscale,
temperature increment dT defined by Eqs. (9a) and (9b), and
the equilibrium computation interval Nc. The referencing
values of these parameters from the view of high accuracy
are tscale = 1000,dT=0.1,Nc=1. Three additional computa-
tions were performed by changing these three parameters
one by one. Figure 15 shows the transient displacement
Uz(t) at the edge point P and the effect of these parameters.
It can be observed that accelerating time control parameters
tscale, dT gave a limited influence on the transient deformation.
When Nc=∞, the equilibrium computation was performed
only at the final step of thermal loading in order to keep the
accuracy on residual results. From the Fig. 15, we observed
that the interval parameter Nc for the equilibrium computation
had a large effect on the transient deformation which saturated

to a certain value slower than other computation cases. All
parameters had a little influence on the residual deformation.
This means that the computed residual deformation by the
proposed ACEXPmethod is not sensitive to input parameters.

4 Welding deformation and residual stresses
in a large structure model

4.1 The welded structure and deformation measuring
method

Figures 16, 17, 18, and 19 show high strength (HS590) steel
plates, the tack welded structure before regular welding, and
the structure during welding and its welding sequence, respec-
tively. The welding structure was assembled from nine steel
plates with 9.0 mm in the thickness, whose tensile strength,
yield strength, and elongation are 670 MPa, 537 MPa, and
28 %, respectively. The length, width and height of the
welding structure are 1600, 800, and 400 mm, respectively.
There are 26 weld lines and all weld lines were tacked first.
The regular welding for weld lines ①~④ was performed by

(a) Measuring points (b) Measuring device

X

Y

Z

Fig. 20 Measuring points and method for welding deformation in the experiment
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Nodes: 459,331
DOFs=1,377,993
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C D
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G
H
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Thickness: 9mm
Fillet leg size: 6mm

Fig. 21 FEmodel and its element
division of the welded structure
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automatic arc welding process and that for weld lines ⑤~㉖
was done by manual arc welding. The shield gas in arc
welding process was the metal active gas (MAG). The arc
welding current, voltage, and welding speed are about 190A,
220 V, and 5 mm/s within ±10 % variation. The diameter of
welding wire is ϕ1.2 mm, and its tensile strength, yield
strength, and elongation are 690 MPa, 560 MPa, and 30 %,
respectively.

To evaluate the practical welding deformation, the three di-
mensional coordinates at the 96 evaluating points as shown in
Fig. 20a weremeasured two times after tack welding and regular
welding, respectively. A contact type of the three dimensional
coordinate measuring device FARO as shown in Fig. 20b was
employed. The measuring accuracy is about ±0.03 mm. The
coordinate changes at measuring points before and after regular
welding are three displacement components Ux, Uy, and Uz for
descriptions of welding deformation.

4.2 FE model of the welded structure

Figure 21 shows the mesh division and boundary conditions
of FE model. Only six nodal displacement components drawn
by arrows at three nodes are constrained in order to prevent the
rigid movement of the specimen. A type of eight node solid
element was used. The total number of elements, nodes, and

degrees of freedom is, respectively, 374,288, 459,33,1 and 1,
377,993. The designed fillet leg size is 6 mm, and the mini-
mum mesh size is 2 mm. A moving volume heat source was
employed in the simulation for welding thermal conduction.
The heat source has a uniform distribution in the moving
volume highlighted by red color as shown in Fig. 21. The heat
efficiency for all weld lines is assumed to be 60 % in the
thermal conduction analysis. The steel plates were marked
by A~I for easy descriptions.

4.3Material properties and their changewith temperature

To compute the welding deformation and residual stresses in
the structure model assembled from high strength steel plates
(HS590), material physical properties (mass density, specific
heat, thermal conductivity, heat transfer coefficient including
both convection and radiation, thermal expansion coefficient)
in the previous thermal conduction analysis, and themechanical
properties (Young’s modulus E, Poisson’s ratio υ, Yield stress
SY and linear plastic strain hardening coefficient Etan) were
newly measured. The measured material properties and their
change with temperature used in the simulation are shown in
Table 2. The materials properties of weld metal (WM) were
assumed to be the same as base metal (BM). At the high tem-
perature over 1200 °C, the materials properties were considered

Temperature[ ]

Molten zone

Tack weld

Fig. 22 A transient temperature field during welding longitudinal fillet WL①

Table 2 Material physical-mechanical properties of HS590 steel and their change with temperature.

Temperature [°C] 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0

Mass density [t/mm3] 7.82E-9 7.79E-9 7.72E-9 7.66E-9 7.61E-9 7.61E-9 7.61E-9

Specific heat [J/t/°C] 408E+ 3 533E+ 3 658E+ 3 783E+ 3 908E+ 3 908E+ 3 908E+ 3

Conductivity [J/mm/s/°C] 0.05317 0.0515 0.0465 0.0382 0.0265 0.0625 0.0625

Heat transfer coef [J/mm2/s/°C] 1.0E-5 2.0E-5 4.0E-5 8.0E-5 15.0E-5 25.0E-5 25.0E-5

Thermal expansion α [1/°C] 1.20E-5 1.25E-5 1.50E-5 1.35E-5 1.40E-5 1.45E-5 1.50E-5

Young’s modulus E [MPa) 2.0E+ 5 2.0E+ 5 1.5E+ 5 0.9E+ 5 0.5E+ 5 0.3E+ 5 0.2E+ 5

Poisson’s ratio υ 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Yield stress SY [MPa] 537.0 480.0 330.0 210.0 85.0 50.0 30.0

Plastic hardening Etan [MPa] 2.0E+ 3 2.0E+ 3 2.0E+ 3 2.0E+ 3 2.0E+ 2 2.0E+ 2 2.0E+ 2
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to be the same as those at 1200 °C. The materials follow the
isotropic linear hardening law and related plastic flow rule.

4.4 Temperature distributions and computation time
for thermal elastic–plastic analysis

The welding thermal conduction analysis before thermal elas-
tic–plastic analysis was performed using an in-house implicit
FEM program JWRIAN [20] which was not programmed
with GPU parallel computing and is not the topic in this work.
Figure 22 shows a transient temperature field during welding
of the weld lineWL①. Figure 23 represents the distribution of
the maximum reached temperature in the thermal cycles in the
cross section of fillet welds (W1–W10). Figure 24 shows the
maximum temperature distribution in the cross section of two

lap welds (W5–W6) and fillet welds (W11–W26). Using the
prepared transient temperature fields induced by all weld lines
as an input data with 4196 thermal time steps, the thermal
elastic–plastic analysis was performed using the ACEXP
method with GPU parallel computing. Since the evaluation
of this simulation was mainly focused on the residual welding
deformation and stresses more than their transient values, the
equilibrium computation was only conducted at the final step
using ACEXP controlling parameters tscale = 1000,dT=0.5,
Nc=∞. When GPU board tesla-k20 was employed (2496
Cuda cores), the computing time only for thermal elastic–plas-
tic analysis excluding thermal conduction analysis for all 26
weld lines was about 45 h with 2,167,517 explicit cycles and
average computing time for each weld line was about 1.7 h.
Currently, it is difficult to use one CPU or implicit FEM to

Fig. 24 Maximum temperature
distribution in cross section of lap
welds (W5-W6) and fillet welds
(W11-W26)

Fig. 23 Maximum temperature
distribution in cross section of
fillet welds (W1-W10)
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compute the welding induced thermal stress and deformation
in this large-scale model.

4.5 Welding deformation

Figure 25 shows the distribution of the x-displacement Ux of
the welded structure by the ACEXP method with GPU paral-
lel computing. The maximum displacement Ux towards to the
+X direction and the −X direction is about 0.48 and −1.1 mm,
respectively. The maximum plus displacement Ux occurred at
the edge of transverse stiffener plate-H. The maximum minus
displacement Ux existed at the edge of transverse stiffener
plate-I. The large displacement Ux in transverse stiffener
plates F~I was mainly induced by the single-side fillet weld
lines ⑦~⑩.

From the distribution of the y-displacement Uy shown in
Fig. 26, it can be known that themaximum displacement Uy is

1.9 mm which existed at the edges of longitudinal stiffener
plates B, C, D, and E. The maximum displacement at the
edges is mainly due to the longitudinal fillet weld lines
①~④ and their induced angular distortion.

Figure 27 represents the distribution of the displacement-
Uz computed by the ACEXP method. It can be observed that
there were large deflections on the bottom plate. The maxi-
mum deflection is about 5.4 mm which occurred at two edges
of the bottom plate.

Figures 28, 29, and 30 represent the displacement Ux, Uy,
and Uz and their comparisons with experimental measure-
ments at all 96 evaluating points shown in Fig. 20. The com-
puted displacements at evaluating points show the same de-
formation tendency as those by experimental measurement.
The maximum displacements and their existing positions pre-
dicted by the ACEP method are close to those measured in
experiments. Therefore, it can be understood that the proposed

Ux [mm]
Max=+0.475
Min=-1.105

F

G
H

I

A

Fig. 25 Distribution of welding
deformation component Ux by
ACEXP method

Uy [mm]
Max=+1.909
Min=-1.891

A

B
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D

E

Fig. 26 Distribution of welding deformation component Uy by ACEXP
method

Uz [mm]
Max=+5.391
Min=-0.869

A

Fig. 27 Distribution of welding deformation component Uz by ACEXP
method
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ACEXP method is reliable to predict the welding deformation
in welded structures.

4.6 Welding residual stresses

Figures 31, 32, and 33 show the distributions of residual stress
components Sxx, Syy, and Szz, respectively. Tensile residual
stresses existing around the welded zones reached the mate-
rials yield stress. Since the measurement of welding residual
stresses in welded structures in structure models is difficult,
the ACEXP method with GPU parallel computing can be a
power tool to predict information of residual stresses for the
strength evaluation of welded structures.
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5 Summaries

(1) An accelerated explicit method and its GPU parallel
computing FEM program for the prediction of welding
induced thermal stress and deformation were developed
using a two-stage computation scheme, i.e., a dynamic
thermal loading computation stage and an equilibrium
computation stage.

(2) A transient radial eigenvalue corresponding to the tran-
sient welding deformation was automatically computed
using the integrated velocity of the FE model and a
damping parameter was determined.

(3) The accelerated ratio using GPU parallel computing
for the proposed explicit method is 25 times com-
paring with the computation time using one CPU
core. The GPU computing for the proposed accel-
erated explicit method has the ability to simulate
large scale FE models with more than 20 million
DOFs.

(4) The proposed accelerated explicit method was verified
by an implicit FEM using a basic bead-on-plate model
through comparing the transient thermal stresses, thermal
deformation, and their residual values.

(5) The transient thermal elastic–plastic phenomena in a
structure model with 1.4 million DOFs and 26 weld lines

was efficiently simulated within 45 h using the proposed
accelerated explicit method with GPU computing.

(6) The welding deformation in a structure model with 26
weld lines predicted by accelerated explicit method
agreed well compared with those by experimental
measurement.
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