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Abstract In this paper, reliability analysis for dynamic struc-
tural system is presented to predict chatter vibration in a mill-
ing system. Chatter reliability is defined to represent the prob-
ability of stability (no chatter occurs) of milling system.
Probability model (reliability model) of chatter vibration is
established to predict milling chatter vibration, in which struc-
tural parameters and spindle speed are considered as random
variables. Choosing chatter frequency as an intermediate var-
iable, the reliability model is built. The first-order second-mo-
ment method is adopted to solve the reliability model of the
milling process system to obtain the reliability level of the
system. The reliability lobe diagram (RLD), which is a con-
tour line with a specified reliability level as a function of
spindle speed and cutting depth, is presented to designate the
reliable region for chatter vibration prediction. A numerical
example is used to demonstrate the method for reliability anal-
ysis. The reliability of milling chatter system was calculated
using first-order second-moment (FOSM) method and com-
pared to the Monte Carlo simulation method. The results from

the FOSMmethod and Monte Carlo method were found to be
similar. Comparing the results with the traditional stability
lobe digram (SLD) method, chatter reliability of milling pro-
cess system can be used to judge the probability of stability of
milling process system. It can be concluded that RLD can be
efficiently used to predict reliability in workshop applications.

Keywords Milling process . Chatter reliability . First-order
second-moment . Reliability lobe diagram

1 Introduction

Regenerative chatter in machining operations such as milling
is a type of self-excited vibration with a time-delayed dis-
placement feedback mechanism. The most important charac-
teristic of chatter vibration is that it is induced and maintained
by the vibrations resulting from the dynamic cutting process
rather than external periodic forces. Numerous problems such
as poor surface finish, excessive noise, breakage of machine
tool components, and reducing tool life and productivity often
associated with chatter vibration. Extensive researches focus-
ing on preventing regenerative chatter by predicting its occur-
rence [1–4], improving detecting methods, or by reducing
chatter vibrations with active or passive control strategies
[5–8] have been reported in literature. However, chatter is still
among the most complicated problems faced by the machinist.

Tobias and Fishwick were the first to propose that chat-
ter vibration stems from the instability of the machining
system. They used an orthogonal cutting model to analyze
milling stability and validate their hypothesis. One meth-
od to predict and avoid pre-process chatter is the well-
known stability lobe diagram (SLD). SLD identifies stable
and unstable cutting zones by axial depth in milling and
spindle speed. Budak et al. [9] developed a method to
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analytically determine the stability lobes directly in the
frequency domain. This method is known as zero-order
approximation. To improve prediction accuracy, Budak
and Altintas suggested a higher-order model to predict
the stability of cutting process. However, Insperger et al.
[10–12] employed the semi-discretization scheme to solve
stability in discrete time domain. Ding et al. [13–15] pro-
posed a full-discretization method to obtain SLD in time
domain. Besides, Schmitz et al. [16] obtained SLD by
sweeping frequency, where the real part of frequency re-
sponse function (FRF) of the tool point dynamics is less
than zero.

The FRF of the tool point is necessary when the stability of
the milling process is analyzed using any of the above
methods. The structural parameters of dynamic FRF are typ-
ically obtained using impact testing at the tool point.

The result of a measurement is only an approximation or
estimation of the specific measurand value, and errors induced
in measurements may cause a large error in the stability of
milling process. Therefore, it is necessary to study the proba-
bility of occurrence of chatter vibrations considering the struc-
tural parameters as random variables and provide a new meth-
odology to identify chatter and no chatter cutting zones in-
stead of SLD.

Random structural system reliability analysis is a method
that introduces probability analysis and design into structural
analysis of random variables. Until recently, studies of reli-
ability analysis including static and dynamic structural sys-
tems have made much progress. The issue of reliability for
dynamic structural systems primarily includes two aspects: the
first is the structural response (displacement, stress, etc.) over-
run caused by forced vibration [17, 18]; the second is the
fatigue caused by resonant and non-resonant structures [19].
Liu [] proposed a probability method for the single degree of
freedom (DOF) orthogonal turning in which the failure con-
dition is defined as losing the system stability. The two DOF
milling process systems have a complicated dynamic model.
The study of the reliability of a dynamic structural system on
the instability of self-excited vibration due to time-delay, e.g.
regenerative chatter of milling process, has not been reported
in literature and needs to be investigated.

This paper introduces the idea of reliability analysis in
dynamic structural systems into structural analysis of the
milling process. Here, chatter reliability is defined as the
probability of stability when no chatter occurs in the milling
process system. The chatter probability model is established
to predict milling chatter vibration, in which structural pa-
rameters modal mass m, modal damping c, modal stiffness k,
and spindle speed Ω are random variables. Choosing chatter
frequency Ωc as an intermediate variable, reliability model is
built. The second-moment method was adopted to solve the
milling process system reliability model and obtain the reli-
ability level of the system.

2 Dynamic model of milling process system

2.1 Milling system

A typical milling system consists of a spindle, milling tool,
and the workpiece. Generally, the cutter is relatively flexible,
whereas, the workpiece is rigid. The schematic diagram of
milling process system is shown in Fig. 1. The cutter is as-
sumed to have N number of teeth with a zero helix angle. The
flexibility of the cutter is represented by a two degree-of-
freedom system in the x and y directions. The cutting forces
excite the structure to vibration in the x and y directions, caus-
ing dynamic displacements x and y, respectively.

The milling system is a typical time-delayed displacement
feedback system in which the force is a function of the vibra-
tion displacement in the current cycle and one-tooth delayed
cycle.

2.2 Dynamic force of milling process

As shown in Fig. 1, the angle between the dynamic milling
force F and normal direction at the cutting point is β; the angle
between the normal direction at the cutting point and y-axis is
ϕ (cutting angle). The dynamic force of the milling system is
given as

F tð Þ ¼ Ksbh tð Þ ð1Þ
where F(t) is the dynamic cutting force(in N), Ks is the cutting
stiffness coefficient (in N/m2), b is the cutting depth (in m) and
h(t) is the instantaneous chip thickness between the current
and previous cycles. The instantaneous chip thickness in mill-
ing can be written as

h tð Þ ¼ f tsin ϕð Þ þ n t−τð Þ−n tð Þ ð2Þ

Fig. 1 Schematic diagram of a typical milling process
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where ft is the feed per tooth and ft sin(ϕ) is the static
component of the chip thickness. The difference be-
tween n(t − τ) and n(t) is the dynamic component of
the chip thickness along the normal direction by the
previous tooth, t is the time variable, τ is the delayed
time between two teeth, and τ = 60/ΩNt, where Ω is
given in rpm.

2.3 Oriented frequency response function

The oriented frequency response function (FRF) is calculated
by summing the products of the directional orientation factors
and corresponding FRFs for the x and y directions.

FRFo ¼ μxFRFx þ μyFRFy ð3Þ

where, μx and μy are directional orientation factors for
x- and y-axis, respectively, and FRFx and FRFy are the
FRF for x and y directions, respectively. FRFo is the
FRF oriented in the average surface normal direction.
The average surface normal direction is defined as the
normal of the cutting path at the average cutting angle,
and the average cutting angle is defined as Eq. (4).
Figure 2 shows the geometry in up and down milling,
where the ϕs and ϕe are the start and exit angles of the
tooth, respectively, and ϕavg is the average cutting an-
gle. The start angle in up milling isφs = 0, while the exit
angle,φe, depends on the radial depth of cut, a, and tool
radius r. The exit angle in down milling isφe = 0, while
the start angle, φs, depends on the radial depth of cut,
a, and tool radius r.

ϕavg ¼
ϕe−ϕs

2
ð4Þ

Two steps are required to determine the directional
orientation factors along the x and y directions. First,
the force is projected onto the x- and y-axis. Second,
this result is projected onto the surface normal. Since,
the oriented FRF is the linear superposition of the FRFs
for x and y direction and the latter is commonly

obtained by the hammer test, we can write the oriented
FRF according to a single DOF dynamic system as
follows:

FRFo ¼ 1

k
jωð Þ2
ωn

2
þ 2ζω

ωn
jþ 1

 ! ð5Þ

ω2
n ¼

k
m

ð6Þ

ζ ¼ c
.

2
ffiffiffiffiffiffi
mk

p� �
ð7Þ

where m, c, k,Ωn, and ζ, respectively, represent the equivalent
mass, equivalent damping, equivalent stiffness, natural fre-
quency, and equivalent damping ratio of the vibration system
in the normal direction at average cutting angle.

Separating the real and imaginary parts from Eq. (5), we
obtain

Re FRFoð Þ ¼ 1

k
1−r2

1−r2ð Þ2 þ 2ζrð Þ2
 !

ð8Þ

Im FRFoð Þ ¼ 1

k
−2ζr

1−r2ð Þ þ 2ζrð Þ2
 !

ð9Þ

where r is the ratio of Ω by Ωn.

2.4 Stability lobes diagram

The limiting cutting depth blim of the milling process system is
as follows:

blim ¼ −1
2KsRe FRFo½ �Nt

* ð10Þ

Nt* ¼
ϕe−ϕs

360
.
Nt

ð11Þ

ωc

2π
ΩN t

¼ N þ ε
2π

ð12Þ

n

e

s=00

ave=( s+ e)/2
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e=1800
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r

(a) (b)

Fig. 2 Average cut angle ϕavg, a
up milling and b down milling
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ε ¼ 2π−2tan−1
Re FRFo½ �
Im FRFo½ �
� �

ð13Þ

Where, Nt
* represents the average number of teeth in the

cutter. Nt is the number of teeth on the cutter. Equation (7)
relates the chatter frequency, Ωc (in rad/s), should it occur, to
spindle speed,Ω (rev/s), so that the stability lobe diagrammay
be plotted. In Eq. (12), N=0, 1, 2, is the integer number of
vibration waves between tooth (lobe number) and ε (in rad)
and is defined in Eq. (13).

3 Milling chatter reliability model

3.1 Random variables of the system

Chatter occurs in the milling process due to the inter-
action between the tool and workpiece. The probability
that the chatter vibration will occur is closely related to
the structural parameters of the tool point FRF. The
basic random variables of milling process system are
m, c, k, and Ω, in which m, c, and k represent the
structural parameters of the cutter and Ω represents the
spindle speed.

3.2 The reliability model of milling chatter system

The performance function of the milling system taking chatter
into account is given as

gX Xð Þ ¼ blim−b ð14Þ

Where, blim and b denote the limiting cutting depth and
actual cutting depth, respectively. X is the random vector
and X= (m, c, k, Ω)T.

However, it is hard to express the performance func-
tion, gX(X) as a function of X= (m, c, k, Ω)T, because of
the existing of N in Eq. (12). For each vector X, there
will be N values of gX. The chatter frequency Ωc is a
non-physical variable. There exits exact one chatter fre-
quency for any spindle speed variable Ω, and we can
express the limiting state equation as the function of
anew random vector X1 = (m, c, k, Ωc)

T as shown in
Sections 2.3 and 2.4.

The performance function of milling system is obtained by
Eqs. (7), (8), (10), and (14):

gX 1
Xð Þ ¼ −

k−mω2
c

� �2 þ c2ω2
c

2KsNt
* k−mω2

c

� � −b ð15Þ

The reliability of the dynamic milling process is the
probability that chatter does not occur at a given time

and for the given function parameters, then the reliabil-
ity of the model can be defined as

Rs ¼ P gX 1
Xð Þ > 0

� � ¼ Z
X 1R

f X 1
xð Þdx ð16Þ

where f X 1
xð Þ is the joint probability density of random vector

and X1R is the safe region of the basic variable space, that is,
gX1(X) >0 in the X1R region. P(.) is the probability function.

4 Reliability calculations

4.1 Chatter frequency

After the SLD is plotted, a numerical method that is illustrated
in flowing sentence is used to calculate the chatter frequency
Ωc. Since we can obtainN values of spindle speedΩ and cutting
depth blim at a given specific chatter frequency Ωc and choose
the final spindle speed Ω according to the minimum blim. We
obtain a 2D array consist of Ω and Ωc. The column of Ω is
sorted by size, whereas, the column ofΩc is not continuous. The
equal interval interpolation is carried on for the 2D array, andwe
can obtain the chatter frequencyΩc from each spindle speedΩ.

4.2 Distribution estimation of chatter frequency

Generally, the structural parameters m, c, and k in the milling
system and the processing parameter Ω are normally distrib-
uted. In order to calculate the reliability of milling system, the
mean value and standard variance of random variables needs
to be calculated. From Eq. (12), the chatter frequency is a
function of random variables m, c, k, and Ω, and the mean
and the variance of each of the parameters are obtained from
experimental data. A modal force hammer, an acceleration
sensor and a set of data acquisition system are required to
get the FRF at tool tip. The parameters m, c, and k are calcu-
lated based on the FRF data. We can calculate Ωc from each
sample group. In order to determine the distribution type of
the Ωc, a goodness-of-fit test is needed. (Examples show that
the chatter frequency is normally distributed.)We can estimate
the overall mean value and variance according to the sample
ofΩc and estimate the correlation coefficients between chatter
frequency Ωc and variables m, c, and k, respectively.

4.3 FOSM method for the milling process system
reliability

First-order second-moment (FOSM) method linearizes the
limit state function at Taylor expansion points on the failure
surface. Reliability evaluation of the milling system is present-
ed and discussed in detail below.
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The limit state function for milling system is

Z ¼ gX Xð Þ ¼ 0 ð17Þ

The basic random variableX= (X1, X2, X3, X4)
T are relevant

random variables of the normal distribution. Xi (i=1, 2, 3, 4) is
m, c, k, andΩc, respectively. The basic variables are unrelated
each other. However, Ωc is related to m, c, and k, and the
correlation matrix of the milling system is

ρ ¼
1 0 0 ρ

X1X4

0 1 0 ρ
X2X4

0 0 1 ρ
X3X4

ρ
X4X1

ρ
X4X2

ρ
X4X3

1

0
BB@

1
CCA ð18Þ

where ρXiXj is the correlation coefficient of variable Xi and Xj.
The standard deviation σi (i=1, 2, 3, 4) of each random

variable is σm, σc, σk, and σΩc, respectively, and the covari-
ance matrix of milling system is

C ¼

σ2
1 0 0 ρ

X1X4
σ1σ4

0 σ2
2 0 ρ

X2X4
σ2σ4

0 0 σ2
3 ρ

X3X4
σ3σ4

ρ
X4X1

σ1σ4 ρ
X4X2

σ2σ4 ρ
X4X3

σ3σ4 σ2
4

0
BBBB@

1
CCCCA
ð19Þ

In Eq. (19), matrix C is a 4×4 symmetric positive definite
matrix. The matrix has four real characteristic roots and four
linearly uncorrelated and orthogonal characteristic vectors.
Assuming that the columns of matrix A are consist of regular-
ization characteristic vectors of C. Orthogonal transformation
is implemented on vector X which consists of random vari-
ables of the system.

X ¼ AY ð20Þ
μY ¼ ATμX ð21Þ
σY ¼ ATCA ð22Þ

Limiting state function can be expressed as a function of
the uncorrelated normal random variable Y:

Z ¼ gX Xð Þ ¼ gX AYð Þ⇒ZL ¼ gY Yð Þ ð23Þ

The derivative of the random variable Y is calculated by
using the design point method [21], and its derivative is

∂gY Yð Þ
∂Y i

¼ AT ∂gX Xð Þ
∂X i

ð24Þ

Choosing a mean value, X*= (m*, c*, k*, Ωc*), as the
initial design point, thus the initial value of Y * is:

Y * ¼ ATμX ð25Þ

The partial derivatives of random vector X are as follows

∂gX Xð Þ
∂m

¼ ωc
2 −c2ωc

2 þ k2−2kmωc
2 þ m2ωc

4
� �

2KsNt
* k−mωc

2ð Þ2 ð26Þ

∂gX Xð Þ
∂c

¼ −
cωc

2

KsNt
* k−mωc

2ð Þ ð27Þ

∂gX Xð Þ
∂k

¼ −
1

2KsNt
* −

c2ωc
2

2KsNt
* k−mωc

2ð Þ2 ð28Þ

∂gX Xð Þ
∂ωc

¼ mωc

KsNt
* −

c2kωc

KsNt
* k−mωc

2ð Þ2 ð29Þ

Substituting Eqs. (26), (27), (28), and (29) into Eq. (24), we
obtain the derivative of linearly uncorrelated random variables
Y.

In the space of random variable Y, equation ZL=0 is the
tangent plane at the point Y*. According to properties of linear
combination of the independent random variables of normal
distribution, we obtain the mean value and standard deviation
of ZL:

μZL
¼ g Y*� �þX4

i¼1

∂g Y*
� �
∂Y i

μY i
−Y*

i

� � ð30Þ

σZL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

∂g Y*
� �
∂Y i

	 
2
σ2
Y i

vuut ð31Þ

The first-order second-moment mean value reliability in-
dex β of the system can be written as

β ¼ μZL

σZL

ð32Þ

The sensitivity coefficient of variable Yi is defined as:

cosθY i ¼ −

∂g Y*
� �
∂Y i

σY iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

∂g Y*
� �
∂Y i

σY i

	 
2vuut
ð33Þ

Thus, the new design point Y* is

Y* ¼ μY i
þ βσY icosθY i ð34Þ
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The new design point in original coordinates X* is

X * ¼ AY* ð35Þ

Setting the error ε=10−6, multiple iterations were required
until the difference ||X*|| < ε. The value of β from the compu-
tations was substituted into Eq. (32).

Reliability (or reliability probability) of the system is as
follows:

pr ¼ 1−Φ −βð Þ ð36Þ

5 Reliability lobes diagram

Figure 3 shows an example of stability lobe diagram. In the
figure, Ω versus blim family of curves separates the space into
two regions. Any (Ω, b) pair that appears above the collective
boundary indicates unstable behavior, while any pair below
the boundary is presumed to be stable.

In the (Ω, b) plane, the plane can be divided by grids with
appropriate increments. The reliability value at the node
whose coordinates are (Ωm, bn) can be calculated. If the data
is sufficient, a contour line can be obtained for the given reli-
ability value pr

*. The contour plots in the (Ω, b) plane are

defined as reliability lobes diagram, and it is also has a lobe
shape. Figure 4 shows an example of reliability lobe diagram.

Compared with the stability lobe diagram, reliability lobe
diagram can estimate the reliability at the selected point. There
are different reliability requirements in different milling sys-
tems in engineering, so the cutting depth and the speed can be
selected to meet the requirements from the reliability lobe
diagram. As shown in Fig. 4, the red line represents the sta-
bility lobe diagram, and the blue line represents the reliability
lobe diagram. Any (Ω, b) pair that appears above the blue line
indicates unreliable behavior, and the probability of stability
(no chatter occurs) is greater than pr

*. However, any pair be-
low the boundary is presumed to be reliable, and probability
of stability (no chatter occurs) is less than pr

*.

6 A numerical example

A slotting cut was done using vertical milling machine and is
used as an example for the analysis discussed in the previous

Fig. 6 Tested FRF in X direction for the milling machine tool

Fig. 5 Experimental setup for dynamic testing of the milling system
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Fig. 4 An example of reliability and stability lobe diagram
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Fig. 3 Example of stability lobe diagram
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sections. The cutter diameter used here is 14 mm. In the slot
milling, the start angle ϕs = 0°, and exit angle ϕe =180°.
Therefore, μx= cosβ and μy=0. The related parameters of
the milling cutter can be obtained by the frequency response
function test. As a result, the reliability of milling process
system can be obtained using the FOSMmethod. The reliabil-
ity lobe diagram was plotted with the reliability level being
0.99.

6.1 Acquisition and analysis of structural parameters

The test of the FRF at tool point is conducted on a vertical
milling machine (Z7030, SMTCL, China). A vibration signal
acquisition system (model 3560-B, Brüel & Kjær, Denmark),
a pulse analysis software (Brüel & Kjær, Denmark), a modal
hammer (Model: 086C01, PCB Inc., USA), and an accelera-
tion sensor (Model: 356A24, PCB Inc., USA) were used for
data collection from the milling system.

The frequency response function test was done along the x
and y directions of the tool. The locations of acceleration sen-
sor and hammer tapping are shown in Fig. 5, and the FRF
diagram obtained directly from the test system is shown in
Fig. 6. The frequency response of the vertical milling machine

tool was obtained using the data acquisition system. Based on
the frequency response parameters m, c and k, can be calcu-
lated. Data of multiple measurements is shown in Tables 1 and
2. Parameterized FRF using Eqs. (8) and (9) are shown in
Fig. 7 for comparison. The second order modal frequency
(1785Hz) was high, so it has a small influence on the predic-
tion of chatter vibration. A simplified FRF of only the first
modal is adopted to represent the milling process.

The mean values and standard deviations of the structural
parameters of the milling process system were calculated, and
the results are shown in Table 3. A photoelectric speed sensor
was used to measure the speed of spindle and get the deviation
of parameters.

6.2 Distribution of chatter frequency

The change of the limiting cutting depth blim of milling pro-
cess system and the chatter frequency Ωc as a function of
spindle speed are shown in Fig. 8. The blue line represents
the limiting cutting depth, while the red line represents chatter
frequency versus the spindle speed.

For a sample size of 10000 of m, c, k and Ω, chatter fre-
quency Ωc was calculated from Eq. (17). A histogram for
different speeds is shown in Fig. 9. When the dynamic param-
eters m, c, k, and Ω of milling process system are normal

Table 3 The mean and standard deviation of parameters

Direction fn (Hz) m (kg) c (N s/m) k (N/m)

X μx 870.4 0.1451 48.92 4.34e6

σx 2.9136 0.0042 1.2682 0.14e6

Y μy 840.7 0.3156 94.21 8.80e6

σy 0.8233 0.0164 2.7924 0.45e6
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Fig. 7 Comparison of parameterized FRF and tested FRF

Table 2 The parameter values of cutter in Y direction

Ωny (rad/s) fny (Hz) ky (N/m) my (kg) cy (N s/m)

1 5275.2 840 8.82e+06 0.317010 91.57790

2 5275.2 840 8.82e+06 0.317010 91.57790

3 5275.2 840 9.32e+06 0.334801 96.71748

4 5281.48 841 8.62e+06 0.309197 95.14616

5 5281.48 841 8.10e+06 0.290237 89.31172

6 5287.76 842 8.73e+06 0.312126 94.08756

7 5281.48 841 8.49e+06 0.304543 95.62670

8 5275.2 840 9.22e+06 0.331419 95.74054

9 5275.2 840 9.51e+06 0.341776 98.73243

10 5287.76 842 8.34e+06 0.298158 93.62178

Table 1 The parameter values of cutter in X direction

Ωnx (rad/s) fnx (Hz) kx (N/m) mx (kg) cx (N s/m)

1 5451.04 868 4.20e+06 0.141325 47.03877

2 5463.6 870 4.06e+06 0.135885 47.78838

3 5451.04 868 4.31e+06 0.145044 48.27663

4 5451.04 868 4.40e+06 0.148163 49.31484

5 5451.04 868 4.37e+06 0.147059 48.02388

6 5469.88 871 4.35e+06 0.145309 48.36491

7 5451.04 868 4.27e+06 0.143554 51.38689

8 5488.72 874 4.51e+06 0.149558 49.77919

9 5495 875 4.39e+06 0.145429 49.31805

10 5488.72 874 4.52e+06 0.149968 49.91557
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distributed, chatter frequency of the milling system will
change in accordance with a certain distribution. The mean
values of spindle speed are set to Ω=3000, 4000, 5500, and
10000 rpm.

For a spindle speed of Ω = 10000 rpm, a Lilliefors
goodness-of-fit test was used for the chatter frequency sam-
ples. The test results show that the system chatter frequency is
normal distributed of a significance level of 95 %. The mean
and standard deviation of chatter frequency is Ωc (6516.6,
24.5593) rad/s. The correlation coefficients of four random
variables of the milling system were obtained as follows: the
correlation coefficient between m and Ωc was −0.7635, the
correlation coefficient between c and Ωc was 0.2061, and the
correlation coefficient between k and Ωc was 0.5982.

6.3 Reliability solution

For a spindle speed of 10,000 rpm and a given cutting depth b,
the reliability was calculated by the FOSM and Monte Carlo
methods and the relative errors of the results of the two
methods were calculated, setting ε equal to 106. The calcula-
tion results are shown in Table 4.

In Table 4, a million samples were used to calculate the
reliability by the Monte Carlo method, that is, the ratio of
the number of the case in which the given b is greater than
the calculated blim and the number of total calculation times is
considered the result fromMonte Carlo method. It can be seen
from the table that the results obtained by FOSM and Monte
Carlo methods were close; the maximum relative error is
2.4067 %. Therefore, when calculating the reliability of mill-
ing chatter system, AFOSM can meet the precision
requirements.

6.4 Reliability lobe diagram

The reliability lobe diagram for a reliability value set at 0.99 is
shown in Fig. 10 along with the stability lobe diagram shown
for comparison. In Fig. 10, the red line represents the stability
lobe diagram, and the blue lines represent the reliability lobe
diagram with the 0.99 level. Any (Ω, b) pairs below the red
line would be stable and those above the red line are unstable.
Any (Ω, b) pairs below the blue line are reliable with a level of
0.99. The (Ω, b) pairs located between the red and blue line are
stable but unreliable because the reliability is less than the
level of 0.99.
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Table 4 The reliability of given depths in a certain spindle speed

b (mm) Pr (AFOSM) Pr (Monte Carlo) Relative error (%)

0.5 1.000000 1.000000 0

0.7 1.000000 1.000000 0

0.9 1.000000 1.000000 0

1.1 0.999990 0.999989 0.0001

1.3 0.998977 0.998929 0.0048

1.5 0.972420 0.972319 0.0104

1.7 0.775198 0.775757 −0.0721
1.9 0.341772 0.341827 −0.0161
2.1 0.057379 0.057205 0.3042

2.3 0.002936 0.002867 2.4067
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Fig. 9 The distribution histogram of chatter frequency at different
spindle speeds
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7 Conclusions

The dynamic model of a milling systemwas established in this
paper. In addition, the milling process chatter reliability model
with random parameters, FOSM and Monte Carlo method,
was presented for the reliability (probability of occurrence of
chatter vibrations) of calculation.

The distribution of random parameters for the milling sys-
tem was measured experimentally, and the lobes diagram and
chatter frequency curve of the milling system were shown
with mean values of random variables.

The reliability of milling chatter system was calculated
using the FOSM method and compared with that calculated
by the Monte Carlo method. We can conclude that the relative
error between the FOSM and Monte Carlo methods is within
2.4 %. Comparing it with the traditional SLD method, chatter
reliability method can be used to judge the probability of sta-
bility of milling system. The reliability lobe diagram was used
to identify reliable and unreliable cutting zones instead of
SLD.
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