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Abstract When it comes to multiobjective optimization
problems, the challenge is to find a solution that satisfies
all the answers simultaneously. When the responses are
correlated and present conflicting objectives, it is even
more difficult to find an adequate solution, since most op-
timization techniques do not consider this information. The
objective of this work is to apply Taguchi’s signal-to-noise
ratio (SNR) and principal component analysis (PCA) in
order to standardize the optimization objectives, eliminate
the correlation between the multiple responses, and com-
bine them with the normal boundary intersection (NBI)
method to perform a proper optimization. A case study of
12L14 free machining steel turning process is used, since it
is considered an important machining operation. Three in-
put parameters (cutting speed, feed rate, and depth of cut)
and three response variables (mean roughness, total mean
roughness, and removal rate) were considered. Response
surface methodology was employed to build the objective
functions. The NBI-PCA-SNR method was successfully
applied, presenting viable solutions.

Keywords Multiobjective optimization . Normal boundary
intersection . Taguchi’s signal-to-noise ratio . Principal
component analysis

1 Introduction

When dealing with multiobjective optimization problems
(MOP), under various circumstances, the multiple responses
considered in a process may present conflicting objectives,
with individual optimization leading to different solution sets
[1]. Thus, the task is to find a vector of decision variables that
satisfies, at the same time, the objective functions and the
constraints and also provides an acceptable value for each
response [2, 3]. Fortunately, many techniques can be applied
to solve multiobjective optimization problems. Among those
techniques is the normal boundary intersection (NBI) method.
The NBI method, proposed by Das and Dennis [4], is a meth-
od for generating Pareto surface for linear and also for nonlin-
ear multiobjective optimization problems. It is proved that this
method is independent of the relative scales of the objective
functions and that it is successful in producing an evenly dis-
tributed set of points in the Pareto surface given an evenly
distributed set of parameters [4–6], which is its advantage over
conventional methods.

Although this method can be very useful for the optimiza-
tion of countless processes, it may conduct the results to inad-
equate optimum points if the responses are correlated and
present conflicting objectives. This drawbackmay be reversed
if the Pareto frontier is designed with uncorrelated functions
represented by the scores obtained by the principal component
analysis (PCA) [7]. PCA extracts the eigenvectors from the
variance-covariance or the correlation matrix using them as
weights that are used to multiply the standardized values of
original data set [8–15]. Still, if there are variables in the set
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with inverse directions of optimization, the maximization or
minimization of the principal components will favor some
variables and not others. An alternative for this drawback is
to apply the Taguchi’s signal-to-noise ratio (SNR) before prin-
cipal components analysis [16]. Once modeled, this new data
set may be optimized by the NBI method, which often leads to
a continuous Pareto frontier.

The objective of this work is to apply PCA and SNR in
order to eliminate the correlation between the multiple re-
sponses and different optimization objectives and then com-
bine them with the NBI method. This approach proposed is
called the NBI-PCA-SNR method. A step-by-step procedure
was developed for this purpose. To demonstrate its applicabil-
ity, a case study of 12L14 free machining steel turning process
is used.

The free machining steel turning process is character-
ized as an important operation in the modern industry,
since the free machining steels are developed to offer good
machining conditions and excellent chip, appliances, and
components to pumps, plugs, and connections [1, 10]. An
important characteristic of this process is the presence of
correlation between its responses, which have different op-
timization objectives. For example, while the roughness
has to be minimized, the removal rate has to be maximized.
In this work, the optimized responses included the mean
roughness, total roughness, and material removal rate. As
input parameters, the cutting speed, feed rate, and depth of
cut were considered.

This paper is organized as follows: Section 2 presents the
concepts of multiobjective optimization problems and the
main characteristics of the normal boundary Intersection
method and also the concepts of principal component analysis
and signal-to-noise ratio, discussing their applications;
Section 3 presents the NBI-PCA-SNR method that is pro-
posed in this study; Section 4 presents a numerical application
to illustrate the adequacy of the study’s proposal, while
Section 5 presents this study’s conclusions.

2 Multiobjective optimization techniques
for correlated functions

In order to overcome the disadvantages of the traditional
multiobjective optimization techniques, Das and Dennis [4]
proposed the normal boundary intersection method, showing
that this technique is independent of the relative scales of the
functions and it is successful in producing an evenly distrib-
uted set of points in the Pareto set.

The first step in the NBI method establishes the payoff
matrix (Φ), based on the calculation of the individual minima
of each objective function. The optimal solution for the ith
objective function fi(x) can be represented as fi

*(xi
*). When

the individual optimum xi
* is replaced in the remaining

objective functions fi
*(xi

*) is obtained. In matrix notation, the
payoff matrix can be written as [6]:

Φ ¼

f *1 x*1
� �

⋯ f 1 x*i
� �

⋯ f 1 x*m
� �

⋮ ⋱ ⋮
f i x
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1
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⋯ f i x
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m
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f m x*1
� �

⋯ f m x*i
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66664
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77775 ð1Þ

The set of individual optimal solutions, f U= [f1
*(x1

*),…, fi
*-

(xi
*),…, fm

*(xm
* )]T, is known as the Utopia point, while the set of

the solutions that are most distant from the optimal solutions,
f N= [f1

N,…, fi
N,…, fm

N]T, is known as the Nadir point [4].
Thus, the payoff matrix can be normalized using Eq. (2):

f xð Þ ¼ f i xð Þ− f Ui
f Ni − f

U
i

; i ¼ 1;…;m ð2Þ

This normalization Min f 1 xð Þ s:t: : f 1 xð Þ− f 2 xð Þ þ 2w
−1 ¼ 0 g j xð Þ≥0 0≤w≤1 leads to the normalized payoff ma-

trix (Φ ) and the vector F xð Þ. Associated to vector of weights
(β) and a unitary normal vector (n̂ ), the classical NBI formu-
lation can be described as [6]:

Max
x;tð Þ

D

S : t : Φβ þ D n̂ ¼ F xð Þ
x ∈ Ω
g j xð Þ≤0
h j xð Þ≤0

ð3Þ

The conceptual parameter D can be algebraically eliminat-
ed from Eq. (3), such that, for bi-dimensional problem, this
expression can be written as [6]:

Min f 1 xð Þ
s:t: : f 1 xð Þ− f 2 xð Þ þ 2w−1 ¼ 0

g j xð Þ≥0
0≤w≤1

ð4Þ

where f 1 xð Þ and f 2 xð Þ are the normalized objective func-
tions, gj(x)≥0 and 0≤w≤1 are the set of constraints for ex-
perimental region and the cuboidal region, respectively.

This optimization problem can be iteratively solved for
different values of w, creating an evenly distributed Pareto
frontier. A common choice for w is suggested by Jia and
Ierapetritou [5] as wn=1−∑i = 1wi.

The NBI method previously described is widely employed
to generate the trade-off solutions for nonlinear multiobjective
optimization problems. However, if the several objective
functions are positively correlated and present conflicting ob-
jectives among themselves, the NBI method tends to fail and
to produce unreal results and non-convex frontiers. In addi-
tion, the correlation among the responses can substantially
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influence the values of the y(x, z) regression coefficients and it
cannot be neglected [7]. The individual analysis of each re-
sponse may lead to a conflicting optimum [7, 11, 16]. One
may deal with this impeding correlation influence by
employing principal components analysis.

According to Paiva et al. [11], PCA is a recognized
dimensionality reduction technique, which has the charac-
teristic of preserving most of the information contained in
the original set of variables. According to Zhang et al.
[17], based on the variance-covariance matrix, the PCA
method proceeds in such a way that the first principal
component has the highest variance, and each succeeding
component in turn has the highest possible variance with-
in the constraint.

Supposing that some objective functions f1(x), f2(x),
…, fp(x) are correlated with values written in terms of a ran-
dom vector YT= [Y1,Y2,…,Yp] and assuming that ∑ is the
variance-covariance matrix associated to this vector, then ∑
can be factorized in pairs of eigenvalues-eigenvectors (λi, ei),
…≥ (λp, ep), where (λi≥λ2≥…≥λp≥0), such as the ith un-
corre la ted l inear combinat ion may be s ta ted as
PC1= ei

TY= e1iY1 + e2iY2 +…+ epiYp, with i=1,2,…,p.
The ith principal component can be obtained as maximiza-

tion of this linear combination. A set of original variables can
be replaced by uncorrelated linear combinations of the form
scores of the principal component that can be expressed in
terms of a score matrix, defined as [18]:

PCk ¼ ZTE

¼

x11−x1ffiffiffiffiffiffi
s11

p
 !

x21−x2ffiffiffiffiffiffi
s22

p
 !

⋯
xp1−xpffiffiffiffiffiffispp
p

 !

x12−x1ffiffiffiffiffiffi
s11

p
 !

x22−x2ffiffiffiffiffiffi
s22

p
 !

⋯
xp2−xpffiffiffiffiffiffispp
p

 !

⋮ ⋮ ⋱ ⋮
x1n−x1ffiffiffiffiffiffi

s11
p

 !
x2n−x2ffiffiffiffiffiffi

s22
p

 !
⋯

xpn−xpffiffiffiffiffiffispp
p

 !

2
666666666664

3
777777777775

T

�
e11 e12 ⋯ e1p
e21 e22 ⋯ e2p
⋮ ⋮ ⋱ ⋮
e1p e2p … epp

2
664

3
775

ð5Þ

Being xpn a random observation, xp the pth average re-
sponse,

ffiffiffiffiffiffispp
p

the standard deviation, p the response, and [E]

the eigenvectors of the multivariate set.
However, if there are variables in the set with optimization

in verse direction, i.e., responses that need to be minimized
while others need to be maximized, the maximization or min-
imization of the principal components will favor some vari-
ables and harm others.

To analyze the maximization or minimization influence of
the principal components on the variables, it is necessary to
observe the correlation between them. For example, if the first
principal component (PC1) maintains a negative correlation
with certain variables and we desire to minimize them, then
PC1 maximization leads to their minimization. Thus, if the cor-
relation between PC1 and a group of variables is positive, its

maximization or minimization will imply the maximization or
minimization of each original response variable. If the correla-
tion is negative, the optimization senses will be inverse [11].

In case there is a positive correlation with some variables
and negative correlation with other simultaneously, multiplying
the original response by a negative constant will solve the
problem. This multiplication should be done before proceeding
to the analysis of the principal component. However, when the
responses have different optimization objective, another likely
alternative is to apply the Taguchi’s signal-to-noise ratio.

Taguchi uses the SNR to measure the quality characteristic
deviating from the desired value and these characteristics vary
depending on the type of problem under study, which may be
classified as “smaller-the-better” and “bigger-the-better”
[19–21]. Their mathematical expressions are represented by
the Eqs. (6) and (7), respectively, where y denotes the perfor-
mance indicator, subscript i is the experiment number and N is
the number of replicates of the experiment i. After the trans-
formation, SNR must always be maximized, which makes it
possible to standardize the optimization objectives for the in-
dividual responses.

SNR ¼ −10log10

X N

i¼1
y2i

N

0
@

1
A ð6Þ

SNR ¼ −10log10

X N

i¼1
1=y2i

N

0
@

1
A ð7Þ

3 The NBI-PCA-SNR method

Given the aforementioned discussion, this work proposes a
combination of techniques which, applied together, may con-
duct to acceptable solutions for correlated multiobjective
problems with conflicting objectives. Then, a hybrid method
based on principal component analysis, Taguchi’s signal-to-
noise ratio, and the normal boundary intersection, called NBI-
PCA-SNR method, is proposed. For a better understanding of
this proposal, a step-by-step procedure was developed, as it
follows:

Step 1: Experimental design and analysis
The different responses can be modeled by using

the design of experiments. An experimental matrix is
set, the experiments are run in random order, and the
responses are stored. Then, applying the OLS algo-
rithm, it is possible to define the models for the
responses.

Step 2: Individual constrained optimization
The response targets, that in this study are the in-

dividual optimums (ζyj), are established using the
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individual constrained optimization of each response,
where ζyi ¼ Min

x∈Ω ŷ j xð Þ
h i

or ζyi ¼ Max
x∈Ω ŷ j xð Þ

h i
, de-

pending on the response optimization objective.
Step 3: Correlation analysis

The correlation analysis allows the identification
of the presence of correlation between the responses.

Step 4: Taguchi’s signal-to-noise ratio
The Taguchi’s signal-to-noise ratio is applied for

the original responses by using Eqs. (6) and (7), ac-
cording to the optimization objective of each re-
sponse. After the application of SNR, all the re-
sponses must be maximized, crossing off the prob-
lem caused by the conflicting objectives of the orig-
inal responses.

Step 5: Principal component analysis
Principal components analysis is applied for the

set of pre-processed responses. Using the correlation
matrix, PC scores must be extracted and stored with
the respective eigenvalues and eigenvectors. Then, it
is selected the number of PCs required to explain at
least 90% of variancemodel.With the application of
PCA, the correlation between the responses is elim-
inated, and it is possible to proceed with the optimi-
zation by the NBI method.

Step 6: Response modeling
The OLS algorithm is applied for the PCs, the

results are analyzed and the equations for the princi-
pal components are established. These models are
the new responses of the optimization problem.

Step 7: Payoff matrix and scalarization
The first step to determinate the payoff matrix

for the NBI method is the individual constrained
maximization of the PCs modeled in step 6. With
the individual optimization of the PCs, the
Utopia ( f U=PCmax) and the Nadir ( f N=PCmin)

points can be found and the Payoff Matrix (Φ)
for a bivariate case can be written as:

Φ ¼ PCmax
1 xð Þ PC1

min xð Þ
PC2

min xð Þ PC2
max xð Þ

� �
ð8Þ

With these payoff matrix values, the scalarization
of PC1 and PC2 can be promoted. For a bivariate case,
it is given by Eq. (9):

f xð Þ ¼ f i xð Þ− f iU
f i

N− f i
U

⇒
f 1 xð Þ ¼ PC1 xð Þ ¼ PC1 xð Þ−PC1

max

PC1
min−PC1

max

f 2 xð Þ ¼ PC2 xð Þ ¼ PC2 xð Þ−PC2
max

PC2
min−PC2

max

8>><
>>:

9>>=
>>;

ð9Þ

Step 8: NBI method and the Pareto frontier
The optimization by the NBI method is applied

according to Eq. (10), which must be solved for dif-
ferent values of w, leading to the construction of the
Pareto frontier.

Min
PCi xð Þ−PCI

i xð Þ
PCmax

i xð Þ−PCI
i xð Þ

� �

s:t: :
PC1 xð Þ−PCI

1 xð Þ
PCmax

1 xð Þ−PCI
1 xð Þ

� �

−
PC2 xð Þ−PCI

2 xð Þ
PCmax

2 xð Þ−PCI
2 xð Þ

� �
þ 2w−1 ¼ 0

xTx≤ρ
0≤w≤1

ð10Þ

Fig. 1 Distribution of
measurement points in each
workpiece (a). Rugosimeter used
in measurements of output
variables (b)
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4 Optimization of the 12L14 free machining steel
turning

4.1 Workpiece material

In this investigation, 12L14 free machining steel (0.09 % C;
0.03 % Si; 1.24 % Mn; 0.046 % P; 0.273 % S; 0.15 % Cr;
0.08 % Ni; 0.26 % Cu; 0.001 % Al; 0.02 % Mo; 0.28 % Pb;
0.0079 % N2), with dimensions ofφ40×295 mm was select-
ed as the workpiece material for the turning process.

4.2 Experimental setup

The turning experiments were conducted on a NARDINI
CNC lathe, with 7.5 cv power and maximum rotation of
4000 rpm. The hard metal inserts (ISO P35 code SNMG
090304 – PM, Sandvik class GC 4035) were coated with three

layers (Ti(C.N), Al2O3, TiN) and a tool holder ISO code
DSBNL 1616H09.

The metrics of surface roughness were measured in three
points of the workpiece: chestnut (CA), center (CE), and
counterpoint (CP) (Fig. 1a) and then, all roughness responses
were assessed using a Mitutoyo portable roughness meter,
model Surftest SJ 201 (Fig. 1b). Note that value roughness
in the CA point tends to be smaller than the value roughness in
the CP point, since, in the CA point, the workpiece is fixed
and in the CP point, it is not fixed. Material removal response
rates were calculated.

4.3 Application of the NBI-PCA-SNR method

Step 1: Experimental design and analysis
Given that the objective functions were initial-

ly unknown, they were modeled using the re-
sponse surface methodology (RSM). A sequen-
tial set of 17 experimental runs was established
using a central composite design (CCD) with
three parameters 2k = 23 = 8 at two levels, six ax-
ial points 2k = 6 and three center points. The
adopted value for axial distance α was 1.682.
The experimental planning was performed at
three different levels of cutting parameters: cut-
ting speed (V), feed rate ( f ), and depth of cut (d),
as shown in Table 1. Three different outputs were
measured: mean roughness (Ra), total mean

Table 1 Control factors and respective levels [1]

Parameters Symbol Unit Levels (uncoded and coded)

−1.682 −1 0 +1 +1.682

Cutting speed V m/min 180 220 280 340 380

Feed rate f mm/rev 0.07 0.08 0.10 0.12 0.13

Depth of cut d mm 0.53 0.70 0.95 1.20 1.37

Table 2 Experimental data for the 12 L14 free machining steel turning

Parameters Responses Responses (SNR) Responses (PCA)

V [m/min] f [mm/rev] d [mm] Ra Rt MRR SNR/Ra SNR/Rt SNR/MRR PC1 PC2

220 0.08 0.70 1.36 9.53 12.32 −2.69 −19.59 21.81 3.35 −0.23
340 0.08 0.70 1.65 11.24 19.04 −4.36 −21.01 25.59 1.29 −0.15
220 0.12 0.70 1.78 10.08 18.48 −5.02 −20.07 25.33 1.47 0.06

340 0.12 0.70 1.84 10.39 28.56 −5.29 −20.34 29.12 0.59 0.87

220 0.08 1.20 2.22 14.73 21.12 −6.91 −23.37 26.49 −1.12 −1.32
340 0.08 1.20 2.21 13.82 32.64 −6.89 −22.81 30.28 −1.48 −0.13
220 0.12 1.20 1.82 11.29 31.68 −5.21 −21.06 30.02 0.15 0.81

340 0.12 1.20 2.24 13.35 48.96 −6.99 −22.51 33.80 −1.96 0.87

180 0.10 0.95 1.90 13.01 17.10 −5.56 −22.28 24.66 0.31 −1.11
380 0.10 0.95 2.09 13.40 36.10 −6.39 −22.54 31.15 −1.27 0.29

280 0.07 0.95 1.85 10.84 18.62 −5.35 −20.70 25.40 1.02 −0.24
280 0.13 0.95 1.85 10.85 34.58 −5.33 −20.71 30.78 0.13 1.13

280 0.10 0.53 1.68 8.95 14.84 −4.51 −19.03 23.43 2.50 0.09

280 0.10 1.37 2.31 13.77 38.36 −7.26 −22.78 31.68 −1.86 0.18

280 0.10 0.95 2.32 12.57 26.60 −7.31 −21.98 28.50 −0.99 −0.31
280 0.10 0.95 2.24 12.73 26.60 −7.00 −22.10 28.50 −0.90 −0.31
280 0.10 0.95 2.38 13.00 26.60 −7.54 −22.28 28.50 −1.23 −0.47
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roughness (Rt), and removal rate (MRR). The ex-
perimental matrix is presented in Table 2.

The OLS algorithm was applied, and the ANOVA
procedure was used to check the adequacy of the
models as well as their adjustment. Table 3 presents
the coefficients for the final full quadratic models and
the main results of the ANOVA.

All regression p values were lower than the signif-
icance of 5 %, and no lack of fit was observed. The
models presented adj-R2 values above 80.0 % indi-
cating their adequacy. The normality test for the re-
siduals of the RSMmodels indicated that the residuals
are normal. Therefore, the ANOVA results show that
the final full quadratic models are reliable and can be
used for the optimization of this end milling process.
Figure 2 presents the response surface graphics for the
most significant turning parameters on which the
analysis can be done.

Step 2: Individual constraint optimization
Target values for the responses modeled in step 1

were established using the individual constrained
minimization for Ra and Rt, such as Eqs. (11) and
(12), and the individual constrained maximization of
response MRR, such as Eq. (13) where x= [V, f,d].

ζRa
¼ Min

x∈Ω
R̂a i xð Þ
h i

ð11Þ

ζRt
¼ Min

x∈Ω
R̂ti xð Þ
h i

ð12Þ

ζMRR ¼ Max
x∈Ω

MR̂Ri xð Þ
h i

ð13Þ

The target values established by the individual optimiza-
tions were as follows: ζRa

¼ 1:45, ζRt
¼ 8:75, and e

ζMRR=47.78.

Table 3 Estimated coefficients and predictive statistics of the response

Coefficient Ra Rt MRR SNR/Ra SNR/Rt SNR/MRR PC1 PC2

Constant 2.316 12.761 26.600 −7.298 −22.117 28.498 −1.046 −0.367
V 0.079 0.280 5.679 −0.373 −0.222 1.907 −0.590 0.329

f 0.017 −0.307 5.082 −0.119 0.204 1.694 −0.241 0.494

d 0.212 1.469 6.997 −0.971 −1.101 2.387 −1.350 −0.014
V*V −0.121 0.168 0.000 0.510 −0.114 −0.211 0.216 −0.013
f*f −0.172 −0.664 0.000 0.736 0.489 −0.146 0.588 0.290

d*d −0.121 −0.484 0.000 0.544 0.418 −0.335 0.498 0.180

V*f 0.023 0.198 1.140 −0.049 −0.106 0.000 −0.072 −0.052
V*d 0.008 −0.109 1.500 0.024 0.100 0.000 0.057 0.045

f*d −0.122 −0.451 1.400 0.608 0.302 0.000 0.419 0.228

Adj. R2 (%) 86.20 81.64 99.72 82.94 82.75 99. 82 92.11 80.41

Regression (p value) 0.030 0.007 –a 0.003 0.004 0.000 0.000 0.005

Lack of Fit (p value) 0.290 0.062 –a 0.165 0.055 –a 0.107 0.071

Normality (AD) test 0.513 0.108 1.179 0.350 0.131 0.287 0.180 0.248

AD (p value) 0.166 0.992 <0.005 0.430 0.977 0.576 0.900 0.710

Curvature (p value) 0.013 0.023 –a 0.010 0.016 –a 0.008 0.018

The italicized values represent the individually significant terms at 95 % CI
a The test does not apply to the response
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Step 3: Correlation analysis
Using correlation analysis (Table 4), the existence

of a strong correlation, with statistical significance,
between the responses Ra and Rt, a moderate corre-
lation between Ra and MRR, and also a moderate
correlation between Rt and MRR can be observed.

Step 4: Taguchi’s signal-to-noise ratio
The Taguchi’s signal-to-noise ratio was calculat-

ed according to Eq. (6) forRa and Rt and according to
Eq. (7) for MRR. The calculated values for NR/Ra,
NR/Rt, and NR/MRR are presented in Table 2. The
OLS algorithm was applied for SNR/Ra, SNR/Rt,
and SNR/MRR, and the results can be observed in
Table 3. The ANOVA results show that the final full
quadratic models are reliable and can be used for the
optimization of this process.

Step 5: Principal component analysis
Using the correlation matrix, principal compo-

nents scores were extracted with their respective ei-
genvalues and eigenvectors, as shown in Table 5. It
was observed that the two principal components ex-
plain 94.9 % of the variance-covariance structure
established between the surface responses, with ei-
genvalues greater than one unit. Therefore, the opti-
mization will proceed using the scores of the two
first principal components. The scores of the trans-
formed data for PC1 and PC2 are presented in
Table 3.

Step 6: Response modeling
As it has been mentioned, the PCA obtains

uncorrelated objective functions (−0.000, p val-
ue=1.000, Table 4). Applying the OLS algorithm
for PC1 and PC2, the following equations were ob-
tained:

Table 4 Correlation structure between the responses

Ra Rt MRR PC1

Rt 0.834 (0.000)

MRR 0.596 (0.012) 0.591 (0.033)

PC1 −0.937 (0.000) −0.896 (0.000) −0.779 (0.000)
PC2 −0.174 (0.505) −0.369 (0.145) 0.587 (0.013) −0.000 (1.000)

Cell contents: Pearson correlation (P value)

Table 5 Principal component analysis: SNR/Ra, SNR/Rt, and SNR/
MRR

PC1 PC2 PC3

Eigenvalue (e) 2.4023 0.4451 0.1526

Proportion 0.801 0.148 0.051

Cumulative 0.801 0.949 1.000

Eigenvectors (δ)

NR/Ra 0.608 0.226 −0.761
NR/Rt 0.584 0.521 0.622

NR/MRR −0.537 0.823 −0.185

Table 6 Optimization results for NBI-PCA-SNR approach

(w) Responses Uncoded
parameters

Uncoded responses GPE

PC1(x) PC2(x) V f d Ra Rt MMR

0.00 −0.40 1.43 296.41 0.13 1.09 1.92 11.11 42.08 0.716

0.05 −0.11 1.40 286.18 0.13 1.04 1.88 10.75 39.23 0.705

0.10 0.09 1.34 278.94 0.13 1.00 1.86 10.51 36.80 0.714

0.15 0.26 1.26 273.50 0.13 0.96 1.85 10.33 34.61 0.730

0.20 0.41 1.18 269.39 0.13 0.92 1.84 10.20 32.59 0.752

0.25 0.55 1.09 266.32 0.13 0.88 1.84 10.09 30.70 0.776

0.30 0.67 0.99 264.20 0.13 0.84 1.83 9.99 28.93 0.801

0.35 0.80 0.90 262.97 0.13 0.80 1.83 9.90 27.26 0.825

0.40 0.93 0.80 262.63 0.13 0.77 1.83 9.82 25.67 0.849

0.45 1.06 0.71 263.16 0.13 0.73 1.83 9.74 24.17 0.871

0.50 1.20 0.62 264.63 0.13 0.69 1.83 9.66 22.74 0.889

0.55 1.34 0.53 267.08 0.12 0.66 1.82 9.57 21.39 0.904

0.60 1.51 0.45 270.68 0.12 0.62 1.81 9.49 20.12 0.913

0.65 1.69 0.37 275.58 0.12 0.59 1.79 9.40 18.92 0.915

0.70 1.89 0.31 282.32 0.11 0.56 1.76 9.32 17.80 0.907

0.75 2.12 0.26 291.70 0.11 0.54 1.71 9.24 16.81 0.883

0.80 2.39 0.22 303.69 0.10 0.54 1.62 9.20 15.99 0.834

0.85 2.70 0.20 301.85 0.09 0.56 1.54 9.06 15.16 0.778

0.90 2.96 0.16 290.06 0.09 0.57 1.49 8.88 14.33 0.744

0.95 3.14 0.09 275.52 0.08 0.58 1.47 8.79 13.66 0.733

1.00 3.22 −0.03 259.02 0.08 0.59 1.47 8.88 13.18 0.749

The italicized values are the optimal by the minimization of the global
percent error (GPE)
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Fig. 3 Pareto frontier obtained for the NBI-PCA-SNR approach
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PC1 ¼ −1:046−0:590V−0:241 f −1:350d þ 0:216V2 þ
þ0:588 f 2 þ 0:498d2−0:072V f þ 0:057Vd þ 0:419 f d

ð14Þ

PC2 ¼ −0:367þ 0:329V þ 0:494 f −0:014d−0:013V2 þ
þ0:290 f 2 þ 0:180d2−0:052V f þ 0:045Vd þ 0:228 f d

ð15Þ
This analysis was considered for a level of signif-

icance of 5 %, and all the models presented adj. R2

values above 80.0 % and no lack of fit was found
(Table 3).

Step 7: Payoff matrix and scalarization
The individual constrained maximization of the

PCs modeled in step 6 led to the following payoff
matrix:

Φ ¼ 3:216 −0:402
−0:031 1:435

� �
ð16Þ

With these values, the scalarization of PC1 and
PC2 can be done by Eq. (17):

f xð Þ ¼
PC1 xð Þ ¼ PC1 xð Þ−3:216

−0:402−3:216
PC2 xð Þ ¼ PC2 xð Þ−1:435

−0:031−1:435

8><
>:

9>=
>; ð17Þ

Step 8: NBI method and the Pareto frontier
The minimization of the set of pre-processed

responses produced the results presented in
Table 6 that were obtained by applying the NBI
routine, employing the GRG algorithm available
from Microsoft Excel’s Solver®, for the system

of equations as described in Eq. (10). Increments
of approximately 5 % were adopted for the
weight (w) distribution. The nonlinear constraint
in this case is xTx≤ 2.829 since the axial distance
ρ is 1.682.

It can be observed that when higher weights
are attributed to the second principal component,
the NBI-PCA-SNR approach tends to the MRR
optimal values, i.e., higher weights for PC2 will
prioritize productivity in the detriment of quality.
The opposite is also true, since when higher
weights are attributed to the first principal com-
ponent, the method tends to the roughness opti-
mal values. This event occurs due to the fact that
the first principal component is consist mostly by
roughness, while the second principal is consist
by MRR.

The Pareto frontier (Fig. 3) for the NBI-PCA-
SNR method was built using the data presented
in Table 6. The particular form presented by the
Pareto frontier can be explained by the convexity
of the objective functions. While PC1 is a convex
function, PC2 is a saddle point. Table 7 shows
the eigenvalues of the Hessian matrix of each
objective function.

5 Optimal point by minimization of the global
percent error

Aiming to determine the optimal point of the multiobjective
optimization approach discussed in this work, the global op-
timization by global percent error (GPE) was applied on the
set of 21 Pareto-optimal solutions in Table 6. The global per-
cent error indicates the deviation of the Pareto-optimal solu-
tions from the targets defined for the responses and it can be
calculated using Eq. (18):

GPE ¼
Xm
i¼1

y*i
ζyi

−1

					
					 ð18Þ

where yi* are the pareto-optimal solutions obtained by the
multiobjective optimization and ζYi are the Utopia point
(target) for each original response (Ra, Rt, and MRR). The

Table 7 Convexity of
the objective functions PC1 PC2

Eigenvalues 0.757 0.362

0.345 0.117

0.200 −0.022
Convex Saddle

Table 8 Global optimization
results Responses Responses Cutting parameters

Ra Rt MRR V f d

Utopia point (ζYi) 1.45 8.75 47.78 220–340 0.08–0.12 0.70–1.20

Optimal point (NBI-SNR-PCA) 1.88 10.75 39.23 286.16 0.13 1.04
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optimal point will be the Pareto solution that will give the
smaller value for GPE.

The GPE values calculated for each of the 21 Pareto-optimal
solutions are presented in Table 6. The smaller value found for
GPE was 0.705. The optimal points for the three responses, as
well as the optimal levels of the cutting parameters, are present-
ed in Table 8, and they can be compared with the Utopia points
(ζyi) of the original responses.

According to the results presented in Table 8, it can be
noted that to maximize the material removal rate while mini-
mizing surface quality, the values that attained the desired
quality conditions are the following: v = 286 m/min,
f=0.13 mm/rev, and d=1 mm. All responses (Ra, Rt, and
MRR) optimized by the NBI-PCA-SNR approach were
established relatively close to their Utopia point. Therefore,
the NBI-PCA-SNR method appears to be very suitable to the
optimization of the 12L14 free machining steel turning
process.

6 Conclusion

This work introduced a mathematical new approach that com-
bine the normal boundary intersection method with principal
component analysis and Taguchi’s signal-to-noise ratio to op-
timize a process with multiple correlated responses. Among
the several results obtained, the following are worth
highlighting:

& The process optimization by the NBI-PCA-SNR method
showed a consistent adequacy applied to the 12L14 free
machining steel turning process.

& The use of the principal component analysis combined to
Taguchi’s signal to ratio noise allowed treating the original
responses, standardizing the optimization objectives, and
eliminating the correlation between the multiple
responses.

& For the optimal point found for the NBI-PCA-SNR
approach by the minimization of the GPE, cutting
speed of 286 m/min, feed rate of 0.13 mm/rev, and
depth of cut of 1 mm are the optimal cutting parame-
ters to minimize roughness and maximize removal
rate, simultaneously, which should lead to a mean
roughness (Ra) of 1.88 μm, a total mean roughness
(Rt) of 10.75 μm, and a removal rate (MRR) of
39.23 cm3/min. These results are shown to be compat-
ible with the bounds for all the responses.

& The results presented in this work confirm that, using
technical planning for multiobjective optimization, the
turning process can be successfully applied without
affecting the machining objectives, in this case, mini-
mum surface roughness and maximum material re-
moval rate.
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