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Abstract To cope with uncertainty in semiconductor wafer
fabrication facilities (fabs), scheduling methods are required
to produce quick real-time responses. They should be
well tuned to track the changes of a production environ-
ment to obtain good operational performance. This paper
presents an efficient adaptive dispatching method (ADM)
with parameters determined dynamically by real-time state
information of fabs. ADM is composed of a dispatching rule
considering both batch and non-batch processing machines
to obtain improved fab-wide performance, several feature
selection methods to determine key scheduling-related real-
time state information, and a linear regression model to
find the relations between the weighting parameters of the
dispatching rule and the determined real-time state informa-
tion. A real fab simulation model is used to demonstrate the
proposed method. The simulation results show that ADM is
adaptive to changing environment with better performance
than a number of commonly used rules (such as FIFO, EDD,
CR, LPT, LS, SRPT, and SPT) and an adaptive dispatch-
ing rule that considers only real-time ratio of hot jobs to the
number of all jobs in a fab and the ratio of jobs with one
third of photo steps left to the number of all jobs.
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1 Introduction

The advances in semiconductor technology have been
accompanied by increased process complexity in semicon-
ductor wafer fabrication facilities, called fabs for short. Due
to extreme high capital investment, semiconductor manu-
facturers demand high overall equipment effectiveness and
utilization. The increased process complexity and decreased
feature size lead to more frequent off-specification results,
job rework, and other uncertainty issues. Consequently,
scheduling methods must have the ability to respond quickly
to real-time rework and disruption situations. As an effective
way, a dynamic dispatching rule has attracted growing atten-
tion in both academia and industries. Meanwhile, due to the
complexity and strong-coupling relations between upstream
and downstream machines, the fab-wide dispatching meth-
ods are preferred.

Generally, the dispatching challenges faced by the cur-
rent fabs are as follows.

(1) There are hundreds even thousands of jobs in a fab.
Due to their re-entrant workflows, the workload dis-
tributions on workstations are changeable over time. It
is necessary to select proper dispatching decision fit-
ting to the real-time running states to achieve better
performance.

(2) The downstream and upstream machines are coupled
closely due to re-entrant workflows. The movement
of jobs on an upstream machine will have impor-
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tant impacts on the operational performance of its
downstream machines. The dispatching decision of
downstream and upstream machines should be coordi-
nated.

(3) There are multiple performance issues to be optimized.
Some issues are contradictable, such as on-time deliv-
ery rate and cycle time. So it is necessary to make a
trade-off between these performance issues.

To satisfy the above requirements, there are considerable
related research results. For example, to cope with the com-
plexities for multiple lot scheduling in a semiconductor test
facility, Xiong [1] combined the heuristic best-first strat-
egy with the controlled back tracking strategy based on the
execution of the Petri nets to reduce set-up times. Lee et
al. [2] designed a timed-extended object-oriented Petri net-
based multi-objective scheduling method and a real-time
dispatching approach to simultaneously optimize the unit
profit, tardiness cost, and inventories of WIP and finished-
products. Eivazy and Rabbani [3] presented an efficient
dispatching method to prioritize the make-to-stock (MTS)
and make-to-order (MTO) products in the queue of a work-
station whenever a machine in this workstation became idle
within a hybrid MTS/MTO production environment. Chi-
ang et al. [4] presented an analytic hierarchy to determine an
appropriate set of acceptable WIP deviation levels and the
operational job priorities. Altendorfer et al. [5] presented a
dispatching rule for multi-product, multi-machine job shops
with routing flexibility to maximize the throughput and kept
a low level of WIP. Li et al. [6] proposed a dispatching rule
to improve the on-time delivery performance for a fab by
considering the dispatching of bottleneck machines, non-
bottleneck machines, batching machines, and hot jobs. Its
full fab perspective made it possible to improve fab-wide
operational performance.

Although many efforts are made to improve the dispatch-
ing decision of a fab, it is fair to say that a dispatching rule
may be suitable to its specific environment only. When it
is applied to a different one, however, its performance may
significantly deteriorate. Therefore, it is important to select
a proper dispatching decision suitable to real-time dynam-
ically changing situations. To do so, machine learning and
computational intelligence methods have been increasingly
introduced to the dispatching decision processes over time.

For example, [7] developed a hybrid knowledge dis-
covery model that used a combination of a decision tree
and a backward propagation neutral network (BPNN) to
find an appropriate dispatching rule from the production
data and predicted the operational performance. Min and
Yih [8] proposed a methodology by combining the simu-
lation and competitive neural network approaches to select
proper dispatching rules. Zhang et al. [9] integrated the sim-
ulation and response surface methodology to evaluate and

optimize the dispatching rules and selected them based on
real time system status. Pickardt et al. [10] proposed a two-
stage hyper-heuristic for the generation of a set of work
center-specific dispatching rules. The approach combined a
genetic programming (GP) algorithm that evolved a com-
posite rule from basic job attributes with an evolutionary
algorithm (EA) that searched for a good assignment of rules
to work centers. The resulting rule sets were robust to most
changes in the operating conditions. Wu et al. [11] presented
a fuzzy-neural ensemble and geometric rule fusion approach
to optimize the performance of job dispatching in a wafer
fabrication factory with an intelligent rule. The fuzzy c-
means (FCM) and BPN ensemble approach were used to
estimate the remaining cycle time of a job, which was an
important input to their dispatching rule.

These efforts made a big step for the effective dispatching
of fabs. One can select proper dispatching rules according
to real-time information, but the original dispatching rules
may limit the improved level of a fab. In particular, for
the same fab, it is possible to change the original dispatch-
ing rules dynamically to cope with changing production
environment to obtain better performance. This idea moti-
vates this work to propose an efficient adaptive dispatching
method (ADM) with parameters tuned according to real-
time state information such that it is adaptive to the changes
in a production environment. Different from our previous
work on adaptive dispatching rule (ADR) proposed by [12],
the real-time state information considered in this paper is
determined by feature selection methods instead of those of
ADR, i.e., the ratio of hot jobs to work-in-process (WIP)
and the ratio of jobs with one third of photo steps left to WIP
in a fab. The resultant advantages include the improvement
of the operational performance and adaptability to various
types of fabs.

The remainder of this paper is organized as follows.
The main framework of ADM is introduced in Section 2.
In Section 3, the feature selection methods are introduced
to determine key scheduling-related real-time state infor-
mation. Section 4 gives the results of fab simulation.
Finally, we present the conclusions and future directions in
Section 5.

2 Framework of ADM

To make ADM adaptive to real-time environment, we
design a learning-based framework as shown in Fig. 1.

It has four steps:

(1) Generate samples with different weighting parameters
of the dispatching rule of ADM and running states with
simulations.

(2) Train a BPNN for verification with all samples.
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Fig. 1 The framework of the proposed ADM

(3) Select features by using a similarity measurement
method, genetic algorithm (GA), and estimation-of-
distribution algorithm (EDA) respectively.

(4) Build the relational model between the weighting
parameters of the dispatching rule of ADM and run-
ning states to make it adaptive to real-time environ-
ment.

Therefore, ADM is composed of three main parts, i.e., a
dispatching rule, feature selection module, and linear regres-
sion model. The workflow of the dispatching rule can be
referenced in our early work [12, 13]. For non-batch pro-
cessing machine, compute the selection possibility Sn of
each job n according to

Sn = α1
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i : index of the available machine
id : index of the downstream machines of machine i
n : index of the jobs in the queue of machine i
t : dispatching decision point, i.e., dispatching time
Dn : due date of job n

Fn : ratio of the average cycle time (the sum of the
processing time and queue time) of job n to its
processing time

P n
i : occupation time of job n on machine i

P h
id : occupation time of job h on machine id , which is

in the queue of machine id
Rn

i : remaining processing time of job n at machine i
Sn : selection possibility of job n
Tid : available time of machine id in one day
α1, β1 : measure the relative importance level between

the on-time delivery (the first item) and workload
balance performance (the second item)

For batch processing machine, compute its selection possi-
bility �k of each batch k according to
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where

k : index of the batches in the queue of
machine i of type BPM

Bi : capacity of machine i of type BPM
Bk : the batch size of batch k
Nh

ik : the number of hot jobs in batch k
P k

i : the occupation time of batch k on
machine i

Nk
id : the maximum workload of the down-

stream machines of the jobs in the batch
�k : selection possibility of batch k
α2, β2, γ , and σ : measure the relative importance level

between those four categories

Obviously, the dispatching rule makes use of the dis-
patching decision-related information, such as due date of
a job, workload of a machine, batch size, and occupation
time (including processing, uploading, downloading, setup,
and qualification- run time ) of a job on a machine. In
addition,weighting parameters (α1, β1, α2, β2, γ , and σ )
are chosen for each category of information. They can be
tuned to obtain anticipated operational performance. With
different values of these weighting parameters and differ-
ent working states, we can obtain a large number of running
cases by simulating a fab with the dispatching rule, which
are considered as samples to determine the running states
closely related to the operational performance and build the
relational model between the weighting parameters of the
dispatching rule and those running states. The feature selec-
tion module includes several methods, such as a similarity
measurement method, GA and EDA. They are used to find
running states closely related to the operational performance
from samples. The linear regression model is used to build
the relational model between weighting parameters of the
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Table 1 Parameters of ADM

No. Attribute Meaning

1 α1 The weight of the urgent level of a job processes on the non-BPM

2 β1 The weight of the workload level of the downstream machines

3 α2 The weight of the number of hot jobs in a batch

4 β2 The weight of the batch size of a batch

5 γ The weight of the processing time of the job on the BPM

6 σ The weight of the maximum workload of the downstream machines of the jobs in a batch

dispatching rule and the running states closely related to the
operational performance.

3 Feature selection methods

There is much real-time state information in a fab. It is dif-
ficult to link all kinds of state information to the parameters
of ADM. As a result, before building the relations between
weighting parameters of ADM and real-time state informa-
tion, it is necessary to select those having serious impact
on fab-wide operational performance. This work considers
the following feature selection methods to determine key
real-time state information.

(1) Similarity measurement

The following similarity measure methods are investi-
gated.

• Mean square error evaluation (MSEE) method

The mean square error is

ek = 1

�

�∑
i=1

(xki − xoi)
2

where

i : the index of samples;

� : the number of samples;
xoi : the standard column representing the operational

performance;
xki : the non-standard column representing a kind of state

information.

Smaller ek means a closer relation between the kth
running state and the operational performance. This work
selects the minimum ek first. If ek is larger than 0, select
the columns with min(ek) ≤ ek ≤ min(ek)/0.8 as feature
sets; otherwise, select the columns with min(ek) ≤ ek ≤
0.8min(ek) as feature sets.

• Fitting goodness evaluation (FGE) method

The fitting goodness is

R2 = 1 − SSE

SST

where SSE = ∑�
i=1(xoi −xki)

2 and SST = ∑�
i=1(xoi)

2 −
1
�

(
∑�

i=1 xoi)
2.

Bigger R2 means better fitting goodness. The column
with R2 closer to 1 means that it more approaches the stan-
dard column. This work selects the columns with R2 being
bigger than 0.8 as the feature sets.

• Spectrum analysis method (SAM)

Table 2 Fab-wide attributes

No. Attribute Meaning

7 WIP Fab-wide WIP

8 HotLot The number of hot jobs in WIP

9 Hotlot % The ratio of hot jobs in WIP

10 Last 1/3 Photo The number of jobs with one third photo processes left in WIP

11 Last 1/3 Photo % The ratio of jobs with one third photo processes left in WIP

12 Bottleneck M The number of bottleneck machines

13 Enabled M The number of available machines

14 Bottleneck M % The ratio of bottleneck machines

15 Utility The utility rate of the fab, i.e., the ratio between its work time and available time
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Table 3 Attributes related to each machine group

No. Attribute Meaning

[1..9]6 WIP WIP of the machine group

[1..9]7 WIP % The ratio of WIP of the workgroup in fab-wide WIP

[1..9]8 HotLot The number of hot jobs of the machine group

[1..9]9 Hotlot % The ratio of hot jobs in WIP of the machine group

[2..10]0 Last 1/3 Photo The number of jobs with one third photo processes left of the machine group

[2..10]1 Last 1/3 Photo % The ratio of jobs with one third photo processes left in WIP of the machine group

[2..10]2 Bottleneck M The number of bottleneck machines in the machine group

[2..10]3 Enabled M The number of available machines in the machine group

[2..10]4 Bottleneck M % The ratio of bottleneck machines in the machine group

[2..10]5 Utility The ratio between its work time and available time of the machine group

SAMmakes Fourier transform on both standard and non-
standard columns first. Then compute the average of the
square of the difference between them. The column with a
smaller average value is closer to the standard one.

• Correlation coefficient method (CCM)

The correlation coefficient is

ρxk,xo = Cov(xk, xo)√
D(xk)

√
D(xo)

where

Cov(xk, xo) = E((xk − E(xk))(xo − E(xo))

D(xk) = E((xk − E(xk))
2) = E(xk

2) − (E(xk))
2

x0 : the standard column representing the operational
performance;

xk : the non-standard column representing the running
states.

The column with the coefficient approaching 1 means
this column has better positive correlation with the standard
one.

• Inner product of normalization (IPN) method

The inner product of normalization is denoted as

S(xk, xo) = xk
T xo

‖xk‖ ‖xo‖
The column with bigger S(xk, xo) is closer to the standard
one.

(2) Genetic algorithm (GA)

The procedure of GA-based feature selection is as fol-
lows.

Step 1 : Initialize the parameters of GA, such as popsize,
crossover, and mutation probability.

Step 2 : Generate individuals (chromosomes) randomly
with binary coding. Their length equals the num-
ber of the running states. One gene represents one
running state. A gene with 1 value means that this
running state is selected as the feature related to the
operational performance.

Step 3 : Repeat on this generation till the maximum num-
ber of iterations or sufficient fitness is achieved.

1© Compute the fitness of each individual by using the
BPNN for verification.

2© Select individuals for reproduction with Roulette selec-
tion algorithm.

3© Breed new individuals through crossover and mutation
operations to give birth to offspring.

4© Evaluate the fitness of new individuals.
5© Replace old individuals having the worst fitness with

new individuals having better fitness to generate a new
generation.

Step 4 : Output the individual with the best fitness. Then
the genes with 1 value constitute the feature set
representing the running states closely related to
the operational performance.

Table 4 Attributes related to jobs

No. Attibute Meaning

106 Product version The number of product versions in a fab

107 RP Step Avg The average number of photo processes left in fab-wide WIP

108 RP Step Std The standard deviation of photo processes left in fab-wide WIP
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Table 5 Feature set selected by GA from 108 attributes

NA Index of attributes in the feature set Accuracy (%) Time cost (h)

61 1,2,3,6,7,8,9,10,11,12,13,15,17,18,21,22,
25,32,34,35,36,37,38,39,40,42,44,45,46,
50,58,59,62,63,65,66,68,69,70,71,72,73,
74,78,79,80,81,84,85,87,89,91,97,99,
100,102,103,104,105,107,108 87 9

56 1,5,7,9,13,15,17,18,22,23,26,27,30,31,32,
33,34,37,40,43,45,46,47,48,51,55,58,60,61,62,
64,65,66,67,68,69,70,71,73,74,76,77,78,79,
80,82,83,86,90,91,95,96,101,106,107,108 87.9 9

53 1,6,7,8,9,11,14,16,20,21,23,27,29,32,33,
34,35,36,38,42,43,44,49,53,56,57,59,60,
61,62,64,65,68,70,71,72,74,75,77,79,80,
83,87,89,91,93,94,95,96,99,100,105,108 86.4 9.4

49 4,5,8,9,10,11,15,18,22,23,24,26,27,28,35,
37,38,39,41,45,46,48,49,52,54,61,62,64,
66,68,70,75,76,82,85,87,90,91,94,95,96,
97,99,101,102,104,105,107,108 84.6 10.9

(3) Estimation-of-distribution algorithm (EDA)

EDA is similar to GA. The main difference is that it
generates new individuals by randomly sampling with a
probabilistic model. A Gaussian model is used in this work.

4 Simulation results

A simulation model of an industrial fab is used to vali-
date ADM. Its daily capacity is 7000 slices of WIP. There

are nine machine groups in the fab, i.e., implanter, photo,
spurting, diffusion, dry etching, wet etching, back thinning,
particle vision and measurement (PVM), and stock. Spurt-
ing, diffusion, photo, and dry etching machine groups have
bottleneck machines. The machines with over 50 % of aver-
age utility rate in the fab take about 34.8 %. To decrease the
computational cost, we only replace the dispatching rules in
those bottleneck machine groups with ADM. According to
the practical requirement, we set the movement of the jobs
in the fab per day (Move) as its performance measurement.

Table 6 Feature set selected by EDA from 108 attributes

NA Index of attributes in the feature set Accuracy (%) Time cost (h)

58 1,2,3,5,10,11,12,13,14,15,18,20,21,22,25,26,

27,28,29,32,33,34,36,37,39,40,43,46,

47,49,51,55,58,61,64,66,68,69,70,71,75,

77,79,82,85,86,88,89,93,96,98,101,102, 103,104,105,107,108 89.1 12.8

55 5,7,9,10,11,13,14,17,18,19,21,23,25,27,

28,32,33,35,36,38,41,44,48,53,55,57,58,

59,67,69,70,72,73,74,75,76,77,78,79,81,

82,83,84,85,88,89,92,93,95,98,100,103, 104,105,108 90.8 9.6

51 3,8,9,21,23,24,28,32,33,35,37,38,41,43,

45,46,47,48,49,50,53,55,57,58,60,62,63,

66,68,70,72,73,76,77,78,80,81,82,83,86,

88,90,91,92,94,95,97,99,102,104,105 85.1 8.9

48 4,5,8,9,10,11,15,18,22,23,24,26,27,28,35,

37,38,39,41,45,46,48,49,52,54,61,62,64,

66,68,70,75,76,82,85,87,90,91,94,95,96,

97,99,101,102,104,105,107,108 88.2 9.6
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Table 7 Feature set selected with common similarity measurement methods from 108 attributes

Algorithm NA Index of attributes in the feature set Accuracy (%) Time cost (s)

MSEE 44 1,7,8,10,11,12,16,18,20,22,23, 26,28,30,32,33,35,36,38,40,42,

46,48,50,52,53,56,57,58,60,61, 62,63,66,68,70,73,76,86,88,96,

106,107,108 88.3 0.04

FGE 44 1,7,8,10,11,12,16,18,20,22,23, 26,28,30,32,33,35,36,38,40,42,

46,48,50,52,53,56,57,58,60,61, 62,63,66,68,70,73,76,86,88,96,

106,107,108 88.3 0.04

SAM 45 1,7,8,10,11,12,16,18,20,22,23, 26,28,30,32,33,35,36,38,40,42,

46,48,50,52,53,56,57,58,60,61, 62,63,66,68,70,73,76,78,86,88,

96,106,107,108 88.0 0.7

CCM 49 4,7,10,11,12,14,15,16,20,21,23,24,25,26,

27,30,31,33,34,35,36,43,44,45,46,47,50,51,

53,54,55,60,61,65,66,67,70,71,73,74,75,

76,77,78,79,85,105,106,107 88.3 0.08

IPN 34 3,4,5,6,7,10,11,12,14,15,22,25, 32,33,34,35,42,52,53,54,55,56,

57,61,62,63,64,65,73,74,75,106,107,108 89.9 0.03

4.1 Candidate feature set

The parameters of ADM are enumerated in Table 1 and 102
attributes in Tables 2, 3, and 4 are related to the performance
Move. Nine of them are selected in the view of the whole fab
as given in Table 2. Ninety of them are selected in relation
with machine groups, i.e., ten attributes for each machine
group, number of 16–25, 26–35, 36–45, 46–55, 56–65, 66–
75, 76–85, 86–95, and 96–105 are for implanter, photo,
spurting, diffusion, dry etching, wet etching, back thin-
ning, PVM, and stock workgroups, respectively, as given in
Table 3. Three of them are selected in relation with jobs as
shown in Table 4.

4.2 Feature section

To select the feature attributes that are the most related to
performance Move, we generate samples first with the fab
simulation system. There are 25 kinds of product versions
released to the fab. The simulation time is 90 days. The
first 30 days of simulation for warm-up and the last 20 days
of simulation are not used for training. The training data
is from the middle 40 days of simulation. The values of

parameters α1, β1, α2, β2, γ , and σ are set randomly. We
run simulation eight times. Then there are 320 samples for
training, where 80 of them are used to test the effective-
ness of the feature set selected, and 240 of them are taken
as training data. We adopt cross validation to guarantee the
training accuracy. Thus, 60 of 240 training samples are also
for verification, and 180 of them are for learning.

First, we use a BPNN to predict the value of Move with
108 attributes. Then, we select 10 samples randomly to ver-
ify its accuracy. The simulation results show that its average
accuracy reaches 86.1 %.

Second, we apply GA and EDA to find the feature set
closely related to indexMove with results in Tables 5 and 6.

The average accuracy of GA and EDA for 108 attributes
is 86.5 and 88.5 %, respectively. Although they obtain some
improvements over BPNN, their time cost is very high.
The reason is that there are some redundant ones in 108
attributes, thereby negatively impacting the optimization
effectiveness of GA and EDA. It is thus necessary to make
attribute reduction.

Third, we apply common similarity measurement meth-
ods to reduce such redundancy existing in all 108 attributes.
The reduction results are given in Table 7 .

Table 8 Feature set selected by GA from 34 attributes

NA Index of attributes in the feature set Accuracy (%) Time cost (min)

21 5,6,14,22,25,33,35,42,53,54,56,57,61,62, 63,65,73,74,106,107,108 89.2 55

19 3,4,7,14,22,25,32,33,34,35,53,56,57,62, 63,64,73,74,75 87.4 52.5

17 3,5,6,11,14,15,32,33,34,35,53,57,65,74, 106,107,108 86.5 61.4

15 3,4,10,11,12,25,32,33,34,53,55,56,61,64, 65,73,74 88.1 56.9
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Table 9 Feature set selected by EDA from 34 attributes

NA Index of attributes in the feature set Accuracy (%) Time cost (min)

22 4,5,6,7,10,11,12,14,15,32,33,34,35,42,52, 55,57,62,65,74,106,107 86.5 49.6

19 4,7,12,15,22,33,34,35,42,54,55,57,61,62, 63,65,73,75,106 86.2 55.6

17 7,14,25,32,33,34,35,42,53,55,57,63, 65,74,75,106,108 92.3 53.3

15 4,7,15,33,34,42,52,53,57,62,73,74,106, 107,108 87.2 62

It is shown that the average accuracy of these com-
mon similarity measurement methods for feature selec-
tion with lots of attributes is better than that of GA
and EDA. The result of IPN is the best. Hence, we
use the 34 attributes found by it to build up train-
ing samples for GA and EDA to make feature selec-
tion. The results are shown in Tables 8 and 9. It is
shown that the average accuracy of GA and EDA for 34
attributes obtained by IPN is 88.9 and 88 %, respectively.
It is better than that of the prior cases using 108 attributes. In
addition, the time cost decreases significantly. It is thus use-
ful to apply GA and EDA to make feature selection for those
attributes reduced with similarity measurement methods.

Fourth, we further make attribute reduction on 34
attributes obtained by IPN with similarity measurement
methods to achieve further reduced feature set. The results
are shown in Table 10.

It is shown that the average accuracy of these similar-
ity measurement methods for feature selection with less
attributes (34 attributes) is unsatisfied, lower than that of GA
and EDA. As a result, we select 17 attributes obtained by
EDA as the feature set most related to performance Move.

However, 17 attributes seem to be still excessive to build
a rational model between them and the parameters of ADM.
Then, we make additional attribute reduction. First, the util-
ity of a fab and each machine group is set as the utility
rate between consecutive 2 days. In applying ADM to a
real fab, these attributes (i.e., 25, 35, 55, 65, and 75) are

difficult to obtain. We delete these attributes from the fea-
ture set. Secondly, for a real fab, the number of bottleneck
machines and available machines and the ratio of bottle-
neck machines in a machine group are stable. Thus, we
delete attributes 32, 33, 34, 42, 53, 63, and 74. Thirdly, in
the remaining attributes, only attribute 57 is related to a
machine group. Others are the fab or job related. Thus, we
delete attribute 57. Finally, we obtain a four-attribute fea-
ture set (7, 14, 106, and 108). The resulting accuracy is
about 90.6 % and satisfactory.

In addition, the results of feature selection show that the
parameters of ADM are closely related to the performance
Move. It is necessary to build a relation model between the
selected attributes and them.

*NA: the number of attributes related to Move

4.3 Relational model

The feature set {7, 14, 106, 108} represents the number of
fab-wide WIP, the ratio of bottleneck machines in a fab,
the number of product versions in a fab, and the standard
deviation of the number of photo processes left in fab-wide
WIP, respectively. We apply a linear regression method to
the training samples to match the parameters with feature
set {7, 14, 106, 108}. The model obtained is as follows:

α1 = 0.000065∗V7 +0.27∗V14 −0.0314∗V106 −0.137∗V108 +1.178

β1 = −0.000065∗V7−0.27∗V14+0.0314∗V106+0.137∗V108−0.178

Table 10 Feature set selected with common similarity measurement methods from 34 attributes obtained by IPN

Algorithm NA Index of attributes in the feature set Accuracy (%) Time cost (s)

MSEE 25 4,6,7,10,11,12,22,32,33,34,35, 42,52,53,55,56,57,61,62,63,73,

74,75,106,107,108 85.6 0.02

FGE 24 6,7,10,11,12,22,32,33,34,35,42, 52,53,55,56,57,61,62,63,73,75,

106,107,108 83.7 0.01

SAM 25 4,6,7,10,11,12,22,32,33,34,35,42,52,53,55,56,57,61,62,63,73,

74,75,106,107,108 85.6 0.01

CCM 24 4,7,10,11,12,14,15,25,32,33,34,35,52,53,54,55,61,62,65,73,74,

75,106,107,108 86.1 0.02

IPN 24 6,7,10,11,12,14,15,22,32,35,52,53,54,55,61,62,63,65,73,74,75,

106,107,108 87.4 0.02
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Fig. 2 Comparison Table of
ADM with samples on
performance Move

α2 = 0.000021∗V7 +0.07∗V14 −0.0099∗V106 −0.046∗V108 +0.373

β2 = 0.000029∗V7 +0.16∗V14 −0.0138∗V106 −0.058∗V108 +0.522

γ = −0.000006∗V7−0.01∗V14+0.0022∗V106+0.009∗V108+0.296

σ = −0.000046∗V7−0.24∗V14+0.0220∗V106+0.099∗V108−0.194

where (V7, V14, V106, V108) are the values of feature set {7,
14, 106, 108}.

Then, we run simulations with ADM whose parameters
α1, β1, α2, β2, γ , and σ are set as the model at 7000+
piece WIP level. The simulation results show that average
Move of ADM is 31,740 pieces and that of the samples are
30,876 pieces. It means that ADM improves performance
Move by 2.80 %. Furthermore, we prove that ADM is adap-
tive to variable environments with different workload (i.e.,
5000−, 5000+, 6000+, 7000+, 8000+, and 9000+ pieces
WIP levels). The simulation results are shown in Fig. 2. We
can obtain the following conclusions from them. Compar-
ing to average Move of the samples whose parameters are
set randomly, it is improved by 2.04 % at least and 10.04 %
at most with ADM. Although the best Move obtained by
ADM is a little less than that of the samples, the worst one
obtained by ADM is always much better (36.02 % at most)
than that of the samples. Therefore, ADM is not only adap-
tive to environments with better performance but also able
to smooth fab-wide WIP flows.

To compare ADMwith the existing ones, we conduct vast
simulations with common rules including first-in-first-out
(FIFO), critical ratio (CR), earliest due date (EDD), longest
processing time (LPT), least slack (LS), shortest remain-

ing processing time (SRPT), shortest processing time (SPT),
and our prior method, i.e., ADR, proposed by [12]. We build
the relational models for each WIP level (i.e., 5000, 6000,
7000, 8000, and 9000 pieces). The release policy adopts a
constant-WIP (CONWIP) method. The simulation time is
70 days. The first 30 days of simulation for warm-up and
the last 40 days of simulation are used for training and
comparison. The simulation results are shown in Fig. 3.

We can draw the following conclusions.

(1) Common rules (such as FIFO, CR, EDD, LPT, LS,
SRPT, and SPT) achieve different performance for
various WIP level. However, ADR and ADM can gen-
erally achieve better Move than them, especially for
the workload at the [85 %, 115 %] range of the fab’s
capacity. For example, comparing to CR, respectively,
at the 6000 piece WIP level, ADR and ADM improve
Move by 4.65 and 6.90 %; at the 7000 piece WIP
level, they improve Move by 5.74 and 10.01 %; at
the 8000 piece WIP level, they improve Move by 8.66
and 9.69 %. Therefore, ADR and ADM are clearly
more adaptive to changing environments than common
rules.

(2) When the fab is seriously under-loaded (e.g., at
the 5000 piece level, about 30 % underloaded) or
overloaded (e.g., at the 9000 piece level, about
30 % overloaded), the improvements of ADR and
ADM become less. For example, comparing to CR,
at the 5000 piece WIP level, ADR and ADM
improve Move by 3.04 and 3.24 %, respectively;
at the 9000 piece WIP level, they improve Move
by 3.63 and 5.35 %, respectively. They are because
sufficient resources in the former reduce the differ-
ences among all the dispatching rules and too many
jobs in the latter drastically narrow down the schedul-
ing choices.

Fig. 3 Comparison Table of
ADM with common rules and
ADR on performance Move
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Table 11 Improvements of ACM comparing with different dispatching rules at 95 % confidence interval

ADM-CR ADM-EDD ADM-FIFO ADM-LPT ADM-LS ADM-SRPT ADM-SPT ADM-ADR

Interval [1056,3209] [1087,3970] [286,2498] [600,3047] [1389,3795] [2238,4321] [62,2313] [0.3,1145]

(3) For various WIP levels, ADM always performs bet-
ter than ADR. The average improvement of ADM on
Move reaches 1.89 %. The largest improvement of
ADM happens at the relatively heavier load, e.g., 7000
piecesWIP level. It improvesMove by 4.27 % compar-
ing to ADR. It proves that ADM can fully utilize the
capacity of the fab. The smallest improvement (only
0.2 %) of ADM happens at the over-loaded case, i.e., at
the 9000 piece WIP level, due to a smaller scheduling
space. The superiority of ADM depends on its fea-
ture selection based on real-time states, while those of
ADR are the ratio of hot jobs to WIP and the ratio of
jobs with one third of photo steps left to WIP in a fab
(set directly with the managers’ experience and with-
out a feature selection process). Thus, it is necessary to
find the real-time states closely related to performance
with proper feature selection methods to guarantee an
adaptive rule’s effectiveness.

4.4 Further analysis

In this set of experiments, the number of WIP changes from
5000 to 9000 with 1000 difference. Using the data in Fig. 2,
95 % confidence intervals for the true mean differences
in Move are calculated. The approximate 100(1 − α) %
confidence interval for Xn is defined as

X̄n ± A
Sn√
n

where Xn is the increased number of Move of ADM com-
paring to different dispatching rules, i.e., the samples; X̄n

is a sample mean of Xn based on a sample of size n (here
n=5); Sn is the standard error of X̄n ; A is the 100(1− α) %
(here α = 0.005) percentage point of a t-distributed with
n-1 degrees of freedom. The value of A is set to 2.776 in t-
distribution table produced by [14]. The comparison results
are shown in Table 11.

The 95 % confidence interval for Move lies completely
above zero, which provides strong evidence that the pro-
posed ADM is better than other dispatching rules, because
its average Move is higher.

5 Conclusions

In this paper, an adaptive dispatching method (ADM) is pro-
posed. It has adjustable weighting parameters to take into

account real-time running state information in a fab. The
feature selection methods are used to decide the most rel-
evant information used to adapt the dispatching rule. The
simulation results on a high-fidelity simulated industrial fab
indicate that the proposed ADM is an effective and adaptive
way to improve fab-wide operational performance.

It is noted that ADM proposed in this paper fits to
improve the Move performance. If one wants to improve
other performance indices, the same workflow should be
performed while selecting the samples with better specified
performance indices to build a suitable parameter model to
achieve the objective.

The main deficiency of this work is the lack of consider-
ation on process constraints and machine preventive main-
tenance schedules. Thus our future work is to investigate
the scheduling problems with special process constraints,
proposed by [15] and [16], and active machine preventive
maintenance. We intend to pursue a good trade-off between
timely handling of hot jobs and desired performance of
Move and yield under process constraint requirements.
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