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Abstract Many dynamic events exist in real manufacturing
systems, such as arbitrary machine breakdowns and dynamic
job arrivals, which makes the scheduling problem even more
complicated. In this paper, we address a serial-batching schedul-
ing problem with the above dynamic events. Jobs need to be
processed on the serial-batching machines of two manufacturers
and then transported by vehicles to a customer for further pro-
cessing. The objective of the scheduling problem is to minimize
themakespan, and the problem is proved to be strongly NP-hard.
Some structural properties and a lower bound of the problem are
also proved or derived. On the basis of job arrival times, we
divide the problem into two phases and propose different rules
regarding these two phases. Based on these properties and rules,

a heuristic algorithm is developed to solve the problem and its
worst case performance is analyzed. The heuristic algorithm is
tested on a large set of randomly generated problem instances,
and the relative gaps between the found lower bound and the
solutions of the proposed heuristic algorithm are reported. The
experimental results illustrate the high efficiency and effective-
ness of the proposed heuristic algorithm compared with other
four classic approaches.
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1 Introduction

Nowadays, efficient scheduling cooperation among supply chain
partners has become essential in such a competitive business
environment. However, many dynamic events exist in real
manufacturing systems, such as arbitrary machine breakdowns
and dynamic job arrivals, which make the scheduling coopera-
tion problem in supply chain even more complicated, and thus
more effective and efficient approaches are needed to solve such
problems. Technological advances such as radio frequency iden-
tification (RFID) and Internet of Things (IoT) make it possible
for the supply chain partners to dynamically share information
during production and promptly respond by adjusting the sched-
ules to emerging situations. To this end, this study focuses on an
ad hoc serial-batching scheduling problem in a two-stage supply
chain, which arises from the real scenario in the aluminum pro-
duction supply chain. The first stage is composed of two manu-
facturers (i.e., two extrusion factories) producing the jobs ordered
by a customer, in which the situations of machine breakdown,
dynamic job arrival, and setup time are considered simultaneous-
ly. In the second stage, the vehicles carry the jobs from the
manufacturers to the customer.

The remainder of this paper is organized as follows: we start
Section 2 with literature review. The problem description is pre-
sented in Section 3. In Section 4, we propose a mathematical
model of this scheduling problem and prove that it is NP-hard.
The structural properties and the lower bound are proved and
derived in Section 5. In Section 6, some rules and a heuristic
algorithm are proposed to solve the serial-batching scheduling
problem and the worst case performance of the proposed algo-
rithm is analyzed. In Section 7, computational experiments are
presented to evaluate the effectiveness of the proposed algorithm.
We conclude the paper with a summary and provide future re-
search directions in Section 8.

2 Literature review

In this paper, the scheduling problem has the following features:
machine breakdowns, dynamic job arrivals, setup times, supply
chain scheduling, and serial-batching scheduling. In the last de-
cades, a number of studies have focused on the scheduling prob-
lems with these above features, and in the following, we review
these papers, respectively.

Machine breakdown is a common event during the produc-
tion due to maintenance failure of the machines, which are stud-
ied extensively. Hasan et al. [1] focused on two scenarios of
machine unavailability in the job-shop scheduling problem.
They developed a genetic algorithm (GA) to solve the problem,
combining an improved local search technique. Wang and Choi
[2] investigated a flexible flow shop (FFS) scheduling problem in
consideration of machine breakdown, and the objective is to
minimize the makespan. A novel decomposition-based approach

was proposed to decompose the problem into several cluster
scheduling problems. Then, these problems were solved by dif-
ferent approaches. Benmansour et al. [3] studied a single ma-
chine scheduling problem,where the processing times of the jobs
were exponentially distributed, and the common due date follows
the Erlang distribution. The objective is tominimize the expected
total weighted deviations of completion times. The optimal
schedules were given when the machine was subject to arbitrary
breakdowns. Lee and Kim [4] considered the scheduling prob-
lem on a singlemachine, where periodicmaintenance is required.
Their objective is to minimize the number of tardy jobs. A two-
phase heuristic algorithm was presented to solve the problem.
Computational experiments on randomly generated problem in-
stanceswere carried out, and the results showed that the proposed
heuristic algorithm had high solution quality. Mirabi et al. [5]
addressed a two-stage hybrid flowshop scheduling problem un-
der machine breakdown, where the probability of machine fail-
ure depends on the previous processed job. One optimal ap-
proach for job precedence was introduced to solve the problem,
and some experiments were carried out to examine the perfor-
mance of the approach. Xiong et al. [6] focused on a flexible job-
shop scheduling problem with random machine breakdowns.
They considered two objectives simultaneously, i.e., makespan
and robustness. A multi-objective evolutionary algorithm was
proposed to solve the problem. The experimental results showed
that the proposed algorithm performed better for both small and
large cases compared with existing measures.

The scheduling problems with dynamic job arrival have ap-
peared in a wide range of practical production systems. Zandieha
and Adibi [7] considered the situation of random job arrivals and
machine breakdowns in a dynamic job scheduling problem.
They introduced variable neighborhood search (VNS) to solve
the problem and used an artificial neural network to update pa-
rameters of the VNS. Lee et al. [8] studied dynamic parallel
machine scheduling problems (DPMSPs) with sequence-depen-
dent setup times. A restricted simulated annealing (RSA) algo-
rithm was designed to solve the problem, combining a restricted
search strategy. The computational experiments demonstrated
that the proposed algorithm was highly effective compared to
existing algorithms. Chiang et al. [9] investigated a scheduling
problem in thewafer fabrication facility, inwhich the jobs arrived
at the machines at different time instants. A memetic algorithm
with a newgenome encoding schemewas used to find both batch
formation and batch sequence. The computational efficiency of
the proposed algorithm was demonstrated through the experi-
ment with a large number of the instances. Yao et al. [10] ad-
dressed a single batch machine scheduling problem with incom-
patible job families and dynamic job arrivals, and their objective
is to minimize the total completion time. Several dominance
properties and two types of lower bounds were presented.
Based on the characteristics of dynamic job arrivals, a
decomposed branch and bound algorithm was proposed to solve
the problem. Yao et al. [11] studied a two-stage hybrid flow shop
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in semiconductor manufacturing industry, where a discrete ma-
chine was followed by a batching machine. The computational
complexity of the two-machine problem with dynamic job ar-
rivals was analyzed. The heuristic algorithms were proposed for
the problem, and the upper bounds on the worst case perfor-
mance ratios of the heuristics were also established. Lu and
Romanowski [12] focused on job shops with dynamic job ar-
rivals. A new theory of context-dependent and multi-contextual
scheduling functions was proposed, combining three multi-con-
textual ant colony (MCAC) scheduling methods. The experi-
mental results indicated that the new theory can produce effective
schedules.

In many real-life situations, the setup operations are often
required. There have been a number of studies regarding con-
straints related to setup time [13,14]. Recently, Ciavotta et al. [15]
investigated a bi-objective coordination scheduling problem in a
two-stage industrial system, in which a setup is required when a
new batch has different attribute from the previous batch. Three
effective heuristic algorithms were proposed to solve the prob-
lem. Roshanaei et al. [16] addressed the problem of scheduling a
job shop with sequence-dependent setup times, and the objective
is to minimize makespan. An effective metaheuristic algorithm
based on the VNS was designed to solve the problem. They
conducted experiments based on Taillard’s benchmark. The re-
sults showed the high performance of the proposed algorithm
compared to other well-known heuristic algorithms. Shahvari et
al. [17] addressed the flexible flow shop sequence-dependent
group scheduling problem with the objective of minimizing the
makespan. They developed six efficient metaheuristic algorithms
based on tabu search (TS) to solve the problem. Varmazyar and
Salmasi [18] studied the flow shop scheduling problems with
sequence-dependent setup times, and they proposed several
metaheuristic algorithms based on TS and the imperialist com-
petitive algorithm (ICA) to solve the problem with the objective
of minimizing the number of tardy jobs. Thurer et al. [19] inves-
tigated the influence of sequence-dependent setup times on the
performance of a workload-controlled job shop. New setup-ori-
ented dispatching rules were introduced to solve the problem.
Nagano et al. [20] studied an m-machine no-wait flow shop
problem, in which the setup time of a job is separated from its
processing time. The objective of the problem is to minimize the
total flowtime, and they designed a new hybrid metaheuristic
Genetic Algorithm–Cluster Search to solve it. Moreover, the
superiority of the proposed method was confirmed by the exper-
imental tests. Chakaravarthy et al. [21] considered the problem of
m-machine flow shop with lot streaming and setup time, and a
differential evolution algorithm (DEA) and a particle swarm op-
timization (PSO) algorithm were proposed to find the best jobs
sequence for minimizing the makespan.

In order to enhance competitiveness of supply chain, the co-
operation among suppliers, manufacturers, distributers, and cus-
tomers becomes more and more important. Under this consider-
ation, Hall and Potts [22] first proposed the concept of supply

chain scheduling in 2003. After that, supply chain scheduling
problems have received much attention of researchers in the last
decade. Chandra [23] addressed the joint problem of warehouse
procurement decisions and delivery to retailers for multiple prod-
ucts, and a heuristic algorithm was designed for the problem. Su
et al. [24] considered a two-stage supply chain scheduling prob-
lem with minimization of the makespan, in which the jobs are
processed by two parallel machines and delivered to a customer.
A heuristic algorithmwas proposed to solve it, and its worst case
ratio was proved to be 63/40. Delavar et al. [25] focused on a
coordinated supply chain scheduling problem of production and
air transportation with the objective of optimizing customer ser-
vice at minimum total cost. They designed two genetic algorithm
approaches to solve it. Bard and Nananukul [26] studied an
integrated production and inventory routing problem in a supply
chain. The objective is to minimize the sum of production, in-
ventory, and delivery costs across the various stages of the sys-
tem. A hybridmethodologywas presented for the problem, com-
bining exact and heuristic procedures within a branch-and-price
framework, and a novel column generation heuristic algorithm
and a rounding heuristic algorithm were also developed to im-
prove algorithmic efficiency. Steinruecke [27] addressed an alu-
minum supply chain scheduling problem considering both pro-
duction and transportation. They presented a novel type of
mixed-integer decision-making model for the problem, and re-
lax-and-fix heuristic algorithms were designed to solve it. You
andHsieh [28] investigated a single stage assembly problemwith
transportation allocation. They established the problem as a
mixed-integer programming model and proposed a hybrid heu-
ristic algorithm to solve the problem. Cakici et al. [29] studied a
supply chain scheduling problem in an integrated production and
distribution environment with minimization of the total weighted
tardiness and total distribution costs. A number of weighted lin-
ear combinations of the objectives were used to aggregate both
objectives into a single objective. Based on a genetic algorithm,
they developed different heuristic algorithms to solve the
problem.

The related research on the job processing way of serial-
batching scheduling has been conducted by many researchers
[30,31]. Serial-batching scheduling is an important characteristic
of this paper. In [32], we investigated a two-stage coordinated
scheduling problem, where jobs are first processed on multiple
manufacturers’ serial-batching machines and then transported by
vehicles to a customer. Subsequently, we studied the scheduling
problems of a single serial-batching machine with deteriorating
job processing times and independent setup time [33,34].
However, in these studies, the important feature of machine
breakdown was not taken into consideration.

Although there are an increasing number of publications ad-
dressing the scheduling problem with the mentioned features as
well as the problem of coordinated scheduling and transportation
[35–37], they typically address specific situations which do not
really match real-world manufacturing conditions. Obviously,
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this does not match the status of the real manufacturing condi-
tions. To the best of our knowledge, our paper is the first attempt
to full study the problem under consideration. The main contri-
butions of this paper can be summarized as follows:

(1) New research is pursued by taking into account the fea-
tures of serial batching, arbitrary machine breakdowns,
and dynamic job arrivals.

(2) This scheduling problem is proved to be NP-hard.
(3) Some rules and a heuristic algorithm are proposed to

solve the serial-batching scheduling problem and the
worst case performance of the proposed algorithm is
analyzed.

3 Problem description

For supply chain production, most real manufacturing systems
usually operate in highly dynamic environment, where several
arbitrary disruptions can break the execution of the pre-planned
schedules. In this paper, the scheduling of products and vehicles
between twomanufacturers and a customer in a two-stage supply
chain is investigated. The layout of the scheduling problem is
shown in Fig. 1. Suppose that there is a set of jobs to be processed
in two parallel manufacturers and then transported to a customer.
The two manufacturers are actually extrusion factories, and both
include one serial-batching machine, i.e., an extrusion machine.
The processing time and the size of the jobs, denoted by pi and si
(i= 1,2,…,n), are independent random variables following arbi-
trary probability distributions, while the maximum size is given.
The jobs partitioned in the same batch are processed and
transported together.

The problem involves two stages, i.e., the production stage on
the two manufacturers’ machines and the transportation stage
from the manufacturers to the customer. In the first stage, all jobs
arrive at manufacturers dynamically. These jobs are first
partitioned into batches and then processed on the two manufac-
turers’ serial-batching machines. Before a new batch is

processed, the setup time s is required. Both serial-batching ma-
chines are supposed to have the same finite capacity of size c, and
the total size of the jobs in a batch cannot exceed c. In the serial-
batching production, the jobs in a batch are processed one after
another, so that the processing time Pk of batch k is defined as the
sum of the processing time of all the jobs in the batch k [38], i.e.,
Pk ¼ ∑

J i∈bk
pi. The earliest available time for a batch to be proc-

essed depends on the largest arrival time of all jobs in that batch.
Machine breakdown may occur during the scheduling period,
and the information of the breakdown will be transmitted to the
center of production management immediately by RFID based
on IoT. In the second stage, all batches are transported by vehi-
cles from twomanufactures to the customer once their processing
is completed. The assumption that the capacity of the vehicles is
the same as that of themanufacturers’machines ismade, and that
any batch from the manufacturers can be carried by vehicles in
one shipment. The vehicles’ one-way trip time from the two
manufacturers to the customer is supposed to be a constant T.
There are enough vehicles to transport the batches to the custom-
er as soon as they are completed on themanufacturers’machines.

Following Holthaus [39], Dominic et al. [40], and Zandieh
and Adibi [41], the manufacturers’machines are subject to arbi-
trary breakdowns, which are described in terms of the MTBF,
MTTR, and Ag. If a machine breaks down at the instant time t,
then it is assumed that the time required to repair the machine at
the instant time t is known. Both of the intervals between every
two breakdown occurrences and repair times follow exponential
distribution, with MTBF and MTTR denoting the mean time of
the intervals between the machine breakdowns and repairing the
machines, and Ag=MTTR/(MTTR +MTBF) denoting the break-
down level, i.e., the percentage of time the machine have break-
downs. For instance, if Ag = 0.1 andMTTR = 10 time units, then
MTBF = 90 time units. Therefore, a machine has failure after
operation for an average of 90 time units, and it is required for
an average of 10 time units to repair. During the whole process-
ing of all jobs, if Ag is small, then the number of machine break-
downs is relatively small and the intervals between two continu-
ous breakdowns of the same machine are relatively long.

TransportationManufacturers Customer

Manufacturer 1

Manufacturer 2

RFID

RFID

Production
Management

Machine breakdown

Machine breakdown

Internet of Things

Fig. 1 The layout of the serial-
batching scheduling problem in a
two-stage supply chain
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The aim of the scheduling process is to make jobs batching
and sequencing decisions to minimize the makespan of all jobs.
For simplicity, the problem is denoted as ψ. The following as-
sumptions are made for the problem formulation:

& All the facilities (machines, vehicles, and RFID) are all
available at time zero.

& The size of any job is smaller than the capacity of each
machine.

& No preemption is allowed, i.e., once a batch is initiated, no
job in the batch can be released until the whole batch is
completely processed.

& If the machine breaks down during the process of a batch,
then the task of processing the rest unprocessed jobs in the
batch should be resumed on the same machine after it is
repaired.

4 Complexity analysis

4.1 Model formalization

The notations used for the problem formulation are defined
and the model is given as follows.

Parameters:
n Total number of the jobs
i Index of the jobs, i = 1,2,…,n
j Index of the manufacturers, j = 1,2
pi Processing time of job i on the manufacturers’ machines
si Size of the job i
ri Arrival time of the job i
c The capacity of the batchingmachines and corresponding

vehicles

h Total number of the batches, ∑
n

i¼1
si=c

� �
≤h≤n

hj Total number of the batches processed on the machine of
the manufacturer j, 0 ≤ hj ≤ h, j = 1,2

k, f Index of the batches, k = 1,2,…,h, f = 1,2,…,h
s Setup time on the manufacturers’ machines
nk The number of jobs in the k-th batch, k = 1,2,…,h
mj Total number of the machine breakdowns in the manu-

facturer j, j = 1,2
T The vehicles’ one-way trip time between the manufac-

turers and the customer
Sets:
J Set of all jobs, J = {J1, J2,…, Jn}
bk Set of all jobs in the k-th batch, k = 1,2,…,h
Decision variables:
xik 1, if the job i is assigned to the k-th batch; 0, otherwise;
ykfj 1, if the k-th batch is processed before the f-th batch on

the machine of the manufacturer j,
j = 1,2; 0, otherwise;

zkj 1, if the k-th batch is processed by the machine of the
manufacturer j, j = 1,2; 0, otherwise;

vkjl 1, if the k-th batch is processed by the machine of the
manufacturer j and the l-th breakdown on the machine of the
manufacturer j happens during the k-th batch’s process,

j = 1,2, l = 1,2,…, mj; 0, otherwise;
gk 1, if the k-th batch is not empty; 0, otherwise;
Pk Total processing time of the jobs in the k-th batch
djl The time that the l-th breakdown begins on the machine

of the manufacturer j, j = 1,2, l = 1,2,…, mj

ejl The time that the l-th breakdown ends on the machine of
the manufacturer j, j = 1,2, l = 1,2,…, mj

S1kj Starting time of the k-th batch processed on the ma-
chine of the manufacturer j during the first stage, j = 1,2

C1kj Completion time of the k-th batch processed on the
machine of the manufacturer j during the first stage, j = 1,2

C2kj Arrival time of the k-th batch at the customer from the
manufacturer j during the second stage, j = 1,2

CjMaximum completion time of all jobs on the machine of
the manufacturer j, j = 1,2

Cmax Maximum completion time of all jobs during the
second stage

Mixed-integer programming model

MinimzeCmax ð1Þ

Subject to

Xh

k¼1

xik ¼ 1; i ¼ 1; 2;⋯; n ð2Þ
Xn

i¼1

si⋅xik ≤c; k ¼ 1; 2;⋯; h ð3Þ

X2

j¼1

zk j ¼ 1; k ¼ 1; 2;…; h ð4Þ

hj ¼
Xh

k¼1

zk j; j ¼ 1; 2 ð5Þ

h ¼
X2

j¼1

hj ð6Þ

S1k j≥ max
J i∈bk

rif g þ gks; k ¼ 1; 2;⋯; h; j ¼ 1; 2 ð7Þ

C1k j≥S1k j þ
X n

i¼1
xik ⋅pi; k ¼ 1; 2;⋯; h; j ¼ 1; 2 ð8Þ

vk jl d jl−S1k j
� �

C1k j−e jl
� �

≥0; k ¼ 1; 2;⋯; h; j ¼ 1; 2;
l ¼ 1; 2;⋯;mj

ð9Þ

C2k j ¼ C1k j þ gkT ; k ¼ 1; 2;⋯; h; j ¼ 1; 2 ð10Þ

g f C1k j−C1 f j þ Pf þ g f s− 1−yk f j
� �

M ≤0;

k ¼ 1; 2;⋯; h; f ¼ 1; 2;⋯; h; j ¼ 1; 2; k≠ f ð11Þ
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C j≥s⋅hj þ
X h

k¼1
zk j⋅Pk þ

X m j

l¼1
e jl−d jl
� �

; j ¼ 1; 2 ð12Þ
Cmax≥C j þ T ; j ¼ 1; 2 ð13Þ

xik ; yk f j; zk j; vk jl∈ 0; 1f g; ∀i; k; f ; j; l ð14Þ

The objective function (1) is to minimize the makespan.
Constraint set (2) assures that each job is only assigned to
one batch. Constraint set (3) requires that the total physical
size of all jobs assigned to a batch cannot exceed the capacity
of the batching machines and corresponding vehicles.
Constraint set (4) guarantees that one batch should be proc-
essed by only one manufacturer. The number of batches proc-
essed on two manufacturers’ machines is described by con-
straint set (5). Constraint set (6) enforces that the total number
of the batches processed on two manufacturers’ machines is
equal to the total number of the batches. Constraint set (7)
specifies that the operation of a batch can be started until its
last job arrives, and each batch requires setup time before
being processed on a manufacturer’s machine. Constraint set
(8) restricts the completion time for each batch is no smaller
than the sum of its starting time and processing time.
Constraint set (9) indicates that the jobs cannot be processed
during the machine breakdown. The arrival time of all batches
at the customer is described by constraint set (10). Constraint
set (11) guarantees that there is no overlapping situation be-
tween any two different batches. Constraint set (12) describes
the maximum completion time of the manufacturers’ ma-
chines. Constraint set (13) indicates the property of the max-
imum completion time. The ranges of the variables are defined
by constraint sets (14).

4.2 Complexity analysis

In the following, we present the strong NP-hardness proof of
the problem ψ without the condition of machine breakdowns.

Theorem 1. The problem ψ without the condition of ma-
chine breakdowns is strongly NP-hard.

Proof. An instance is constructed to perform the reduction
by the following 3-PARTITION problem, which is known to
be strongly NP-hard [42].

3-PARTITION: Given an integer a and a set A of 3h pos-
itive integers {a1, a2,…, a3h}, a/4 < ai < a/2, 1 ≤ i ≤ 3h, such

as ∑
3h

i¼1
xi ¼ ha, does there exist a partition A1, A2,…, Ah of

the set A such that |Ak| = 3 and ∑
ai∈Ak

ai ¼ a, 1 ≤ k ≤ h?

In order to prove the theorem, we construct the instance of
the problem ψ as follows.

Number of the jobs and capacity of the batching machines
and vehicles: n = 3h and c = 3

Size of the jobs and processing time of the jobs on the
manufacturers’ machines: si = 1 and pi = ai, i = 1, 2,…, 3h

One time trip time and setup time: T = 2a and t = a
Arrival time of the jobs: rj = 0 for i = 1, 2,⋯, 6 and r j ¼

i
3−2
� �

a for i = 7, 8,⋯ 3h
h = 2g, and g is a positive integer
Threshold value: y = (h + 2)a
We claim that there is a solution to 3-PARTITION

problem if and only if there exists an optimal schedule
for the instance of the problem ψ with makespan no
greater than (h + 2)a.

(⇒) The set A = (A1, A2,…, Ah) can be constructed to be a
partition in this 3-PARTITION problem, and Fig. 2 shows the
schedule. It is easy to check that the makespan is (h + 2)a = y.

(⇐) Conversely, it is supposed that there exists an optimal
schedule with makespan no greater than y. Since the smallest
number of possible batches is n ∗ si/c = h, it is obtained that the
sum of the processing time and setup time for all batches on the
manufacturers’machines is h ∗ (a + a) = 2ha. The possible ear-
liest completion time of processing the jobs on two manufac-
turers’ machines is 2ha/2 = ha. Next, the possible earliest de-
parture time of the last batch in two manufacturers is ha, and
ha + 2a = y. Therefore, for y = (h + 2)a, (a) there is no idle time
for the setup on two manufacturers’ machines in the interval
[2ia, (2i + 1)a] (i = 0, 1,…, h/2 − 1) and (b) there is no idle
time for processing the jobs on two manufacturers’ machines
in the interval [(2i + 1)a, (2i + 2)a] (i = 0, 1,…, h/2 − 1).

The proof can be done by contradiction. Suppose that there is
a batchAk, where ∑

J i∈Ak

pi≠a. There are two situations to consider:

Case 1. ∑
J i∈Ak

pi > a. From Fig. 2, it is easy to infer that it

creates idle time during the setup on a manufacturer’s serial-
batching machines for the batch Ak, and this conflicts with (a).

Case 2. ∑
J i∈Ak

pi < a. From Fig. 2, we can also see that that

idle time can be created during the jobs processing on two man-
ufacturers’ serial-batching machines, which conflicts with (b).

Therefore, there exists a solution for 3-PARTITION problem.
Combining the “if” part and the “only if” part, we have

proved the proposed theorem.
When machine breakdown may occur, we have the follow-

ing corollary from Theorem 1.
Corollary 1. The problem ψ is strongly NP-hard.

5 The structural properties and lower bound
for the problem ψ

5.1 The structural properties

At first, we present two following properties.

Lemma 1 For all schedules, the solution remains unchanged
when any two jobs in a batch are swapped.
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Lemma 2 There exists an optimal schedule such that all jobs
in each batch are processed in non-decreasing
order of their arrival times on the machines of
both manufacturers m1 and m2

We omit the proof of the above two lemmas as it is simple.
Then, the property about the setup time is given as follows:

Lemma 3 In a schedule of the problem ψ , each
batch is processed in non-decreasing order of
ready time, which is equal to the arrival time of
the last job in the batch. There exists a batch
bk ¼ J i;…; J iþx; J iþxþ1;…; J iþnk−1f g x ¼ 0; 1;…; nk−2ð Þ
processed in the manufacturer mj (j = 1, 2),
where nk ≥ 2 and ri ≥C1(k − 1)j. If riþnk−1 > riþx

þs , then the solution can be improved.
Proof. The completion time of processing the

b a t c h b k i s C1k j ¼ riþnk−1 þ sþ pi þ…ð
þpiþnk−1Þ. Then, we can divide the batch bk into
two batches bk

1 and bk
2, i.e., bk

1 = {Ji,…, Ji + x}

and b2k ¼ J iþxþ1;…; J iþnk−1f g. The starting
and completion time of processing the batch bk

1

are denoted as S1kj
1 and C1kj

1 , respectively.
Then, C1kj

1 = S1kj
1 + s + (pi+,…, + pi + x) = ri + x +

s + (pi+,…, + pi + x). Similarly, the starting and
completion time of processing the batch bk

2 are
denoted as S1kj

2 and C1kj
2 , respectively. There are

three cases as follows:

(a) C1
1k j≤riþnk−1. Then, C

2
1k j ¼ riþnk−1 þ sþ

piþxþ1 þ…þ piþnk−1
� �

. It is easy to see that

C1kj
2 <C1kj.

(b) riþx þ s < riþnk−1 < C1
1k j. We can get

that C2
1k j ¼ C1

1k j þ sþ piþxþ1 þ…þ piþnk−1
� �

¼ riþx þ sþ piþ;…;þpiþx

� �þ sþ piþxþ1 þ…
�

þpiþnk−1Þ. It can be deduced that C2
1k j−C1k j

¼ riþx þ s−riþnk−1 < 0. Thus, C1kj
2 <C1kj.

( c ) riþnk−1≤riþx þ s. C2
1k j ¼ C1

1k j þ sþ
piþxþ1 þ…þ piþnk−1
� � ¼ riþx þ sþ ( p i + ,

… , + p i + x ) + t þ piþxþ1 þ…þ piþnk−1
� �

.

Similarly, we can infer that C1kj
2 ≥C1kj.

Based on cases (a), (b), and (c), if
riþnk−1 > rxþi þ s, then the solution can be im-
proved after dividing the original batch into two
batches. Thus, the proof is completed.

Lemma 4 The maximum completion time of all jobs on
the machine of the manufac turer j i s

C j≥ ∑
k¼1

h j

Pk þ s⋅hj þ min
i¼1;…;n

rif g þ ∑
l¼1

m j

e jl−d jl
� �

j ¼ 1; 2ð Þ
Lemma 5 The sum of maximum completion time of all jobs

on the machines of both manufacturers is

∑
2

j¼1
C j≥ ∑

n

i¼1
pi þ s⋅hþ 2 min

i¼1;…;n
rif g þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

j ¼ 1; 2ð Þ

Proof. Based on Lemma 4, we obtain that

∑
2

j¼1
C j≥ ∑

2

j¼1
∑
k¼1

h j

Pk þ ∑
2

j¼1
s⋅hj þ ∑

2

j¼1
min

i¼1;…;n
rif g þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

.

∑
n

i¼1
pi þ s⋅hþ 2 min

i¼1;…;n
rif g þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

. Then,

the proof is completed.

5.2 Lower bound

Theorem 2. The lower bound for the problem ψ is

LB ¼
∑
n

i¼1
piþs⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

2 þ min
i¼1;…;n

rif g þ T .

Proof. We assume that there exists a solut ion
value Cmax

′ , and Cmax
′ < LB, i.e., Cmax

′ <

LB ¼
∑
n

i¼1
piþs⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

2 þ min
i¼1;…;n

rif g þ T .

Then, max
j¼1;2

C j þ T
� 	

<
∑
n

i¼1
piþs⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

2 þ min
i¼1;…;n

rif g þ T.
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Fig. 2 The optimal schedule in Theorem 1
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Next, max
j¼1;2

C j� 	þ T <
∑
n

i¼1
piþs⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

2 þ min
i¼1;…;n

rif g þ T.

It is obtained that max
j¼1;2

C j� 	
<

∑
n

i¼1
piþs⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

2 þ min
i¼1;…;n

rif g.

Furthermore, ∑
2

j¼1
C j≤2� max

j¼1;2
C j� 	

< 2�
∑
n

i¼1
pi þ s⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �

2
þ min

i¼1;…;n
rif g

0
BBB@

1
CCCA.

T h u s , ∑
2

j¼1
C j < ∑

n

i¼1
pi þ s⋅ ∑

n

i¼1
si=c

� �
þ ∑

2

j¼1
∑
l¼1

m j

e jl−d jl
� �þ 2 min

i¼1;…;n
rif g.

Because h≥ ∑
n

i¼1
si=c

� �
, it can be deduced that ∑

2

j¼1
C j < ∑

n

i¼1
pi

þs⋅hþ ∑
2

j¼1
∑
l¼1

m j

e jl−d jl
� �þ 2 min

i¼1;…;n
rif g, which obviously con-

tradicts with Lemma 5. Thus, the proof is completed.

6 A new heuristic algorithm H

In this section, some scheduling rules are first proposed, and
based on these rules, a heuristic algorithm H is designed for
solving this problem. Then, the flow chart of the proposed algo-
rithm is presented, and the worst case performance of this algo-
rithm in a special situation is also analyzed.

The notations of the proposed algorithm are defined as
Table 1.

Before the heuristic algorithm is developed, we propose
some useful rules for designing it, which are based on the situ-
ation whether the earliest available time of two machines to
process a new batch is more than the maximum arrival time of
all jobs or not.

Situation 1 rmax > ET
We first give the rule of sequencing the jobs in

this situation.

Rule 1. The jobs are sequenced in non-decreasing order of
arrival time. If the arrival time of any two jobs is
equal, then they are sequenced in non-increasing
order of processing time.

During the period when no machines break
down, considering a batch processed on the ma-
chine of the manufacturer j, if ri < E j and
si þ ts j≤c, then we add the job J i into this batch.
Otherwise, based on Lemma 3, if si þ ts j > c or
ri � ri�1≥s, then the job J i is not added into this
batch. We have the following rule.

Rule 2. Considering a batch to be processed on the ma-
chine of the manufacturer j, if the condition that
si þ ts j > c or the conditions that ri > E j and ri
�ri�1≥s are satisfied, then the job J i is not added
into this batch. Otherwise, we add the job J i into
this batch.

Considering the situation when the machine
breakdown happens, if both machines break
down simultaneously during a certain period,
then the additional idle time should be inserted
in this period and based on this idea, we add the
jobs into the batch as many as possible when the
updated available time of this batch to be proc-
essed is no more than the available time of the
machine after breakdown. The corresponding
rule is as follows:

Rule 3. Considering the situation when both machines
breakdown and a batch to be processed on the
machine of themanufacturer j, if si þ ts j≤c and
ri < E j, then the job J i is added into this batch.

Subsequently, we consider the situation
when one machine breaks down and the other
machine is available during a certain period; if
the available time for the machine after break-
down is no more than that of the other machine
without breakdown, then the jobs are added into
the temporary batch to be processed on the ma-
chine with breakdown as many as possible
when ri < E j and si þ ts j≤c. We have the fol-
lowing rule.

Rule 4. Considering the situation when one machine
breaks down and the other machine is available,
if ET ¼ E j, ri < E j, and si þ ts j≤c, where
the machine of the manufacturer j breaks down,
then the job J i is added into this batch.

Situation 2 rmax≤ET .
This situation is equivalent to the situation

that all jobs are available. The rule of sequencing
the jobs in this situation is given as follows:

Rule 5. The jobs are sequenced in non-decreasing order of
processing time. If the processing time of any two
jobs is equal, then they are sequenced in non-in-
creasing order of job size.

If both machines are available, then we add as
many jobs as possible into each batch. The corre-
sponding rule is as follows:

Rule 6. Considering a batch to be processed on the ma-
chine of the manufacturer j, if si þ ts j≤c, then
the job J i is added into the batch.

If either machine breaks down, then we first
update the available time of the machine to pro-
cess the batch, and afterwards, Rule 6 is used.

Based on these rules, we develop a two-phase
heuristic algorithm for the studied problem, and
the details of this algorithm are as follows:
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Phase 1 Scheduling jobs when rmax > ET .
In the following, we first present the

procedure of initialization, and then we
present the procedure of arranging the

jobs into the batches when both ma-
chines are available, either machine
breaks down, or both machines break
down, respectively.
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Phase 2 Scheduling jobs when rmax ≤ ET
In this phase, the procedures of updating

jobs’ sequence and arranging the jobs into the
batches are presented, respectively.
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Then, based on these procedures, the overall heuristic algorithm is proposed as follows:

The whole flow chart of this algorithm is shown in Fig. 3.
Theorem 3. The proposed heuristic algorithm H can solve

the studied problem in O(n2logn) time, and its worst case
performance ratio is

3þ nsX n

i¼1
Pi þ

X n

i¼1
Si=c

h i
sþ

X 2

j¼1

X m j

l¼1
e jl−d jl
� �

when there is no situation of machine breakdown since the
time . rmax

Proof. In this proposed algorithm, from step 2 to step 11,
the time complexity is O nlognð Þ. The time complexity of
steps 13 and 14 is also O nlognð Þ, the total execution time of
step 1 is n, and the time complexity of other steps is O 1ð Þ.
Thus, the time complexity of this algorithm is O n2lognð Þ.

For this problem, let Cmax Hð Þ and C*
max denote the

makespan generated by heuristic algorithm H and the optimal
makespan. For the leftover jobs since the time rmax, let T1 and
T2 denote the sum of processing times of all jobs assigned to
the machines of the manufacturers 1 and 2 based on heuristic
algorithmH, let n1 and n2 denote the number of corresponding
jobs scheduled on the machines of the manufacturers 1 and 2,

let Crmax and C
*
rmax

denote the makespan generated by heuristic

algorithm H and the optimal makespan, and let C*
1 and C*

2

denote the optimal makespan on the machines of the manu-
facturers 1 and 2. Then, we have

Crmax ≤T 1 þ n1sþ T2 þ n2s;

and

T1 þ T2 þ
Xn1þn2

i¼1

si=c

& ’
s < C*

1 þ C*
2≤2C

*
rmax:

This implies that

Crmax þ T1 þ T2 þ
Xn1þn2

i¼1

si=c

& ’
s

< T1 þ n1sþ T 2 þ n2sþ 2C*
rmax

< T1 þ T 2 þ nsþ 2C*
rmax:
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So, we obtain

Crmax < 2C*
rmax

þ ns;

We have

Cmax Hð Þ ¼ rmax þ Crmax þ T ;

C*
rmax

< C*
max;

and

rmax þ T < C*
max:

Then,

Cmax Hð Þ ¼ rmax þ Crmax þ T < C*
max þ 2C*

max þ ns:

Thus,

Cmax Hð Þ
C*

max

¼ 3þ ns
C*

max

< 3þ ns
LB

:

Based on the derived lower bound in Section 5.2, it can be
derived that

Cmax Hð Þ
C*

max

< 3þ nsX n

i¼1
pi þ

X n

i¼1
si=c

l m
sþ

X 2

j¼1

X m j

l¼1
e jl−d jl
� �:

The proof is completed.

7 Computational experiments

In order to evaluate the performance of the proposed heuristic
algorithm for the serial-batching scheduling problem, compu-
tational experiments were conducted, compared with some

common dispatching rules [39–41] combining with batch
first-fit heuristic algorithm [43,44]. These dispatching rules
are as follows:

(1) First in first out dispatching rule (FIFO).
(2) The shortest processing time dispatching rule (SPT).
(3) The largest processing time dispatching rule (LPT).

Start

1Procedure

Schedule the next job

End

max
?t r N

Y

?

Machine
breakdown

N

2Procedure

?

Both machines
break down

Y

3Procedure 4Procedure

N

5Procedure

6Procedure

, ,Update status of jobs machines and vehicles

?All jobs are scheduled

Y

N

Fig. 3 Flow chart of the proposed heuristic algorithm H

Table 1 Notations of the proposed heuristic algorithm

Notation Description

Pj The processing time of the temporary batch processed on the machine of the manufacturer j(j= 1,2)

tsj The total size of the jobs in the temporary batch processed on the machine of the manufacturer j(j= 1,2)

rj The arrival time of the last job in the temporary batch processed on the machine of the manufacturer j(j= 1,2)

Sj The earliest starting time of the temporary batch processed on the machine of the manufacturer j(j= 1,2)

Ej The earliest completion time of processing the jobs on the machine of the manufacturer j(j= 1,2)

ET The earliest available time of two machines to process a new batch

rmax
The maximum arrival time of all jobs
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In addition, the proposed heuristic algorithm was also com-
pared with the original schedule, which is resumed to execute
the rest task with no adjustment after the machine is repaired.

The test problems were randomly generated based on the real
aluminum production. Job processing time on themanufacturers’
serial-batching machines is generated from the discrete uniform
distribution U[2, 22]; thus, the mean processing time is p ¼ 12.
Following Holthaus [39], Dominic et al. [40], and Zandieh and
Adibi [41], the breakdown level Ag and the mean time to repair
MTTR are set to {0.05, 0.1} and p; 3pf g for evaluating the
effect of the breakdown level. Following Tang and Liu [45], the
job arrival time is generated from the discrete uniformdistribution
U 1; 0:2*np½ �. The experimental parameters are set as Table 2.

In order to evaluate the performance of the proposed
heuristic algorithm H, its solutions were compared with
those of the above three dispatching rules and original
schedule, and original schedule is denoted as OS for sim-
plicity. The comparison was made by measuring the

relative gap between the makespan reported by each ap-
proach and the lower bound derived in Section 5.2. The
relative gap with LB was measured on the test problem
instances, and it is defined as gap = (Cmax − LB) × 100 %/
LB.

We designed a factorial experiment to determine the impact
of two factors on the performance of each approach. One
factor is machine breakdown level (i.e., Ag) that was tested
for Ag = 0.05 andAg = 0.1, and the other is mean time to repair
the machine (i.e., MTTR) that was tested for MTTR = 12 and
MTTR = 36. The combination (Ag, MTTR) was replicated ten
times for each treatment.

(1)Analysis of results for Ag = 0.05
Figure 4 reports the problem size’s effect on the average

gap of the problems when Ag = 0.05 and MTTR = 12.
Heuristic algorithm H performed better than the other four
approaches in this case, and its average gaps range from ap-
proximately 3.10 to 4.09 %. For all instance, the approach

Fig. 4 Computational results for
Ag= 0.05 and MTTR= 12

Table 2 Parameters setting

Parameter Description Value

n Number of the jobs 50, 100, 200, 400, 600, 800, 1000

c Capacity of the batching machines and the vehicles U[20, 30]

si Job size U[2, 15]

pi Job processing time on the manufacturers’ serial-batching machines U[2, 22]

ri Job arrival time
U 1; 0:2*np½ �

s Setup time on the manufacturers’ serial-batching machines U[5, 8]

T Transportation time between the manufacturers and customer U[20, 40]

Ag Machine breakdown level 0.05, 0.1

MTTR Mean time to repair the machine 12, 36

All approaches were coded in PowerBuilder 9.0 language, and their code was run on a Pentium(R)-4 and 300 MHz PC with 2GB of RAM
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FIFO performed better than the approaches OS, SPT, and LPT
except when n = 600, and the approach OS performed better
than the approaches FIFO, SPT, and LPT when n = 600. In
addition, the approach OS performed better than the ap-
proaches SPT and LPT for all instances.

In Fig. 5, we compare similar effect for the problems when
Ag = 0.05 and MTTR = 36. The average gaps of heuristic al-
gorithm H range from approximately 3.24 to 4.31 %.
Heuristic algorithm H can also obtain better solutions than
the other four approaches. The approach FIFO performed bet-
ter than the approaches OS, SPT, and LPT when n = 50, 100,
200, 400, 800, and the approach OS performed better than the
approaches FIFO, SPT, and LPT when n = 600, 1000.

(1)Analysis of results for Ag = 0.1

Figure 6 shows the performance comparison among these
five approaches in terms of average gap when Ag = 0.1 and
MTTR = 12. Compared with heuristic algorithm H, the ap-
proaches OS, FIFO, SPT, and LPT performed poorly for all
instances, and the average gaps of heuristic algorithmH range
from approximately 2.98 to 4.46 %. The approach FIFO per-
formed better than the approaches OS, SPT, and LPT when
n = 50, 200, 400, 800, and the approach OS performed better
than the approaches FIFO, SPT, and LPT for other instances.

Figure 7 compares the different approaches on the av-
erage gap of the problems when Ag = 0.1 and MTTR = 36.
It can be seen that heuristic algorithm H outperformed the
other four approaches in this case, and its average gaps
range from approximately 2.44 to 5.03 %. The approach

Fig. 6 Computational results for
Ag= 0.1 and MTTR= 12

Fig. 5 Computational results for
Ag= 0.05 and MTTR= 36
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OS performed better than the approaches FIFO, SPT, and
LPT when n = 100, 600, and the approach FIFO per-
formed better than the approaches OS, SPT, and LPT
when n = 50, 200, 400, 800, 1000.

It can be concluded from Figs. 4–7 that heuristic H
outperformed the other four approaches for all instances, and
its average gaps are below 5.1%.Also, it is worthwhile to note
that heuristic algorithm H can obtain solutions within 6 s for
each problem instance, even for the instance up to 1000 jobs.
This indicates that heuristic algorithm H can obtain feasible
solutions within a reasonable CPU time.

8 Conclusions and future work

In this study, we investigate a serial-batching scheduling prob-
lem in which a set of jobs is processed on two manufacturers’
serial-batching machines and then delivered in batches to a
customer, considering machine breakdown, dynamic job ar-
rival, and setup time. For the objective of minimizing the
makespan, we prove that the problem is strongly NP-hard
and provide its lower bound. The structural properties of the
problem are carefully investigated through a number of prov-
en propositions. Different rules are designed for two phases of
the problem, respectively. Furthermore, based on these prop-
erties and rules, we have developed an effective heuristic al-
gorithm to solve the problem and analyzed its worst case
performance in a special situation. To evaluate the effective-
ness of the proposed heuristic algorithm H, we conducted
experiments with various randomly generated test problems.
The experimental results suggest that the proposed heuristic
algorithm H is more efficient than the other four approaches
and it can handle the large-size problems in a reasonable time.

Our future research will continue following three direc-
tions: Firstly, other dynamic manufacturing conditions can
be considered to extend the research and applications.
Secondly, we need to combine other objective functions, such
as minimizing the sum of completion time and minimizing
maximum lateness. Last but not least, intelligent algorithms
can be developed to solve the problems more efficiently and
effectively.
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