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Abstract The present study aims at solving weld quality
monitoring problem in small scale resistance spot welding
of titanium alloy. Typical dynamic resistance curves were
divided into several stages based on the weld nugget for-
mation process. A smaller electrode force or lower welding
current was found to promote the initial resistance peak.
The bulk material heating stage could not be detected under
very high welding current condition. Electrode force effect
on dynamic resistance and failure load was much smaller
than that of welding current. Principal component analy-
sis was made on discrete dynamic resistance values. The
first principal component was selected as independent vari-
able in regression analysis for quality estimation. A back
propagation neural network model was then proposed to
simultaneously predict the nugget size and failure load.
The electrode force, welding current, welding time, and
first five principal components were designed as network
inputs. Effectiveness of the developed model was validated
through data training, testing, and validation. The realtime
and online quality monitoring purpose could be realized.
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1 Introduction

Resistance spot welding has been widely applied in sheet
joining process due to the effectiveness, easy operation, and
automation. Spot welds are simply formed by the welding
current introduced heat generation. Traditional “large scale”
resistance spot welding (LSRSW) has been the predomi-
nant jointing procedure in automotive industry. Recently,
small scale resistance spot welding (SSRSW) is drawing
more attentions due to the increasing demands in minia-
turized devices and components [1]. Very thin sheet metals
with thickness smaller than 0.5 mm are jointed together in
SSRSW.

Extensive studies have been focused on weld quality
monitoring in LSRSW. Destructive testing on randomly
sampled workpieces could be used to determine whether the
spot weld is satisfactory. However, this off-line method is
not recommended because of the cost in time, productiv-
ity, and material. The online and non-destructive techniques
are thus proposed for a better solution of quality monitor-
ing. Parameters like the dynamic resistance [2–4], electrode
force [5, 6], electrode displacement [7–10], electrode tem-
perature [11], sonic emission [12], and multi-sensor fusion
[13–15] could be utilized as measured quality signals. The
neural network [13, 14, 16, 17], regression analysis [18],
image processing [7–9, 19], and fuzzy logic [15] could be
applied in signal processing.

The power source in LSRSW is typically alternating
current mode. Dynamic resistance is generally calculated
using the peak current at each half cycle and voltage at that
moment. Dickinson et al. [2] designed an electrical param-
eter monitoring system. Dynamic resistance variation was
related to the nugget development. Cho et al. [3] obtained
the dynamic resistance using process variables monitored
in primary circuit. It was supposed effective to estimate the
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weld strength. Zhou et al. [4] proposed different dynamic
resistance calculation methods. Dynamic resistance curve
was applied in the nugget diameter estimator to determine
the first melting point.

Despite comprehensive investigations on weld quality
monitoring in LSRSW, less attentions have been paid to
SSRSW. Chen et al. [20] presented an empirical model to
simulate the electrode displacement from monitored clamp-
ing force in SSRSW. Expulsion occurrence could be clearly
identified from the displacement. Tseng et al. [21] measured
the electrode displacement in SSRSW by a laser displace-
ment sensor. The correlation between welding parameter
adjustment and maximum electrode displacement variation
was investigated. Nugget formation and development could
be reflected from the displacement signal. Chen et al. [22]
performed a finite element model on SSRSW process. The
simulated maximum electrode displacement and minimum
dynamic resistance were found useful in realizing real-time
quality monitoring. Tan et al. [23] analyzed the dynamic
resistance variation in SSRSW of bare Ni sheets. Significant
differences were found between LSRSW and SSRSW. Wan
et al. [24] monitored the electrode voltage signal in SSRSW.
Pattern recognition of the voltage curve was applied in weld
quality estimation.

High frequency inverter welding mode of direct current
is generally adopted in SSRSW. Dynamic resistance could
be calculated through dividing electrode voltage by welding
current. In addition, titanium and its alloy possess charac-
teristics of low density, good mechanical properties, and
excellent corrosion resistance. The weldability of pure tita-
nium under LSRSW has been proven by Kahraman and
Kaya [25, 26], despite the easy activation with nitrogen and
oxygen at high temperature.

There is a lack of quality monitoring research utilizing
dynamic resistance in SSRSW by now. In the present study,
characteristics of dynamic resistance variation in SSRSW
of titanium alloy were related to the weld nugget formation
process. Effects of welding parameters on dynamic resis-
tance and mechanical properties of spot welds were ana-
lyzed. Principal component analysis (PCA) was conducted
on measured dynamic resistance curve. The principal com-
ponents were used as independent variables in regression
analysis and neural network model to realize an effective
quality estimation.

2 Methodologies

2.1 Principal component analysis (PCA)

The PCA was first proposed by Pearson [27] and Hotelling
[28]. It is an effective tool in dimension reduction, and the
original information could be kept as much as possible.

All principal components are orthogonal to each other. The
procedure could be described as follows:

Step 1: Calculation of correlation coefficient array R.

rst = cov(xs(j), xt (j))

σxs(j) × σxt (j)

(1)

where cov(xs(j), xt (j)) is the covariance of
sequences xs(j) and xt (j). σxi(j) is the standard
deviation of sequence xi(j). The original array is
represented by X:

X =

⎛
⎜⎜⎜⎝

x1(1) x2(1) . . . . . . xm(1)

x1(2) x2(2) . . . . . . xm(2)
...

...
...

...
...

x1(n) x2(n) . . . . . . xm(n)

⎞
⎟⎟⎟⎠

where m is the number of characteristics, n is the
number of experiments.

Step 2: Calculation of the eigenvalues and eigenvectors.

( R − λE ) V = 0 (2)

where λ is the eigenvalue of R, V is the corre-
sponding eigenvector.

Step 3: Calculation of principal component scores.

pck(j) =
m∑

i=1

xi(j) × vk(i) (3)

where pck(j) is the j th component of kth princi-
pal component, vk(i) is the ith component of kth
eigenvector.

2.2 Back propagation neural network (BPNN)

Neural network is designed to imitate the brain’s process-
ing capability. Neuron is the fundamental constituent part.
Neural network analysis is cost effective, easy to under-
stand, and has been employed in the manufacturing process.
BPNN is one of the commonly used neural networks, by
which a complicated nonlinear relationship between inputs
and outputs could be mapped. It belongs to the supervised
learning model. Training procedure is necessary to construct
the relationship. It has a multi-layer feed-forward structure
with one input layer, one or more hidden layers, and one
output layer.

Neurons are linked together by weights and biases which
could convey data from previous layer to the next. The
weight that connects neuron j in layer k to neuron i in layer
k + 1 is termed as wij . The bias of neuron i in layer k + 1
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Table 1 The chemical composition of TC2 titanium alloy, wt%

Alloying elements Impurities (not higher than)

Al Mn Ti Fe C N H O Others

3.5 ∼ 5.0 0.8 ∼ 2.0 Bal. 0.30 0.10 0.05 0.012 0.15 0.40

is characterized by θi . Input value of each neuron in layer
k + 1 is:

neti =
p∑

j=1

ωij xj + θi (4)

where xj is the output data of neuron j in layer k, p is the
number of neurons in layer k. Output value of each neuron
in layer k + 1 could be determined as:

outi = f (neti) (5)

where f is the linear, log-sigmoid, or hyperbolic tangent
sigmoid transfer function. Weights and biases are iteratively
adjusted in training procedure to minimize the total mean
square error. The training procedure of BPNN could be
summarized as follows:

Step 1: Initialization of weights and biases.
Step 2: Select inputs from training set and calculate out-

puts with the neural network.
Step 3: Adjust weights and biases to reduce the total mean

square error.
Step 4: Return to Step 2.
Step 5: Stop training when the stopping criterion is satis-

fied.

3 Experimental procedure

TC2 titanium alloy with a thickness of 0.4 mm was pre-
pared for SSRSW. Chemical composition of the material is
listed in Table 1. TC2 sheets were cut into dimensions of
100 × 30 mm, as shown in Fig. 1. Mechanical and chemical
cleaning were both adopted before welding. A hard brush
was employed in mechanical cleaning to roughly clear con-
taminants at the sheet surface. Then samples were etched
with a mixed solution of nitric acid, hydrofluoric acid, and
water for several minutes. After cleaned by running water

F F

30
m

m

70mm 30mm 70mm

Fig. 1 Specimen dimensions for SSRSW

at room temperature, specimens were placed in a ventilated
environment.

The SSRSW machine utilized was produced by Miy-
achi Unitek Corporation, as depicted in Fig. 2. The
welding machine was designed to work under high fre-
quency inverter power supply mode. Spot weld could be
made under constant current, constant voltage, and con-
stant power welding conditions. Constant welding cur-
rent mode was utilized here due to the better adapt-
ability. A typical welding current curve is illustrated in
Fig. 3. Tip diameter of the electrode was 3.0 mm. No
cooling water was provided during the welding process.
Electrode force (F ) was varied between 100 and 200 N,
welding current (I ) was varied between 1.2 and 2.4 kA,
and welding time (T ) was varied between 6 and 12 ms.
Welding parameter combination was randomly selected and
distributed as uniform as possible. A total of 60 samples
were performed at last.

An illustration of the data acquisition system is given in
Fig. 4. Voltage drop between electrodes during the weld-
ing process was measured directly by clipped probes. A
Rogowski coil was used to obtain the welding current sig-
nal. Signal-carrying leads were all twisted to minimize
the induced electromagnetic noise. Both signals were then
transmitted to a computer data processing system at a fixed
sampling frequency. Acquired signals were filtered and
noise reduced. The electrode voltage and welding current

Fig. 2 The SSRSW machine
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Fig. 3 Typical welding current curve

curves could be acquired online after corresponding data
processing. The dynamic resistance could then be calculated
through dividing electrode voltage by welding current.

As the nugget size variation in SSRSW was limited,
weld quality characteristics were selected as nugget size
and failure load. Quasi-static tensile-shear tests on spot
welded specimens were conducted with an Instron univer-
sal testing machine. Cross-head speed was kept constant at
1.0 mm/min. Failure load was referred to the peak value
of load-displacement curve. Nugget size was obtained by a
vernier caliper on fractured welding surface.

4 Results and discussion

4.1 Typical dynamic resistance curve analysis

Two typical dynamic resistance curves obtained in experi-
ments are shown in Fig. 5. Mode A curve is acquired under
normal welding condition of F = 200 N, I = 1.6 kA, and
T = 8 ms. It could be divided into four stages based on
characteristics of resistance variation. They are the (I) asper-
ity heating, (II) surface breakdown and softening, (III) bulk
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Fig. 4 Illustration of the data acquisition system

material heating, and (IV) nugget formation stages. An ini-
tial γ resistance peak around 1.75 m� could be observed.
The γ peak is defined to distinguish from the α valley and
β peak obtained in dynamic resistance analysis of LSRSW
[2]. It could be explained by initial heating of asperities,
while the bulk material is still cool. The overall temperature
at stage I is supposed very low [23]. Lack of this stage in
LSRSW may be due to selection of alternating current.

The dynamic resistance drops obviously at stage II,
which is probably related to the electrical and mechanical
film breakdown caused by electrode voltage and electrode
force, respectively. Sheet to sheet contact is established after
the surface breakdown. The further decrease in dynamic
resistance is introduced by softening behavior of asperi-
ties and enlargement of contact area. Heat generation is
concentrated at contact interfaces, and the temperature of
corresponding positions is increased significantly. Resistiv-
ity of the bulk material increases with temperature at the
same time. The dynamic resistance variation is a result of
the above-mentioned competitive mechanisms. The resis-
tance decreasing mechanism plays a dominant role at this
stage. Dynamic resistance continues to drop at a much lower
rate. A balance is eventually reached at the end of stage II,
which accounts for the α valley.

The overall resistance begins to rise at stage III due to the
sustained bulk material heating. Contact resistance is grad-
ually disappeared at this stage. Local melting of the sheet
to sheet contact surface should have occurred at the deflec-
tion point (d2R/d2t = 0) of stage III. After the deflection
point, cross-sectional area for welding current passage is
gradually increased due to the successive melting at contact
interfaces. Mechanical collapse caused by material soften-
ing and electrode pressure would shorten the current flow
path. They both lead to the dynamic resistance reduction.
Temperature field of melted region is gradually stabilized,
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Fig. 5 Two different dynamic resistance curve modes
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and the dynamic resistance increase due to bulk material
heating is restricted. A β peak is thus formed at the end of
stage III. The β peak roughly reveals when the weld nugget
grows to an acceptable size. At stage IV, material melting
and mechanical collapse dominate the resistance variation
tendency. A consistent resistance decrease until the welding
end could be observed.

Dynamic resistance curve of mode B is obtained under F

= 75 N, I = 2.4 kA, and T = 8 ms welding condition, which
is obviously different from that of mode A. The electrode
force is much smaller and welding current is much higher.
An initial resistance peak of about 2.25 m� at stage I could
be found. The larger γ peak value could be attributed to the
smaller electrode force. A more intensive current density is
existed under this welding condition, which introduces more
initial heat generation and a larger γ peak. The nugget for-
mation and development in mode B are much earlier and
faster than that in mode A. Dynamic resistance decreasing
capability is thus enhanced in mode B. The typical stage
III could not be detected then. Besides, expulsion occur-
rence could be deduced from the sudden drop of dynamic
resistance.

4.2 Effect of welding parameters on dynamic resistance
and failure load

The effect of welding parameters on dynamic resistance is
depicted in Fig. 6. All the welding time is kept constant at
8 ms. The electrode force effect on dynamic resistance curve
is shown in Fig. 6a. Welding current is maintained at 2.0 kA.
As could be seen, the γ peak value decreases as electrode
force increases. This is due to the fact that more asperities
are in contact under a larger electrode force, which leads to a
smaller current density. The initial heating capability is thus
decreased at stage I. Increasing tendency of asperity resistiv-
ity with temperature is reduced as a consequence. However,
the difference in dynamic resistance variation at following
stages is very small, including characteristics of α valley,
β peak, and end resistance. In fact, the dynamic resistance
variation is closely related to heat generation. The heat gen-
eration during welding process is controlled by the formula
Q = I 2RT , in which the welding current plays a dominant
role. The dynamic resistance variation is closely related to
heat generation. Considering the same welding current con-
dition, it is not surprising to observe the nearly identical
trend of dynamic resistance curve. It could also be deduced
that the electrode force effect on heat generation is limited.

The influence of welding current on dynamic resistance
variation is given in Fig. 6b, in which the electrode force
is kept constant at 150 N. It could be found that dynamic
resistance variation is more sensitive to welding current
than electrode force. A significant decrease in the over-
all dynamic resistance level could be observed as welding
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Fig. 6 Effect of welding parameters on dynamic resistance curve

current increases, which could be explained by the larger
nugget size and more mechanical collapse. As welding cur-
rent increases, bulk resistance increasing rate is gradually
smaller than resistance decreasing rate introduced by nugget
growth. The β peak position is thus moved forward and dif-
ference between α valley and β peak is reduced. Besides,
the end resistance is smaller under higher welding current
condition.

Welding parameter influence on failure load of spot
welded specimens is shown in Fig. 7. Welding time is varied
from 6 to 12 ms. The constant welding current and elec-
trode force setup are the same as that in Fig. 6. Failure load
is increased with welding time due to the increasing fusion
zone formed by heat generation. As could be seen from
Fig. 7a, the electrode force effect on failure load is not obvi-
ous, which is similar to the conclusion in dynamic resistance
analysis. Influence of welding current on failure load is
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Fig. 7 Welding parameters influence on failure load of spot welded
specimens

remarkable. A higher welding current generally indicates a
larger failure load, although the increasing rate is gradually
slowed, as depicted in Fig. 7b. The difference of dynamic
resistance under various welding current conditions is also
significant in Fig. 6b. An interrelationship could be found
existed between dynamic resistance curve and failure load.
The dynamic resistance could be applied as an indicator for
weld quality monitoring in SSRSW.

4.3 Principal component analysis and linear regression
analysis

Dynamic resistance values at specified time interval of
0.2 ms are utilized as original quality indicators. Different
welding time of 6, 8, 10, and 12 ms is adopted in the study.
In order to ensure the same data dimension for PCA, addi-
tional dynamic resistance values equal to the end resistance
are used as a supplement for 6, 8, and 10 ms welding time
conditions. A total of 61 data points are thus extracted from
each dynamic resistance curve. A randomly selected 50
samples are first used to establish the regression model. The
remaining 10 samples are adopted for validation purpose in
regression analysis. Since the data set are approximately at
the same order of magnitude, there is no need to conduct
data normalization before PCA. PCA is thus implemented
directly on the selected 50 samples according to previ-
ously developed procedure. Principal component scores of
each sample could be obtained. The remaining 10 samples
are added to the 50 samples one at a time. The principal
component scores obtained are used for model validation.

PCA is conducted using the MATLAB software. Results
of PCA on training data set show that accountability propor-
tion of the first principal component (PC1) is 78.3 %, and
cumulative accountability proportion of the first five princi-
pal components reaches 99.6 %, as listed in Table 2. Effect
of the PC1 on nugget size and failure load is given in Fig.
8. The linear fit is represented by a solid line. A good linear
correlation could be found between weld quality charac-
teristics and the PC1. Regression equations could thus be
established based on the PC1 for a rough estimation of weld
quality characteristics. Equations 6 and 7 could be used to
predict nugget size and failure load, respectively. For sam-
ples varied only in welding time, the difference in PC1 may
be limited when dynamic resistance variation at stage IV
is very small. The welding time term is thus included into
regression equations as well.

Nugget Size = 1.4800 − 0.1472PC1 + 0.0351T (6)

Failure Load = 1.8253 − 0.2840PC1 + 0.0576T (7)

Model effectiveness is validated by the remaining 10
samples, as shown in Fig. 9. Comparison results between
predicted and measured responses are basically satisfactory.
Simplicity is main advantage of the developed regression

Table 2 Principal component analysis

Principal component PC1 PC2 PC3 PC4 PC5

Eigenvalue (-) 2.0043 0.4560 0.0520 0.0292 0.0078

Proportion (%) 78.3 17.8 2.0 1.1 0.4

Cumulative (%) 78.3 96.1 98.1 99.2 99.6
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model. However, only the PC1 and welding time are con-
sidered in regression analysis. In practice, a complex rela-
tionship is existed between welding parameters and quality
characteristics. A neural network model is thus performed
in the following section, which has been proven effective
in dealing with complicated nonlinear relationship between
independent variables and multiple responses.

4.4 Back propagation neural network (BPNN) analysis

An illustration of the BPNN used in this study is shown
in Fig. 10. Neural network inputs are selected considering
potential quality influencing factors, including the electrode
force, welding current, welding time, and first five princi-
pal components. Nugget size and failure load are utilized as
network outputs. Determination of the network architecture
is an important task in neural network analysis. One sin-
gle hidden layer is generally adequate to approximate most
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Fig. 8 Effect of the PC1 on weld quality characteristics

continuous mapping. Selection of neuron number in the hid-
den layer should be taken carefully. Although prediction
precision could be improved with a large number of neurons
in hidden layer, the over fitting chance is increased as well.
There is no such criterion to determine the neuron number in
hidden layer by now. The trial and error method is generally
adopted in establishing a suitable network structure.

MATLAB neural network toolbox is applied in the sim-
ulation. The 50 samples used in regression model estab-
lishment are considered first. A data set of 40 samples
are randomly selected from the 50 ones for neural net-
work model training, and the remaining 10 samples are
adopted for testing purpose. The last 10 samples utilized in
regression model validation are designed for neural network
model validation. After many trial and error attempts includ-
ing training, testing, and validation, the three layer 8–20–2
structure shows the best performance. Hyperbolic tangent
sigmoid and linear transfer functions are used in the hidden
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Fig. 9 Validation of the regression analysis model
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Fig. 10 Architecture of the BPNN model

and output layers, respectively. Weight and bias values are
updated by the Levenberg-Marquaardt algorithm.

A scatter plot of measured weld quality characteristics
versus predicted ones by the developed BPNN is depicted in
Fig. 11. Results of training, testing, and validation are illus-
trated with different marks. Reliability of training procedure
is verified from the perfect training performance. Prediction
errors of nugget size and failure load in both testing and val-
idation approaches are at an acceptable level, through which
the model effectiveness is validated.

Additionally, weld quality could be classified into three
levels according to the failure load magnitude. Here, the 2.0
and 3.0 kN are selected as threshold values for different
levels. Corresponding threshold nugget sizes are roughly at
1.6 and 2.2 mm. The spot weld at level III is unsatisfactory
due to the low failure load magnitude. Expulsion occurrence
is easy to be detected for level I spot weld, although the
mechanical performance is very good. The level II spot weld
is supposed satisfactory at both failure load and surface
quality. Estimation accuracy of the proposed model based
on quality level classification is satisfactory despite several
error predictions, as shown in Fig. 11.

The developed neural network model is proved effective
in simultaneous estimation of nugget size and failure load.
More experimental data are needed to improve the model
accuracy, which means the increase of testing costs in pro-
duction environment. In fact, a rough estimation of weld
quality level is generally enough for engineers. Real-time
quality monitoring purpose could probably be achieved,
considering the very short time consumption in BPNN.
Online measurement of the dynamic resistance signal and
principal components could also be realized conveniently.
The developed BPNN is supposed suitable for real-time and
online weld quality monitoring in SSRSW of titanium alloy.
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Fig. 11 Predicted versus measured weld quality characteristics by the
BPNN

5 Conclusions

The weld quality monitoring approach based on dynamic
resistance signal in SSRSW was conducted in this study.
Dynamic resistance curve was first divided into four stages
relating to the nugget formation process. Effect of welding
parameters on dynamic resistance and failure load was ana-
lyzed. PCA was then made on discrete dynamic resistance
values for a preliminary weld quality prediction. A BPNN
analysis was also performed to estimate nugget size and fail-
ure load simultaneously. Model effectiveness was proved
after data training, testing, and validation. A real-time and
online weld quality monitoring system in SSRSW could be
developed. Following conclusions are obtained:

– The initial γ resistance peak could be promoted under
a smaller electrode force or lower welding current
condition.
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– Variations of dynamic resistance and failure load are
more sensitive to welding current than electrode force.

– The quality level classification technique adopted in
BPNN is practical for quality monitoring.
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