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Abstract The automatic width control of the strip that is used
in vertical rolling is a key issue in the hot strip rolling process.
It is the first time that the internal deformation power and the
friction power are obtained by using angular bisector yield
criterion and Pavlov projection principle in the vertical rolling.
At the same time, the shear power is determined by use of the
integral mean value theorem. Then the vertical rolling force
and shape parameters are obtained by minimizing the total
power functional. The relative error of rolling forces is less
than 8.29 % compared with those measured on-line in a hot
strip rolling plant. Moreover, the formula forms of the three
powers mentioned above are greatly simplified and improved.

Keywords Vertical rolling . Dog-bone shape . Angular
bisector yield criterion . Analytical solution

1 Introduction

Nowadays, the vertical rolling process is widely used to con-
trol width in the roughing stands of a hot strip mill. The
rolling, also referred as edge rolling or slab edge, is a typical
deformation problem of the super-high work piece. At this

stand, deformation is mainly localized close to the rolls and
gives the cross-sectional “dog-bone” shape [1−3], as shown in
Fig. 1.

One solution to analyze the vertical rolling is the finite
element method (FEM), which can perform complicated cal-
culations under realistic process constraints and various defor-
mation conditions. Huisman and Huetink [4] investigated the
influence of roller-radii on the resulting cross section of the
slab after a width reduction using a combined Eulerian-
Lagrangian three-dimensional finite element method. Using
the rigid-plastic FEM, fully theoretical analysis and experi-
mental research for vertical rolling was conducted by Xiong
et al. [5]. The research proposed a 3-D model to simulate the
vertical rolling, discussed the utilization of the slightly com-
pressible finite element formulation to the numerical analysis
of the vertical-horizontal rolling process, and obtained the
relationship among section shape after rolling, mechanical
parameters and major influence factors [6−9]. However, al-
though the FEM is a very powerful tool for simulation of the
rolling process, it is a time-consuming procedure and the ac-
curate setting of the various aspects of the deformation condi-
tions is difficult. At the same time, FEM can only give discrete
numerical solutions, not reflect the influence of various me-
chanical parameters on the stress.

Another approach is analytical solution using kinematically
admissible velocity field and minimum energy principle. Yun
et al. [10] proposed a new model for the prediction of the dog-
bone shape during vertical rolling in roughing mills and ex-
amined the results via comparison with predictions from finite
element simulation and also with experimental data. However,
the explicit mathematical expressions of shape and rolling
force are not obtained. The analytical solution can give a con-
tinuous analytic expression for the parameters studied, which
is the main advantage. And so, analytical methods always
have great importance [11].
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This paper is to propose an analytical solution based on
antisymmetric parabolic dog-bone shape function and an an-
gular bisector yield linear criterion. Using Pavlov principle
and integral mean value theorem, the friction power and shear
power for vertical rolling are obtained. Then, analytical solu-
tion of strip rolling power functional is received. By search
method for minimizing the power functional, the rolling force
is obtained. Besides, each power including the formula form
proposed by this paper is compared with the past one. At the
same time, the calculated rolling force and the shape attribute
are compared with measured data and other previous
publications.

2 Method

2.1 Energy method

Energy method is also called the variational method, which is
based on the functional of the Ritz approximation algorithm.
The basic analytical steps are described as follows:

(1) Presume the surface shape of the workpiece at some
time in a specific forming process, and set a kine-
matically admissible velocity field including several
undetermined parameters under the given boundary
conditions.

(2) Build the power functional and minimize it according to
the variational principle. The power functional is served
as the multivariate function for those undetermined pa-
rameters. Then derive its partial derivative of the unde-
termined parameter and make it to zero, and establish the
simultaneous equations containing these undetermined
parameters as variables.

(3) Solve the simultaneous equations to obtain the undeter-
mined parameter, and use them to get the kinematically

admissible velocity field which is more closely similar to
the real one.

(4) Calculate the strain rate field by using the geometric
equation, determine the boundary dimension through
the displacement of workpiece edge, and determine the
mechanical parameters by using the power balance of
external and internal forces.

In our opinion, the mathematical method of linearization
for the functional integral by transforming the integral terms
from strain tensor into inner-product of strain rate vector and
summating them to obtain the analytical solution is a new
bright spot of the traditional energy method. Meanwhile,
building the linear yield criterion corresponded closely to that
of Mises in the High-Westergaad space, deriving the linear
specific plastic power and using it to replace Mises’ non-
linear one, and then making the functional integrable and get-
ting the approximate solution, this is the other highlight which
is a new idea for analyzing the material forming from the
perspective of a physical method.

2.2 Antisymmetric parabolic dog-bone model

The antisymmetric parabolic model is also called a dou-
ble parabolic model in ref. [12]. A slab with initial width
of 2w0 is rolled into a width of 2wE through a pair of
vertical rolls of radius R. The coordinate origin is at the
midpoint of the entry section and axes x, y, and z are the
length, thickness, and width directions, respectively, as
shown in Fig. 2. l is the projected length of the contact
arc, α is the contact angle, and θ is the bite angle. From
the geometry, the contact arc equations for a quarter of
deformation zone are as follows:

wx ¼ wE þ R−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− l−xð Þ2

q
wx ¼ wα ¼ wE þ R−Rcosα

)
ð1Þ

Before ver�cal rolling

A�er ver�cal rolling

I II III

Fig. 1 Cross-sectional shapes of the slab before and after vertical rolling
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And the first-order derivative is

w
0
x ¼ −tanα; θ ¼ sin−1 l=Rð Þ ð2Þ

Since w0/h0 is relatively large, and l=w small, deforma-
tion is stopped before extending the center of the work
piece; there is a rigid zone in the bite zone, as shown in
Fig. 3, which can be divided three zones along the width
direction (Yuan-Ming [12]). A is the trisection of zones II
and III, and

Ax ¼ wx− wE−3Að Þ
3

ð3Þ

3A
0
x ¼ w

0
x ¼ tanα;wx−3Ax ¼ wE−3A ð4Þ

where Ax=A is at the exit of the bite zone and A0=Δw/3+A is
at the entry.

So, along the thickness direction, dog-bone piecewise func-
tion can be expressed as

h ¼
hI ¼ h0 0 < z < wE− 3 A
hII x; zð Þ ¼ h0 þ βΔwx z− wx−3Axð Þ½ �2 wx−3Ax < z < wx−2Ax

hIII x; zð Þ ¼ h0 þ 2βΔwxAx
2− βΔwx z− wx−Axð Þ½ �2 wx− 2 Ax < z < wx

8<
: ð5Þ

where β is the undetermined parameter. With the as-
sumption of plane strain which occurred in the plastic
deformation zone, the area pressed in along the width
direction is equal to the area drummed out in zones II
and III along the thickness direction (The shaded area is
equal as shown in Fig. 3):

Δwxh0 ¼
Z wx−2Ax

wE−3A
hII−h0ð Þdzþ

Z wx

wx−2Ax

hIII−h0ð Þdz ð6Þ

The peak height of the dog-bone and the edge height of the
slab are respectively

hb ¼ h0 þ 2βΔwA2; hr ¼ h0 þ βΔwA2 ð7Þ

Substituting Eq. (5) into Eq. (6), β is

β ¼ 3h0= 11A3
x

� � ð8Þ

In Fig. 3, since the half of zone III is antisymmetric with
that of zone II, we would rather call it an antisymmetric par-
abolic model.

2.3 Velocity field

As show in Fig. 2, db−dB denotes the change of lateral infin-
itesimal displacement, W=W(x, z) is the lateral displacement,
then

dW
dz

¼ db−dB
dB

ð9Þ

According to the incompressibility condition,

vx ¼ v0h0
h

dB
db

ð10Þ

Substituting Eq. (9) into Eq. (10), and taking dW=dz
dW=dzþ1 ≈

dW
dz ,

Eq. (10) becomes:

vx ¼ v0h0
h

1−
dW
dz

� �
ð11Þ

Noticing the property of the stream function vz
vx
¼ dW

dx yields

Fig. 3 Antisymmetric parabolic dog-bone shape profile
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vz ¼ vx
dW

dx
ð12Þ

Substituting Eq. (11) into Eq. (12) gives

vz ¼ v0h0
h

1−
dW

dz

� �
dW

dx
ð13Þ

Because of volume constancy, we have

∂vy
∂y

þ ∂vx
x

¼ −
∂vz
∂z

¼ −ε:z; ε
:
max ¼ ε

:
y ¼ ∂vy

∂y
; ε

:
min ¼ ∂vz

∂z
:

ð14Þ



Substituting Eqs. (11) and (13) into Eq. (14), integrating
yields

vx ¼ v0h0
h

1−
dW
dz

� �

vy ¼ ∂W
∂z

‐1

� �
∂
∂x

1

h

� ��
þ ∂

∂z
1

h

� �
∂W
∂x

þ 1

h
∂2W
∂x∂z

�	
þ 1

h
∂2W
∂x∂z

�
þ ∂2W

∂z2
⋅
∂W
∂x

�

v0h0y

vz ¼ v0h0
h

1−
dW
dz

� �
dW
dx

ð15Þ

Using the assumption of plane strain and Eq. (15) yields

vx ¼ v0h0
h

1−
dW
dz

� �
¼ v0;

dW
dz

¼ 1−
h
h0

ð16Þ

And, lateral displacement W can be integrated:

W ¼
Z z

0
1−

h
h0

� �
dz ð17Þ

Substituting Eq. (5) into Eq. (17), and using the boundary
condition, W in zones I, II, and III are

W I ¼ 0; W II ¼ −
βΔwx

3h0
z− wx−3Axð Þ½ �3; W III

¼ βΔwx

3h0
z− wx−Axð Þ½ �3− 6Δwx

11Ax
z− wx−Axð Þ½ �− 6Δwx

11

ð18Þ

Substituting Eq. (18) into Eq. (15), velocity and strain rate
fields in zone I are

vxI ¼ v0; vyI ¼ vzI ¼ 0; ε
:
i j ¼ 0 ð19Þ

Velocity and strain rate fields in zone II are

vxII ¼ v0; vyII

¼ −
3v0w

0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−3Axð Þ½ �2y; vzII

¼ v0w
0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−3Axð Þ½ �3 ð20Þ

ε
:
xII ¼ 0; ε

:
yII ¼ −

3v0w
0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−3Axð Þ½ �2;

ε
:
zII ¼ 3v0w

0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−3Axð Þ½ �2

ð21Þ

Velocity and strain rate fields in zone III are

vxIII ¼ v0

vyIII ¼ 3v0yw
0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−Axð Þ½ �2

	�
þ 4Δwx

3
z− wx−Axð Þ½ �



−2A2

x 1þ Δwx

3Ax

� ��

vzIII ¼ −
v0w

0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−Axð Þ½ �3 þ 2Δwx z− wx−Axð Þ½ �2

	 


þ 6v0w
0
x

11Ax
1þ Δwx

3Ax

� �
z− wx−Axð Þ½ � þ 2

3
Δwx þ Ax

	 

ð22Þ

εxIII ¼ 0

εyIII ¼ 3v0w
0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−Axð Þ½ �2

	�
þ 4Δwx

3
z− wx−Axð Þ½ �



−2A2

x 1þ Δwx

3Ax

� ��

εzIII ¼ −
3v0w

0
x

11A3
x

1þ Δwx

Ax

� �
z− wx−Axð Þ½ �2

	�
þ 4Δwx

3
z− wx−Axð Þ½ �



−2A2

x 1þ Δwx

3Ax

� �� ð23Þ

From Eqs. (19), (20), (21), (22), and (23), y = 0,
vyII = 0, vyIII = 0; z=wx−3Ax, vzII = 0; z=wx−2Ax, vzIII = vzII;
ε
:
xII þ ε

:
yII þ ε

:
zII ¼ 0; ε

:
xIII þ ε

:
yIII þ ε

:
zIII ¼ 0. Clearly, they

are kinematically admissible velocity and strain rate fields.

2.4 Angular bisector yield criterion

The unified yield criterion proposed by Yu et al. [13], as we
can see in Eq. (24-a), has a unified mechanical model as well
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as unified and simple mathematical expression. It includes all
independent stress components. It is easily used for analytic
solutions because it is a linear yield criterion.

σ1−
1

1þ b
bσ2 þ σ3ð Þ ¼ σs;whenσ2≤

1

2
σ1 þ σ3ð Þ

1

1þ b
σ1 þ bσ2ð Þ−σ3 ¼ σs;whenσ2≥

1

2
σ1 þ σ3ð Þ

9>=
>;
ð24� aÞ

Angular bisector yield criterion can be deduced from the

unified yield criterion when b ¼ ffiffiffi
3

p
−1

� �
=2. It means its yield

locus in the π-plane is the bisector of the angle consisting of
Tresca’s [14] and twin shear stress (TSS) [15] locus, which is
also called ID yield criterion because its locus is an inscribed
dodecagon of the Mises circle [16]. The comparison of these
three linear yield criterion with the Mises yield criterion are
shown in Fig. 4. The expressions of the criterion and its spe-
cific plastic power are, respectively,

σ1−
σ2

2þ ffiffiffi
3

p −
1þ ffiffiffi

3
p

2þ ffiffiffi
3

p σ3 ¼ σs;whenσ2≤
1

2
σ1 þ σ3ð Þ

1þ ffiffiffi
3

p

2þ ffiffiffi
3

p σ1 þ σ2

2þ ffiffiffi
3

p −σ3 ¼ σs;whenσ2≥
1

2
σ1 þ σ3ð Þ

9>>=
>>;; Dðε:i jÞID ¼ 1ffiffiffi

3
p σs ε

:
max−ε

:
minÞð ð24� bÞ

By contrast, the expressions of specific plastic power for
TSS yield criterion using those in ref. [12] are

Dðε:i jÞTSS ¼ 2

3
σs ε

:
max−ε

:
minÞð ð24� cÞ

where σs is the yield stress. We can easily find that the formula
(24-b) is smaller than (24-c) with the relative error of 13.49 %.

2.5 Internal deformation power

Using angular bisector yield criterion and the strain field, in-

ternal deformation power W
:
i in the plastic region can be cal-

culated as follows [17]:

W
:
i ¼

Z
V
D ε

:
i jÞdV

� ð25Þ

Substituting Eqs. (21), (23), and (24) into Eq. (25), inte-

grating W
:
i is

W
:
i ¼ W

:
iII þW

:
iIII

¼ 8σsv0h0
121

ffiffiffi
3

p 201Δw2

5A
−18Δwε−54Aεþ 103Δw

� �
ð26Þ

where ε= ln[3A/(Δw+3A)].
Obviously, the internal deformation power deduced in this

paper is smaller than that in ref. [12] (Eq. (38)) with the error
which is 13 %, and it is more reasonable because of using
angular bisector yield criterion which is more approximate
to the Mises yield criterion.

2.6 Friction power

The average height of contact surface is taken:

hr ¼ hr þ h0ð Þ=2 ¼ h0 þ 3h0Δw
2� 11A

ð27Þ

Assuming the velocity along the length direction and thick-
ness direction are linear distribution, averaging

vyIII



x¼0

¼ 3v0 ytanθ
11A0

; vyIII



x¼l ¼ 0; vyIII

¼ 3v0ytanθ
2� 11A0

; vyIII




y¼0

¼ 0; vyIII




y¼hr

3v0hrtanθ
22A0

; vyIII ¼ 3v0hrtanθ
44A0

:

TSS

b=1

Mises

Tresca

b=0

ID

Anglar bisector

Fig. 4 Yield locus on the π-plane
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With Pavlov projection principle [18], the contact surface
and its corresponding tangential velocity discontinuity are
projected to the rolling direction, integrating at the projection:

Δvt ¼ 1

θ

Z θ

0
vRcosα−v0ð Þdα ¼ sinθ

θ
vR−v0 ð28Þ

yields

W
:
f ¼ 4

Z
S f

τ f Δv f


 

dS ¼ 4mk

Z
S f

Δv f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w0

x

q
dydx

¼ 4mk
Z l

0

Z
hr

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
2

yIII þΔv
2

t

r
dydx

¼ 4mσsffiffiffi
3

p hrl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v0hrtanθ
44A0

 !2

þ sinθ
θ

vR−v0
� �2

vuut
:

ð29Þ

It is quite clear that Eq. (29) expresses a simpler formula
form than that in ref. [12] (Eq. (51)), and the reason is the
application of Pavlov projection principle.

2.7 Shear power

From Eqs. (19), (20), and (22), at the exit of deformation zone,
wx
′ = 0, vyI = vzI = vyII = vzII = vyIII = vyIII = 0, there is no shear

power at the exit section but at the entry section. Using mean
value theorem of integral:

vyII ¼

Z h0

0

Z w0‐2A0

w0‐3A0

vyIIdydz

A0h0
¼ v0h0tanθ

22A0
; vzII ¼ −v0tanθ

4� 11
ð30Þ

vyIII ¼

Z h0

0

Z w0‐2A0

w0‐3A0

vyIIIdydz

2A0h0
¼ 5v0h0tanθ

22A0
; vzIII

¼ −6v0tanθ
11

ð31Þ

Then, the shear power at zone II becomes

W
:
sII ¼ 4k

Z W0−2A0

W0−3A0

Z h0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vyII
� �2

þ vzII
� �2r

dydz

¼ 2σsh20v0tanθ

11
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2h0

� �2
s2
4

3
5 ð32Þ

And the shear power at zone III is

W
:
sIII ¼ 4k

Z w0

w0−2A0

Z h0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
2

yIII þ v
2

zIII

r
dydz

¼ 20σsv0h20tanθ

11
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12A0

5h0

� �2
s2
4

3
5 ð33Þ

where A0=Δw/3+A.
It is obvious that the formula of shear power with two terms

proposed in this paper is also more simplified than that in ref.
[12] (Eq. (45)) which has five more complex terms.

2.8 Total power

The total power J∗ can be obtained as follows:

J* ¼ W
:
i þW

:
f þW

:
sII þW

:
sIII

PY PY

HMD HMD
HMD HMD

E1 E2 E3

Entry thickness: 180mm

Exit thickness: 35~55mm

Mid-Slab width: 350mm~650mm

Rolling force Max: 500kN

Distance_E1_E2: 7000m

Distance_E2_E3:10500mm

Distance_E3_width gage:10500mm

Stand_max_velocity: 2500mm/s

Stand Mill stretch modulus

Stand E1: 500kN/mm

Stand E2: 495kN/mm

Stand E3: 512kN/mm

hot metal detector(HMD)

Pyrometer (PY)

Fig. 5 Schematic diagram and main characteristics of the roughing mill group

Table 1 Comparison of
calculated rolling forces with the
measured ones

Stand no. vR (m/s) t (°C) ε= ln(h0/h1) σs (MPa) Calculated
force (kN)

Measured
force (kN)

Error (%)

E1 0.4 1147.4 0.039 38.67 1090.74 1013.94 7.57

E2 0.58 1134.45 0.019 31.19 902.17 833.14 8.29

E3 1.27 1108.5 0.011 29.64 724.91 686.9 5.53
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Summarizing Eqs. (26), (29), (32), and (33), the analytical
solution of total deformation power is

J* ¼ 2σsv0h0ffiffiffi
3

p 4

121

201Δw2

5A
−18Δwε−54Aεþ 103Δw

� �	
þ h0tanθ

11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2h0

� �2
s2
4

3
5

þ 10h0tanθ
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12A0

5h0

� �2
s2
4

3
5þ2ml

hr
h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hrtanθ
44A0

 !2

þ sinθ
θ

vR
v0
‐1

� �2

vuut
9>=
>;

ð34Þ

where A0 =Δw/3+A. Using a search method, the minimum
value of power functional J∗min and the minimum values of
rolling force can be obtained [19], respectively.

Mmin¼ RJ*min

2νR
;Fmin¼Mmin

χ⋅l
ð35Þ

For hot strip rolling, the arm factor χ can be 0.3∼0.6 [20],
and in this paper, χ is selected as 0.5 under these equipment
and process parameters.

3 Results and discussion

3.1 Rolling force and power

In order to verify the validity of the analytical model in this
paper, measured data of rolling force in GuoFeng Iron and

Steel in HeBei province China are used. The roughing mill
group in this factory is composed of three vertical stands and
five horizontal stands, and Fig. 5 shows its schematic diagram
and main electrical and mechanical characteristics.

Taking the material of Q235 (carbon content 0.14∼0.22 %;
silicon content <0.3 %; manganese content 0.3–0.65%; sulfur
content <0.05 %; phosphorus content <0.045 %) steel product
for instance, the initial width of 150mm×380mm×6000mm
(thickness×width× length) slab is reduced to 355 mm in the
roughing mill. The roll circumferential velocity vR and tem-
perature t for No.1 to No.3 vertical stands in the roughing
mill are shown in Table 1. It should be noticed that the
temperatures of E2 and E3 are determined by temperature
self-learning strategy, which can be seen in ref. [21], using
the measured temperatures by the thermodetectors at the
entrance and exit of the roughing mill. And the rolling
forces on-line are monitored by two force transducers,
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Table 2 Comparison of calculated powers and rolling forces

W
:
i (kN·m/s) W

:
s (kN·m/s) W

:
f (kN·m/s) J∗min (kN·m/s) Power error (%) Calculated force (kN) Force error (%)

Present solution 59.69 45.74 2.35 107.78 −12.01 902.17 −12.02
Past solution 68.92 46.44 7.13 122.49 1025.41
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Fig. 7 Effect of h0/R on P=σs and Ax
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located over the bearing blocks of the work roll. The calculated
results are compared with the measured ones as shown in
Table 1.

The model of deformation resistance for the Q235 steel
used in the calculation is determined by Moshitami [22],
which can be expressed mathematically as

σ ¼ σ f f
ε
:

10

 !m

ð36Þ

σ f ¼ 0:28exp
5:0

T
−

0:01

C þ 0:05

� �
T ≥ tdð Þ

σ f ¼ 0:28exp
5:0

td
−

0:01

C þ 0:05

� �
� g T ≤ tdð Þ

ð37Þ

g ¼ 30:0 C þ 0:90ð Þ T−0:95
C þ 0:49

C þ 0:42

� �2

þ C þ 0:06

C þ 0:09
ð38Þ

f ¼ 1:3
ε
0:2

� �0:41−0:07C
−0:3

ε
0:2

� �
ð39Þ

m ¼ 0:019C þ 0:126ð ÞT þ 0:075C−0:05ð Þ T ≥ tdð Þ
m ¼ 0:081C−0:154ð ÞT þ −0:019þ 0:207ð Þ þ 0:027

C þ 0:32
T ≤ tdð Þ

ð40Þ

T ¼ t þ 273

1000
; td ¼ 0:95

C þ 0:41

C þ 0:32
ð41Þ

where t is the deformation temperature (°C), td is the critical
temperature (°C), and C is the carbon content (%).

Table 2 is the comparison of all calculated powers and
rolling force with present solution and past solution in ref.
[12] using the practical data of stand E2 mentioned above. It
shows that each power obtained by the present solution is
further lower than that by the past one in ref. [12]. Although
the two solutions are all obtained by an upper-bound method,
the present solution is more reasonable.

Figure 6 illustrates that the internal plastic deformation
power and shear power are the main portion of total power,
and friction power is very small, which is different from hor-
izontal rolling (the plastic deformation power and friction
power are the main portion) [23, 24]. The reason is that the
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length of contact arc l is very small in the vertical rolling with
small reduction (3.9, 1.9, and 1.1 %). Moreover, combined
with Table 2, the decrease of total power is mainly due to
the decrease of the internal deformation power, and the root
cause is the use of the ID yield criterion instead of TSS yield
criterion.

3.2 Dog-bone shape

Furthermore, for the sake of avoiding impact of deformation

resistance, P is defined as vertical rolling force per unit thick-
ness as follows:

P
σs

¼ F=σs

2h0
ð36Þ

Figure 7 shows the variations of P=σs and Axwith different
roll radius. The contact area and length increase while R in-
creases, and then the rolling force and the trisection of the
deformation zone (zones II and III) increase, that means the
deformation is permeating to the central location of the slab.

Figure 8 illustrates that P=σs and Ax decrease with the de-
crease of h0. The reason is that the decrease of h0 makes the
decrease in the roll-slab contact arc length; then the internal
deformation power decreases, and rigid zone increases.

Figure 9 demonstrates the effect of ε (true strain) on P=σs.
All the results are in good agreement with Yun’s, the maxi-
mum error is no more than 10.4 %, and less than the ones in
Yun’s because of the different integral area. Yun thought that
deformation occurred in the entire bite zone, but considering
the relatively large width-to-thickness ratio of the slab, there is
deformation in the edge of the slab only, so the author believes
that the model this paper proposed is more reasonable.

Figure 10 shows that the dog-bone shapes of the two
methods, respectively, with the error is no more than 4.2 %.
The rolling conditions are vR = 1.7 m/s, w0 = 735 mm,

wE=720 mm, R=550 mm, h0=95 mm, and m=0.6, which
are taken from Chapter 8 of ref. [10].

Figure 11 shows that the effect of R on hb. It can be seen
that hb decreases as R increases orΔw decreases. Meanwhile,
it also can be seen that the influence of vertical roll diameter
for hb increases with the increment of lateral pressure. So it
indicates that a large diameter vertical roll should be adopted
to improve rolling efficiency under the condition of large
amounts of lateral pressure.

The effect of R on Ld is shown in Fig. 12. It displays that Ld
decreases asΔw or R increases. The reason is that increase of
Δw makes an increase in the contact arc length, then internal
deformation power increases, and rigid zone decreases, and
finally causes deformation permeating to the central location
of the slab. Besides, it should be pointed out that Ld decreases
with the increase of R, because the changes in the width re-
sulted in a more obvious effect than changes in radius.

4 Conclusions

1) Angular bisector linear yield criterion and Pavlov projec-
tion principle are first successfully applied in vertical
rolling. Using an energy method, simpler analytical solu-
tions of total power and separating rolling force are
obtained.

2) The values of calculated rolling force, each power, and
the dog-bone shape parameters are compared with mea-
sured ones and previous models, and the results show
good agreement.

3) In vertical rolling with small reduction, the internal plastic
deformation power and shear power are the main portion
of total power, which is different from horizontal rolling.

4) The present solution gives lower total power than that in
ref. [12] with a relative error of 12 % because the TSS
specific plastic power is higher than that of angular bisec-
tor yield criterion by 13.49 %.
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