
Int J Adv Manuf Technol (2016) 85:1887–1900
DOI 10.1007/s00170-016-8356-3

ORIGINAL ARTICLE

Accessible regions of tool orientations in multi-axis milling
of blisks with a ball-end mill

Yongshou Liang1 · Dinghua Zhang1 · Junxue Ren1 · Zezhong C. Chen2 · Yingying Xu1

Received: 7 September 2015 / Accepted: 13 January 2016 / Published online: 29 January 2016
© Springer-Verlag London 2016

Abstract Noninterference tool orientations are hard to be
determined in multi-axis milling of blisks, because the
integrated structure of blisks introduces more geometrical
constraints. To address this problem, an original approach
without interference detection is proposed to solve accessi-
ble regions of tool orientations in milling of blisks. Based
on the visibility of checking surfaces, only critical points
on surface profiles are searched and processed to construct
the accessible regions. In this approach, the start point of
each profile is sought on boundaries of the main surface
with a constant step length. From this point, a new critical
point is first searched along a specified direction and then
adjusted iteratively until it locates on a profile. When all
critical points on profiles are searched like this, the searched
points on each checking surface are reordered to form one
or more than one closed curve to present the accessible
region related to this checking surface. These curves are
then mapped onto a unit sphere and divided into noninter-
secting segments. After that, a concise approach is proposed
to combine accessible regions of all checking surfaces into
simply connected regions. This algorithm is finally verified
with two kinds of blisks and compared with a referenced
method. The results show that the proposed method can
efficiently solve accessible regions in multi-axis milling of
blisks with an expected accuracy.

� Yongshou Liang
liangys363@gmail.com

1 School of Mechanical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China

2 Department of Mechanical and Industrial Engineering,
Concordia University, Montreal H3G 1M8, Canada

Keywords Accessible region · Accessibility · Visibility ·
Blisk machining · Ball-end mill · Tool orientation ·
Interference detection

1 Introduction

Blisks are key parts used in new jet engines to improve
engine’s thrust-to-weight ratio and promote the perfor-
mance of aircrafts. Instead of attaching separate blades to
a machined rotor disk, a blisk is designed as a one-piece
unit by joining them together. This integrated structure
reduces the engine’s weight, part count, aerodynamic losses,
and possible crack initiation and propagation. However, it
also introduces more geometrical constraints to the parts,
which increase the complexity of tool orientation planning
in milling process.

The key issue for planning tool orientations is the
avoidance of local and global interference between cutters
and parts. The local interference usually refers to local-
gouging and rear-gouging, while global interference con-
cerns global-collision between objects involved in machin-
ing. Principal axis method [1], rolling ball method [2],
arc-intersect method [3], swept envelope method [4], multi-
point machining method [5], rotary contact method [6],
and hyper-osculating circles method [7] were used to avoid
local-gouging and rear-gouging. These techniques dealt
with the local interference to obtain gouging-free tool orien-
tations or locations with the concept of curvature matching.
However, global interference elimination is the main con-
sideration in machining geometrically complex parts rather
than gouging avoidance, the latter of which is a com-
mon technique as same as machining a single surface.
Effective approaches were proposed to optimize noninter-
ference tool orientations in machining impellers and blisks

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00170-016-8356-3-x&domain=pdf
mailto:liangys363@gmail.com

1888 Int J Adv Manuf Technol (2016) 85:1887–1900

by considering their complex geometries [8–10]. These
researches focused on tool orientation optimization, while
specific techniques to detect or avoid the interference were
not introduced.

Global interference detection and avoidance are still a
current technique challenge in computer numerical con-
trol (CNC) machining. Since the interference between a
cutter and sculptured surfaces is difficult to detect, an
intuitional approach is converting involved surfaces into
points, lines, or subdivided meshes. Lin et al. [11] expressed
the machined surface as point cloud and detect collisions
between the cutter and these points. Chu et al. [12] dis-
cretized the machined surface into a set of sample points to
check the interference. Chen et al. [13] expressed a blade
surface as a triangular mesh body and solved the accessi-
ble regions to optimize and smooth tool orientations. These
discretization or subdivision methods check all discretized
points or subdivided meshes. The quality and accuracy of
interference detection are largely dependent upon the quan-
tity of sampled or subdivided objects. When increasing the
quantity to improve quality and accuracy of interference
detection, the computation cost will increase accordingly.
An improved approach is presenting involved surfaces as
a hierarchical structure. Only the interested parts involved
in interference detection are further subdivided iteratively.
Ding et al. [14] presented the cutter and cutter holder
as an oriented bounding box (OBB), while approximated
the machined surface as an octree. Then, the interference
was detected hierarchically between tool OBBs and octants
of the surface octree. Tang et al. [15] approximated the
machined part as an octree of bounding sphere to recursively
conduct collision detection in five-axis machining. The
computation cost with these hierarchical approaches could
be reduced because the further process is avoided when
no interference is detected in an octant. However, these
approaches are still time-consuming to detect the interfer-
ence repeatedly. Hardware approach is another perspective
to detect the collision by taking advantage of efficient and
robust performance of the graphics processing unit (GPU)
in graphics hardware. Wang et al. [16] proposed a two-
phase strategy to detect collisions between the cutter and
triangulated obstacles. The first phase used a fair-
resolution collision map to detect collisions at most
cutter location (CL) points, while the second phase
conducted vector-based calculation to check collisions
precisely for some ambiguous cases. Bi et al. [17]
computed accessible regions in milling of an impeller
with the assistance of occlusion query functionality of
the graphics hardware. The hardware approach relies
on expensive hardware and supporting software system
[11]. Therefore, equipment costs should be taken into
consideration.

According to the processing sequence, there are two
kinds of approaches to planning noninterference tool orien-
tations. The one firstly generates tool orientations according
to some strategies and then adjusts them with interference
detection, while the other one directly calculates collision-
free spaces and then optimizes tool orientations within these
spaces [18]. Some researchers planned noninterference tool
orientations based on the first idea. Chuang and Young
[19] calculated the distance between tool axis and blade
surface, and then adjusted the tool location to avoid the
interference in milling of centrifugal impellers. Chu et al.
[12] checked the distance between the tool axis and the
machined surface. After that, the cutter was rotated away
from the interfered points to avoid the interference. Wu et al.
[20] presented a rotation method to eliminate the interfer-
ence in milling of impellers with a non-orthogonal four-axis
machine tool. By adjusting the tool orientation with a cal-
culated rotation angle, an interfered point was corrected
to locate outside of the cutter’s envelope. The interference
detection and correction in the abovementioned researches
are mainly conducted to guarantee the validation of existing
tool orientations. Collision-free spaces of tool orientations
are not obtained with these adjustment methods, without
which further tool orientation optimization is not convenient
to be conducted. Moreover, these adjustment methods usu-
ally execute interference detection and correction iteratively
for several times, which require large computation time and
resource.

To avoid iterative adjustments of tool orientations, some
researchers adopt the second idea to calculate collision-
free spaces directly based on the visibility or accessibility
of machined surfaces. Balasubramaniam et al. [21] used
graphics hardware to calculate visibility cone of a triangu-
lated surface. Lee and Chang [22] proposed a two-phase
method to avoid global interference in five-axis machin-
ing. The first phase quickly obtained conservative feasible
tool orientations based on the convex hull property of the
control mesh, while the second phase checked detailed ori-
entations with sample points in the localized area. Hsueh
et al. [23] generated collision-free cones of tool orienta-
tions with a two-stage method. At each stage, collision
detection was conducted between the cutter flank and dis-
persion points of machined surface. Wang and Tang [24]
derived a feasible map from a visibility map to figure
noninterference tool orientations. The global interference
was checked by calculating the distance between the CL
point and the project of an obstacle on the cutter bottom
plane. Li and Zhang [25] searched the cutter accessibil-
ity in interference-prone regions by checking the distances
between tool axis and sample points of the machined sur-
face. Morishige et al. [26] introduced a two-dimensional
configuration space (C-space) to calculate collision-free

Int J Adv Manuf Technol (2016) 85:1887–1900 1889

tool orientations in milling of polyhedrons and sculptured
surfaces. In this approach, the inclination angle was adjusted
from the collided point to its nearest point on the boundary
of the collision area and the free area in the C-space. Lu et al.
[27] constructed the C-space considering local interference,
global interference, and cusp height on the machined sur-
face. Jun et al. [28] adopted an edge detection technique to
search the boundaries of C-space feasible region. This pro-
cedure was first conducted in coarse-grid meshes and then in
fine-grid meshes, which was also a layer-by-layer refining
process. These researches successfully calculate noninter-
ference spaces of tool orientations with adjustment or search
method. However, the interference detection in these meth-
ods cannot be avoided, which is time-consuming when
traversing all sample points or meshes [29]. Furthermore,
the contradiction of accuracy and efficiency still exists in
the discretization or subdivision process.

This work presents a novel search method to calculate
accessible regions of tool orientations without interference
detection in five-axis milling of blisks. By replacing a ball-
end mill and checking surfaces with a line and their offset
surfaces, respectively, the concept of visibility is used to cal-
culate critical points that divide the surfaces into visible and
invisible parts. The accuracy of this method can be spec-
ified by a user, which has little effect on the computation
time. The strategy of this approach is briefly introduced in
Section 2. The algorithms to search all critical points in two
stages are presented in Section 3. When all critical points
are obtained, data processing and accessible region combi-
nation are conducted in Section 4. In section 5, the proposed
approach is verified and evaluated by applying it in two
blisks and comparing with a referenced method; and the
work is concluded in Section 6.

2 Strategy to solve accessible regions

As shown in Fig. 1, a channel of a blisk is formed by two
adjacent blades and hubs. To machine a point located inside
of this channel, tool orientations must be planned appro-
priately to avoid the potential collisions from the blades
and hubs. An accessible region is a set of tool orientations
along which the cutter will not collide or interfere with
the machined part. When calculating the accessible region
in milling of blisks with a ball-end mill, involved geo-
metrical models are replaced by their offsets in this work.
First, the ball-end mill is replaced by its central line, while
original blade/hub surfaces are replaced by their offset sur-
faces. Second, vertexes and boundaries of these original
surfaces are replaced by their offsets: spheres and tubes
that are centered at them, respectively. Here, the offset dis-
tance, radius of spheres, and radius of tubes are equal to

(a) Open blisk

(b) Closed blisk

Fig. 1 Typical structure of blisks

tool radius plus machining allowance. It is obvious that
the offset surfaces related to an original blade/hub surface
can be classified into main and assistant offset surfaces.
The offset of the original blade/hub surface is the main
offset surface, while the spheres and tubs generated from
the vertexes and boundaries are assistant offset surfaces.
For convenience, when mentioning “surface,” “checking
surface,” “main surface,” or “assistant surface” in the fol-
lowing part, they usually represent their offsets, unless
otherwise specified.

An accessible region of a CL point is constrained by its
surrounding surfaces. As shown in Fig. 2, imagine that there
is a virtual unit sphere centered at the CL point PCL. When
putting a light source at this point, the region on the unit
sphere that the rays can reach to is not obstructed by these
surfaces. It is called accessible region, while the obstructed
region is called inaccessible region. In this figure, only one
surrounding surface is shown to illustrate the concept of
the accessible region. Considering the geometrical struc-
ture of blisks, the accessible regions for milling a blisk
is one or more than one simply connected space. These
spaces can be presented by their boundaries. Geometri-
cally, the boundaries of each space on the unit sphere
are constituted with central projections of these checking
surfaces’ profiles. Therefore, when calculating accessible
regions in milling of a blisk, this work resorts to solving
these profiles.

1890 Int J Adv Manuf Technol (2016) 85:1887–1900

Fig. 2 Illustration of the accessible region

Profiles of the main and assistant surfaces for one origi-
nal blade/hub surface are solved in a search process. When
viewing from the CL point, each profile of the main surface
will contact one profile of an assistant surface at a point.
This point is located on a boundary of the main surface. It
can be treated as the start point to search these profiles on
the main and assistant surfaces. Therefore, the search pro-
cess is conducted in two stages. The first stage searches the
start points of all profiles on boundaries of the main surface,
while the second stage searches critical points on checking
surfaces’ profiles from these start points. In the first stage,
the search process starts at one vertex of the main surface,
and then checks sample points along all surface boundaries
with a constant step length using the Taylor expansion of
boundaries. If the normal direction of the main surface at
a sample point is perpendicular to the view direction, this
point is solved as a start point. When all start points are
solved like this, the search process turns into the second
stage. In this stage, the dot product of the view direction and
surface’s normal direction, abbreviated as “dot product” in
the following part, is used as an evaluation function to define
critical points and determine search trajectory. To search
the next critical point from a start point or a solved critical
point on a checking surface, an initial point is first searched
perpendicular to the gradient direction of the dot prod-
uct with a constant step length. If the dot product at
this initial point does not satisfy the condition of critical
points, the algorithm searches along the gradient direc-
tion iteratively until a new critical point is found. The
search process will go ahead like this and end when it
reaches to one boundary of the checking surface. The
searched critical points in this process present a profile
on a checking surface. When profiles of all checking
surfaces are searched and stored in segments, the criti-
cal points on these profiles are used to solve accessible
regions.

Before solving accessible regions, the stored data is first
processed. Since each critical point determines a tool ori-

entation in which the CL point can just be accessible, they
are expressed in a two-dimensional space defined by two
orientation parameters. When viewing from the CL point,
the profiles of the main and assistant surfaces for an orig-
inal blade/hub surface should form one or more than one
closed curve in this two-dimensional space. However, the
segments of profiles have been stored according to the
sequence when they were searched, which are not consis-
tent with the sequence as they will appear on the closed
curve. These sequences are first rearranged to make them
stored correctly. Then the stored sequence of critical points
in each segment is further checked. If the sequence of
critical points within a segment is not consistent with the
sequence of all segments, the critical points in this segment
are stored reversely. Then each closed curve is assigned with
a positive direction to distinguish the accessible and inac-
cessible regions. After that, intersection points of closed
curves are calculated to divide them into nonintersecting
segments.

The segments solved from an original blade/hub sur-
face can present the accessible regions for this surface.
When concerning all blade/hub surfaces, the final acces-
sible regions are solved by combining all related acces-
sible regions together. Starting from an intersection point
of segments, it looks like a man walking along the pos-
itive direction of point sequence. When encountering a
new intersection point of segments, the rightmost seg-
ment is selected as the new walking direction according
to a proposed determining criterion. One or more than
one closed route can be formed when the man passes
through all intersection points of segments. The critical
points appearing in each walking route construct a new
closed curve to present a simply connected region in
the two-dimensional space. These regions are the accessi-
ble regions to plan tool orientations in multi-axis milling
of blisks.

3 Algorithm to search critical points

3.1 Search start points of profiles

In this part, the algorithm to solve start points of profiles
is introduced in detail. Since the profiles divide a check-
ing surface into visible and invisible parts, the visibility
of a point is used to judge whether this point is a criti-
cal point on profiles. So the start points can be solved by
finding the points on boundaries around which the visibility
is changed.

The visibility of a point on a surface is determined by dot
product of surface normal and view direction. As shown in
Fig. 3, suppose a point on the ith checking surface is Si(u, v)
in xyz coordinate system. Then the unit vector Ni (u, v) of

Int J Adv Manuf Technol (2016) 85:1887–1900 1891

Fig. 3 Process of solving start points and critical on a main surface

surface normal at this point is calculated with Eq. 1. Here,
the outward direction is used in the algorithm.

Ni (u, v) =
∂Si(u, v)

∂u
× ∂Si(u, v)

∂v
∣
∣
∣
∂Si(u, v)

∂u
× ∂Si(u, v)

∂v

∣
∣
∣

or

Ni (u, v) =
∂Si(u, v)

∂v × ∂Si(u, v)
∂u

∣
∣
∣
∂Si(u, v)

∂v × ∂Si(u, v)
∂u

∣
∣
∣

(1)

When viewing the surface from a CL point PCL, dot
product Qi of view direction Vi (u, v) and surface normal
Ni (u, v) can be calculated as shown in Eq. 2.

Qi = Ni (u, v) · Vi (u, v) = Ni (u, v) · Si(u, v) − PCL

|Si(u, v) − PCL| (2)

In view of the calculation error, a small positive quan-
tity ε is defined to classify the calculated results of dot
product Qi . When Qi < −ε, point Si(u, v) is visible
from point PCL; when Qi > ε, point Si(u, v) is invis-
ible. When |Qi | ≤ ε, point Si(u, v) is considered to
be on a profile of checking surface when viewing from
point PCL.

Suppose four boundaries of the ith checking surface are
Si(u, 0), Si(1, v), Si(u, 1), and Si(0, v). For convenience,
use SB,i (wj) to represent the j th boundary. Here, wj is the
curve parameter (wj ∈ [wS,j ,wE,j], j = 1, 2, 3, 4), while
wS,j and wE,j are the curve parameters at the start and
end points of the j th boundary, respectively. Start points
of profiles are first searched along boundaries SB,i (wj) of
a checking surface one by one. After that, critical points
on profiles are then searched from these start points using
the algorithm that will be introduced later. One of the start
points is shown as point PSP in Fig. 3, while the searched
profile is shown as curve CP.

The algorithm to solve start points is shown in Fig. 4.
It starts at the start point of the first boundary by assign-
ing curve parameter wS,j to wC,j . Here, wC,j is the curve
parameter at the current point. The visibility of this point is

Fig. 4 Flow chart of the algorithm to solve start points

then checked using Eq. 2. If this point satisfies the condition
of a profile, it is a start point and stored in a set SSP. Oth-
erwise, this point may be visible or invisible from the CL
point. Since the current point SB,i (wC,j) is the start point on
this boundary, regardless of its visibility, the search process
will go ahead for checking the next sample point on the j th
boundary.

The next sample point is determined by a constant step
length LS. When LS is very small, the next sample point
can be calculated with the Taylor expansion of boundary
SB,i (wj). Expand the boundary SB,i (wj) with a first-order
Taylor series at point SB,i (wC,j) as

SB,i (wj)=SB,i (wC,j)+S′
B,i (wC,j)(wj−wC,j)+O(wj−wC,j)

(3)

Here, S′
B,i (wC,j) is the derivative of SB,i (wj) at the cur-

rent parameter wC,j , while O(wj −wC,j) is a remainder. To

1892 Int J Adv Manuf Technol (2016) 85:1887–1900

guarantee a constant distance to the current point, the next
sample point should satisfy Eq. 4.

∣
∣SB,i (wj) − SB,i (wC,j)

∣
∣ = LS (4)

Then the curve parameter for the next sample point wN,j

can be approximately calculated with Eq. 5 to update wC,j .
This simplification is reasonable because a tiny step error
has little influence on the calculated tool orientations. Here,
the sign of the second part in Eq. 5 is determined by whether
wE,j is greater than wS,j or not.

wN,j = wC,j ± LS
∣
∣
∣S′

B,i (wC,j)

∣
∣
∣

(5)

When using parameter wN,j to update wC,j , the algo-
rithm turns into a loop to check all sample points on this
boundary, as shown in Fig. 4. In this loop, the new wC,j

needs to be checked whether it is within the defined interval
[wS,j ,wE,j]. If not, the end point of the boundary is treated
as the new current point by assigning curve parameter wE,j

to wC,j ; otherwise, the current point keeps unchanged. Then
the visibility of the current point SB,i (wC,j) is checked by
Eq. 2 as before. A new start point on the boundary may be
searched in two cases, as shown in Fig. 4. The one is that
a new start point is searched in visibility checking period.
When dot product Qi of the sample point just satisfies the
condition |Qi | ≤ ε, this point is a new start point. The
other one is that dot product Qi does not satisfy the con-
dition |Qi | ≤ ε, but the sign of Qi inverses. It means that
the visibility of the adjacent two points is changed. It may
be changed from “visible” to “invisible” or from “invisible”
to “visible.” Anyway, there should be a point between them
that satisfies the condition of a critical point, which should
also be a start point. To seek a start point that is located in
the range where the visibility of adjacent points inverses, the
gradient of dot product Qi at the last point is used to adjust
wC,j adaptively in this local range. The dot product Qi of a
point on the checking surface can be denoted as Qi(u, v) in
Eq. 6.

Qi(u, v) =
(

∂Si(u, v)

∂u
× ∂Si(u, v)

∂v

)

·(Si(u, v) − PCL) (6)

Expand the dot product Qi(u, v), and calculate its gradi-
ent ∇Qi(u, v).

∇Qu,i(u, v) =
(

∂2Si(u, v)

∂u2
× ∂Si(u, v)

∂v

+ ∂Si(u, v)

∂u
× ∂2Si(u, v)

∂v∂u

)

· (Si(u, v) − PCL) (7)

∇Qv,i (u, v) =
(

∂Si(u, v)

∂u
× ∂2Si(u, v)

∂v2

+ ∂2Si(u, v)

∂u∂v
× ∂Si(u, v)

∂v

)

· (Si(u, v) − PCL) (8)

Here, ∇Qu,i(u, v) and ∇Qv,i (u, v) represent the compo-
nents of gradient ∇Qi(u, v) in u and v directions, respec-
tively. For boundary SB,i (wj) with only one curve parame-
ter, use Qi(wj) to represent Qi(u, v), while use ∇Qi(wj) to
represent ∇Qu,i(u, v) or ∇Qv,i (u, v) uniformly. It is obvi-
ous that the dot product at the desired point is equal to zero.
Expand Qi(wj) with a first-order Taylor series at parameter
wC,j as

Qi(wj)=Qi(wC,j)+∇Qi(wC,j)(wj−wC,j)+O(wj−wC,j)

(9)

Substitute Qi(wj) = 0 into Eq. 9, the curve parame-
ter wA,j of the next point in adjustments can be initially
assigned as

wA,j = wC,j − Qi(wC,j)

∇Qi(wC,j)
(10)

Then the dot product at this point is calculated to check
the visibility by comparing it with the given quantity ε. If
it is still located outside of the given limitations, the curve
parameter wC,j is updated iteratively with Eq. 10 until a new
start point is found or the iteration number exceeds a defined
number. This process is shown in Fig. 5 with an example. In
this figure, the adjustments start at point SB,i (wC,j), and end
at point PS,5 with five steps. The fifth point PS,5 is already
a start point of a profile.

After that, the algorithm goes ahead to search along the
current boundary until the whole boundary has been com-
pletely searched. Here, the case that the boundary is closed
in the current direction is also considered and processed.
To present the flow chart clearly, this part is not shown in
Fig. 4. When four boundaries are completely searched, the
start points of all profiles on this surface are obtained. In the

Fig. 5 Adjustments to get a start point

Int J Adv Manuf Technol (2016) 85:1887–1900 1893

Fig. 6 Process of solving a new critical point

same way, check other surfaces and store the searched start
points in set SSP.

3.2 Search critical points

When a start point is solved and stored in set SSP, criti-
cal points on the profile starting from this start point will
be searched with a constant step length one by one in this
part. The search process includes two parts. It firstly moves
a large step to approach the desired point, and then adjusts
with adaptive steps iteratively to reach the new critical point.
As shown in Fig. 6, the first part gets point PC,1 from
the current point Si(uC, vC,), while the second part adjusts
point PC,1 to point PC,5. Here, step lengths of adjustments
shown in this figure are locally amplified to show the search
process clearly.

The algorithm to solve a new critical point is shown in
Fig. 7. At first, the search process is expected to moves

Fig. 7 Flow chart of the algorithm to search a critical point

along the profile with a large step. Along this profile, the
dot product at each point keeps unchanged. In other words,
the first search direction should be perpendicular to the gra-
dient direction of the dot product. Suppose the variations
of parameters in u and v directions are �u = uN − uC
and �v = vN − vC, respectively. Here, uN and vN are sur-
face parameters at the next point. When searching along the
expected profile, �u and �v should satisfy Eq. 11.

�v = −∇Qu,i(uC, vC)

∇Qv,i (uC, vC)
�u (11)

Here, ∇Qu,i(uC, vC) and ∇Qv,i (uC, vC) represent the
components of gradient ∇Qi(uC, vC) at the current point.
Expand the checking surface with a first-order Taylor series
at point Si(uC, vC) as

Si(u, v) ≈ Si(uC, vC) + ∂Si(uC, vC)

∂u
(u − uC)

+∂Si(uC, vC)

∂v
(v − vC) (12)

To keep a constant search step length LS, the next point
should satisfy

|Si(u, v) − Si(uC, vC)| = LS (13)

The variation �u is calculated with Eq. 14 when substi-
tuting Eqs. 11 and 13 into Eq. 12, while �v is calculated
with Eq. 11 in view of Eq. 14. Then the current point is
updated by uN = uC + �u and vN = vC + �v.

�u = LS
∣
∣
∣
∣

∂Si(uC, vC)
∂u

− ∇Qu,i(uC, vC)
∇Qv,i (uC, vC)

∂Si(uC, vC)
∂v

∣
∣
∣
∣

(14)

As shown in Fig. 7, the dot product Qi(u, v) at the
new point is then calculated to evaluate the visibility using
Eq. 2. If this point is not on the profile, a series of itera-
tive adjustments are conducted along the gradient direction
of Qi(u, v). The gradient components of dot product at
this point in u and v directions are calculated with Eqs. 7
and 8, respectively. Then the new surface parameters in one
adjustment can be calculated as
⎧

⎪⎨

⎪⎩

uA = uC − ∇Qu,i(uC, vC)Qi(uC, vC)
∇Q2

u,i (uC,vC)+∇Q2
v,i (uC,vC)

vA = vC − ∇Qv,i (uC, vC)Qi(uC, vC)
∇Q2

u,i (uC,vC)+∇Q2
v,i (uC,vC)

(15)

Conduct this adjustment iteratively until the dot product
reduces to the desired limitations or the iteration number
exceeds a defined number. In this way, a new critical point
is searched with a constant step length. All critical points on
this profile are searched point by point like this. Here, if a
new calculated point is updated to be outside of one bound-
ary, the related point on this boundary that has the same
parameter is selected to replace this one. The following
adjustments at this point are conducted along this boundary,
which are the same as introduced in searching a start point

1894 Int J Adv Manuf Technol (2016) 85:1887–1900

on a boundary. All searched points and the related start point
are then stored in set SCP as the critical points of this profile.

Before searching another profile with a new start point,
the new start point should be checked whether it is already
an end point of a searched profile, such as point PEP in
Fig. 3. This checking process is mainly used to avoid search-
ing the same profile again. If it is, skip this start point and
check the next one; otherwise, use this start point to search
a new profile. When start points in set SCP are all checked,
the search process to solve critical points on this checking
surface is finished.

4 Algorithm to solve accessible regions

4.1 Data processing

The searched critical points determine tool orientations rel-
ative to the CL point. They are mapped on a unit sphere
centered at this CL point. A spherical coordinate system
is introduced to present the mapped points. As shown in
Fig. 8, (xC, yC, zC) is the orthogonal coordinates of a criti-
cal point in a translated xyz coordinate system whose origin
is located at the CL point PCL, while (r, θ, φ) is the spheri-
cal coordinates of the same point in rθφ coordinate system.
Here, r(r = 1), θ(0 ≤ θ < 2π), and φ(0 ≤ φ ≤
π) are radial distance, azimuthal angle, and polar angle,
respectively.

As introduced in Section 2, the searched critical points
are stored in set SCP in segments. They are first processed
in four steps. To introduce these steps clearly, the segments
solved from the same original blade/hub surface are treated
as one group.

Step 1 Rearrange the sequence of segments in the same
group. To recognize whether two segments should
be connected or not, the orthogonal coordinates of

Fig. 8 Definition of the spherical coordinate system

two endpoints of solved segments are compared. If
the coordinates are the same, these two segments
should be connected at the same endpoint. The new
sequence of all segments in each group is arranged
in this way.

Step 2 Connect all segments in the same group as closed
curves. To connect two adjacent segments, if the
last points of these solved segments are the same,
the critical points in the second segments are
reversed by storing them from the last point to
the first point. One of the same points is removed
to reduce the multiplicity of this connection point
to one. When connecting segments in the group
where the CL point is located, the tangent plane
at this CL point is also related to the accessible
region. The mapped curve of this plane on the
unit sphere is a great circle. Then part of this cir-
cle and stored segments in this group can form a
closed curve.

Step 3 Assign a positive direction for each closed curve.
The positive direction is defined to distinguish the
accessible and inaccessible regions. When walking
on the outer surface of the sphere along this direc-
tion, checking surfaces (also the obstacles and inac-
cessible region) should be located on the left-hand
side, while the accessible region is on the right-
hand side. Suppose two adjacent critical points are
points Pi and Pi+1, while a test point closed to
point Pi on a checking surface is point PT. If DP

in Eq. 16 is less than zero, the current direction is
positive; otherwise, reverse it.

DP = (PT−Pi)·((PCL − Pi) × (Pi+1 − Pi)) (16)

Step 4 Divide closed curves into nonintersecting seg-
ments. The critical points on each closed curve can
form a polygon, which is expressed by azimuthal
angle θ and polar angle φ in two-dimensional
space. Then the intersection points of theses poly-
gons are calculated and inserted into the closed
curves to divide them into nonintersecting seg-
ments.

Following such a procedure, the closed curve to present
an accessible region is expressed by a group of nonintersect-
ing segments. When walking along the positive direction of
this curve on the unit sphere, the accessible region is located
on the right-hand side. When more than one closed curve
is solved in a group, they are treated as a pair to divide a
space into accessible and inaccessible regions. In this case,
the new accessible regions keep unchanged, while the new
inaccessible region is the intersection of the former ones in
this group.

Int J Adv Manuf Technol (2016) 85:1887–1900 1895

Fig. 9 Definition of the polar coordinate system

4.2 Combine accessible regions

In this part, the effects of all original blade/hub surfaces
are considered together by combining different accessible
regions into simply connect regions. Since a complex figure
on a sphere surface is apt to cause ambiguity when it is
drawn on a plane, the concept of two-dimensional C-space
is adopted to show the idea clearly. The closed curves solved
in the last section are drawn in θφ polar coordinate sys-
tem, shown as curves C1–C5 in Fig. 9. When walking along
each curve direction, the accessible region is located on
the right-hand side. In this example, the accessible regions
presented by curves C4 and C5 are located inside of each
closed curve, which are opposite to the others. However, it
makes no difference because the curve direction defines the
“inside” and “outside” of a closed curve in two-dimensional
space. Curves C3 and C4 are from the same group as a pair.
The region between them is their inaccessible region.

A walking and selecting algorithm is proposed to com-
bine accessible regions efficiently. As shown in Fig. 10, it
looks like a man walking along the positive direction of
each closed curve. Whenever a new intersection point is
encountered, the positive direction of each followed seg-
ment provides an optional direction to go ahead. Then the
rightmost segment is selected as the new walking route.
Here, the rightmost segment is defined as follows. Suppose
there are two segments following a current intersection point
PC along each positive direction. From point PC, the next
critical points on the first and second segments are points
PN,1 and PN,2, respectively. If DR in Eq. 17 is greater than
zero, the first segment is the rightmost one; otherwise, the
second one is.

DR = (PC − PCL) · (

(PN,1 − PC) × (PN,2 − PC)
)

(17)

The algorithm starts at an arbitrary intersection point.
In Fig. 10, two intersection points are selected as the start

Fig. 10 Accessible region solving

points to show examples. In the walking route, all encoun-
tered intersection points are marked to avoid the walk falls
into an endless loop. When an intersection point is encoun-
tered at twice, the walk stops and the critical points between
the twice appearances of this point are stored as a new
closed curve. The accessible region is located on the right-
hand side when walking along these points. After that,
another intersection point is selected to start a new walk.
Whenever a marked point is selected or encountered, the
new walk stops without storing any points because the fol-
lowing route has been walked. When all intersection points
are checked like this, the accessible regions are finally
solved. The solved accessible regions are shown in Fig. 11.
Starting at any intersection points in Fig. 10, the solved
accessible region will be one of them.

The accessible regions solved with this algorithm are
usually the final results. In very rare cases, some regions
might be wrongly included. Thus, a simple checking algo-
rithm is added after the walking and selecting algorithm to

Fig. 11 Solved accessible regions

1896 Int J Adv Manuf Technol (2016) 85:1887–1900

check the validity of all solved accessible regions. To check
the validity of a region, an arbitrary point located inside
of this region is compared with the inaccessible region of
each original blade/hub surface. A line through this point
intersects with the polygon of each inaccessible region.
Then the parity of intersection points on both sides of this
point is used to check whether this point is located inside
of each region. If this point is located in none of these
inaccessible regions, the current region is valid; otherwise,
the current region is removed. This checking algorithm is
almost unused in our simulations. However, it is added to
guarantee the robustness of the algorithm.

5 Algorithm verification

5.1 Applications

The proposed algorithm is applied to calculate the accessi-
ble regions for an open blisk and a closed blisk. The open
blisk in applications is shown in Fig. 1, while the closed
blisk is converted from this open blisk by adding an outer
hub to demonstrate the influence of checking surface on
the accessible regions. These blisks are 166 mm high with
15 blades. The diameter of the outer hub is 910.2 mm,
while the diameter of the inner hub varies from 324.1 to
596.6 mm. The cutter in applications is a ball-end mill
with diameter of 20 mm. The suction surfaces, pressure
surfaces, and (inner) hub surface are related to the acces-
sible region for the open blisk. They are offset along the
inward direction of a channel in Siemens NX 7.5. The suc-
tion surfaces, pressure surfaces, inner hub surface, and outer
hub surface are offset for the closed blisk. The offsets of
these surfaces are exported into an IGES (Initial Graph-
ics Exchange Specification) file as “rational B-spline sur-
face” entities. Then they are used in MATLAB to calculate
accessible regions.

The small positive quantity ε for dot product Qi is set
to be 1.745 × 10−5 in these applications. It represents that
when the angle between view direction and surface normal
at a point is within (90 ± 10−3)◦, this point is consid-
ered to be a critical point. The constant step length LS is
set to be 0.1 mm. The searched critical points for the two
blisks are imported into Siemens NX 7.5 to show them
in Fig. 12. Notations C1, C2, and C3 represent the crit-
ical points searched on pressure surface, suction surface,
and inner hub surface for the open blisk, respectively. For
the closed blisk, a pair of closed curves can be obtained
from the outer hub surface, which are denoted as C4

and C5. The region between them is their inaccessible
region. The searched critical points are then mapped into
θφ coordinate system and drawn in Fig. 13 with MAT-
LAB. Here, notations C1–C5 are still used to represent

(a) Open blisk

(b) Closed blisk

Fig. 12 Searched critical points in applications

the mapped points in θφ coordinate system. The arrow on
each curve demonstrates the positive direction of this closed
curve.

The final accessible regions solved with the proposed
method are shown in Fig. 14. There is one accessible region
for the open blisk in this example, while there are two
accessible regions for the closed blisk. The only geometri-
cal difference in two examples is that the closed blisk has
an outer hub. On the one hand, it cuts off the accessible
region for the open blisk into two parts; on the other hand, it
removes part of accessible region when it acts as an obstacle
in the closed blisk. When walking along the direction shown
with the arrows in Fig. 14, each accessible region is located
on the right-hand side.

5.2 Analysis

The proposed method is implemented in MATLAB R2014a
in a 64-bit operating system with an Intel(R) Core(TM) i5-
3320M CPU with 2.60 GHz processor. Running time and
calculation errors in the examples are used to evaluate the
proposed algorithm in solving accessible regions. The total
running time for the open blisk and closed blisk is 24.3 and

Int J Adv Manuf Technol (2016) 85:1887–1900 1897

θ=0

θ=π/2

θ=π

θ=3π/2

θ=2π

φ=π

C
1

C
2

C
3

(a) Open blisk

θ=0

θ=π/2

θ=π

θ=3π/2

θ=2π

φ=π

C
1

C
2

C
3

C
4

C
5

(b) Closed blisk

Fig. 13 Critical points expressed in θφ coordinate system

86.7 s, respectively, as shown in Table 1. The algorithm to
search critical points is the key part in the proposed method.
In the examples, 35,751 points are searched as the critical
points for the open blisk in 7.8 s, which is 32.1 % of the total
running time. By contrast, 93,534 points are searched for the
closed blisk in 12.6 s, which is 14.5 % of the total running
time. The running time to combine the accessible regions
takes 0.4 and 0.6 s for the open blisk and closed blisk,
respectively. The most time-consuming part is the algorithm
to find and calculate intersection points for all segments.
Although the vectorization codes are used in MATLAB, it
still consumes 12.1 and 68.5 s to check the existence of
an intersection point for each line pair in two examples,
respectively. When enlarging the constant step length, the
running time will be shortened because the searched points
are reduced. The boundary points solved with the proposed

θ=0

θ=π/2

θ=π

θ=3π/2

θ=2π

φ=π

(a) Open blisk

θ=0

θ=π/2

θ=π

θ=3π/2

θ=2π

φ=π

(b) Closed blisk

Fig. 14 Solved accessible regions in applications

method to represent the accessible regions are 11,326 and
15,467 for the open and closed blisk, respectively.

The calculation errors are evaluated in two aspects: dis-
tance error in searching with constant step length and angle
error in calculating dot product. Since the critical points
searched for the open blisk are all included in those for the
closed blisk, the calculation errors are checked for the lat-
ter one. One thousand pairs of random points are selected
to calculate the distance error. The mean error, maximum
error, and standard deviation are 2.26× 10−7, 4.63× 10−5,
and 1.45 × 10−5 mm, respectively. It can be seen that the
distance error between adjacent searched points in this algo-
rithm is at most 0.046 % of the specified constant step
length (0.1 mm). The actual step lengths can be consid-
ered constant as expected. The angle error in calculating dot
product reflects the accuracy of solved noninterference tool

Table 1 Results of the proposed method

Searched points (num.) Boundary points (num.) Running time (s)

Searching points Combining regions Total

Open blisk 35,751 11,326 7.8 0.4 24.3

Closed blisk 93,534 15,467 12.6 0.6 86.7

1898 Int J Adv Manuf Technol (2016) 85:1887–1900

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

(a) Level 1 (10)

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

(b) Level 2 (1)

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

(c) Level 3 (0 1)

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

0 50 100 150 200 250 300
0

50

100

β [°]

α
[°

]

(d) Level 4 (0 01)

Fig. 15 Accessible regions at different levels solved with the refer-
enced method

orientations. When the angle between the view direction and
the surface normal is equal to 90◦, the checked point will be
located on a profile. The mean error, maximum error, and
standard deviation of the angles calculated at 2000 critical
points are (6.56×10−5), (8.92×10−4), and (4.27×10−4)◦,
respectively. The checked angle error is less than the spec-
ified limitation ±(10−3)◦, which is also the round-off error
for most machining centers.

5.3 Comparisons

The proposed approach is compared with the edge detec-
tion algorithm presented by Jun et al. in reference [28]. In

θ=0

θ=π/2

θ=π

θ=3π/2

θ=2π

φ=π

Proposed
Referenced

Fig. 16 Comparison of accessible regions solved with two methods

their work, the accessible region was first constructed by
collision checking between a cutter and triangular facets.
Then the boundaries of accessible region were searched by
turning right when the candidate point is feasible, while
turning left when not feasible. To compare two approaches,
the same open blisk and cutter are used to implement the
referenced approach in MATLAB R2014a. The original sur-
faces of the open blisk shown in Fig. 12 are exported from
Siemens NX 7.5 into an STL (STereoLithograhpy) file to
express them as triangular facets. The number of exported
facets is 44,836 when the triangle tolerance and adjacency
tolerance are all set as 0.0025 mm. The (α, β) domain is
divided into four levels of grids, with angle interval of 10,
1, 0.1, and 0.01◦, respectively. Here, α(0◦ ≤ α ≤ 90◦) is
the tilt angle, while β(0◦ ≤ β < 360◦) is the yaw angle.
They were defined in reference [28] to represent tool orien-
tations in the C-space. The collision is detected by checking
the distances between the tool axis and parts of triangular
facets. These facets are under the projection of the inclined
cutter as introduced in reference [28]. The tolerance used in
distance checking is 10−5 mm. The accessible regions at dif-
ferent levels solved with the referenced method are shown
in Fig. 15. Here, the feasible orientations at the first level
are shown with pentagons. The difference between the third
and fourth levels is hard to be distinguished in view of the
presented size of figures.

Running results of the referenced algorithm are listed in
Table 2. When the angle interval is set as 10◦ at the first

Table 2 Results of the referenced method

Angle interval (◦) Collision detection (num.) Boundary points (num.) Running time (s)

Detecting collision Searching boundaries Total

Level 1 10 3.25 × 102 6.70 × 101 0.5 0.2 1.1
Level 2 1 1.38 × 104 6.63 × 102 12.5 11.5 27.4
Level 3 0.1 1.48 × 105 6.78 × 103 226.7 831.4 1,079.8
Level 4 0.01 1.97 × 106 6.80 × 104 3,714.1 74,018.2 78,409.2
Final 0.01 2.13 × 106 6.80 × 104 3,953.8 74,861.3 79,517.5

Int J Adv Manuf Technol (2016) 85:1887–1900 1899

Table 3 Comparisons of two methods

Collision detection (num.) Boundary points (num.) Running time (s) Angle tolerance (◦) Maximum angle error

Absolute (◦) Relative

Referenced method 2.13 × 106 6.80 × 104 79,517.5 10−2 1.41 × 10−2 141.0 %

Proposed method 0 1.13 × 104 24.3 10−3 8.92 × 10−4 89.2 %

level, 3.25 × 102 tool orientations are checked in collision
detection in 0.5 s, while 6.70 × 101 points are found as the
boundaries of accessible region in 0.2 s. Total running time
at this level is 1.1 s. When the angle interval is refined as
0.01◦ at the fourth level, the collision detection is conducted
along 1.97 × 106 tool orientations in 3,714.1 s at this level,
while 6.80 × 104 points are found in 74,018.2 s to con-
struct the boundaries of accessible region. This procedure
takes a long time because for-loops are used in MATLAB
to check tool orientations in the stored feasible C-space and
determine whether to turn right or left. Total running time
at this level is 78,409.2 s. However, to get the results at this
level, previous levels need to be conducted to get the relative
coarse grids. The final running time when the angle interval
is set as 0.01◦ should include all running time at previous
levels, which is 79,517.5 s.

The final solved accessible region with the referenced
method is shown in Fig. 16 in θφ coordinate system to com-
pare it with the method proposed in this paper. It can be
seen that the results of two methods have a little deviation
in some regions. This is because the local facets around
cutter contact point affect the distance checking with the
referenced method in our implementation. Since local inter-
ference is not considered in this paper, the parts of bound-
aries that are obviously free of local interference are selected
to compare the results of two methods. The angle between
the searched tool orientations and related accurate ones are
also calculated at 2000 boundary points with the referenced
method. The mean error, maximum error, and standard devi-
ation are (8.32×10−3), (1.41×10−2), and (1.07×10−2)◦,
respectively. The relative angle error is used to compare
the accuracy of two methods by dividing the absolute angle
error by the angle interval (or angle tolerance). As shown
in Table 3, the maximum relative angle error with the ref-
erenced method is 141.0 % in our implementation, while it
is 89.2 % with the proposed method. The defined angle tol-
erance is not guaranteed with the referenced method since
the angle interval is greater than the defined angle tolerance
when angles α and β are both different in two adjacent tool
orientations. By contrast, the defined angle tolerance is used
as the abort condition in the iterative search process with the
proposed method, which guarantees the searched tool ori-
entations will satisfy the defined angle tolerance. With the
referenced method, 2.13×106 tool orientations are checked

in collision detection even though the layer-by-layer refin-
ing process is adopted. The proposed method calculates
accessible region without collision detection, which avoids
the contradiction of efficiency and accuracy as mentioned
before. Fewer points (1.13 × 104) are used in the proposed
method to present the boundaries of accessible region, even
with a smaller angle tolerance. They are more efficient in
expressing the boundaries of accessible region because they
are actually the sample points on these boundaries, while
those searched by the referenced method are used to approx-
imate the boundaries with polygonal chain, as shown in
Fig. 16. Running time of the proposed method (24.3 s) is
obviously shorter than the referenced method (79,517.5 s),
which are compared in Table 3. Once a searched point is
stored in an array with the proposed method, it is rarely
used again. On the contrary, plenty of tool orientations are
used time after time to conduct collision detection and query
their feasibility in a large array within for-loops, which
takes a long time. By comparing the calculation errors, the
number of collision detection, the number of solved bound-
aries points, and running time, the proposed method has its
advantages in efficiently and accurately solving the acces-
sible regions in multi-axis milling. It is worth pointing out
that these comparisons are based on our understanding and
implementation of the two methods. The results might be
different when improved codes are used.

6 Conclusion and outlook

An original approach is proposed to solve accessible regions
in multi-axis milling of blisks with a ball-end mill. Com-
pared with discretization methods and subdivision methods,
only the critical points that are related to the accessible
regions are concerned in this method. The main contribu-
tions of this work include that (a) a search approach to
solving accessible regions without interference detection,
(b) a two-stage algorithm to solve critical points with a
constant step length, and (c) a walking and selecting algo-
rithm to combine accessible regions. The proposed method
has been verified to be efficient and accurate in solving
accessible regions. This method can be applied in solv-
ing accessible regions of impellers, marine propellers, or
other complex parts in industry. The future work will be

1900 Int J Adv Manuf Technol (2016) 85:1887–1900

dedicated to dealing with the case that a profile does not
start at a boundary to improve the robustness of the pro-
posed algorithm. Nevertheless, the proposed method is still
a novel perspective to search the accessible regions without
interference detection.

Acknowledgments This work was supported by the National Sci-
ence and Technology Major Project on CNCMachine tool, China (No.
2014ZX04012013).

References

1. Rao N, Ismail F, Bedi S (1997) Tool path planning for five-
axis machining using the principal axis method. Int J Mach Tools
Manuf 37(7):1025–1040

2. Gray P, Bedi S, Ismail F (2003) Rolling ball method for 5-axis
surface machining. Comput-Aided Des 35(4):347–357

3. Gray PJ, Ismail F, Bedi S (2007) Arc-intersect method for 3 1
2
1
2 -

axis tool paths on a 5-axis machine. Int J Mach Tools Manuf
47(1):182–190

4. Chiou JCJ, Lee YS (2005) Optimal tool orientation for five-axis
tool-end machining by swept envelope approach. J Manuf Sci Eng
127(4):810–818

5. Warkentin A, Ismail F, Bedi S (2000) Multi-point tool positioning
strategy for 5-axis machining of sculptured surfaces. Comput-
Aided Geom Des 17(1):83–100

6. Fan W, Wang X, Cai Y, Jiang H (2012) Rotary contact method for
5-axis tool positioning. J Manuf Sci Eng 134(2):1–6

7. Kim YJ, Elber G, Barto M, Pottmann H (2015) Precise gouging-
free tool orientations for 5-axis CNC machining. Comput-Aided
Des 58:220–229

8. Chen KH (2011) Investigation of tool orientation for milling blade
of impeller in five-axis machining. Int J Adv Manuf Technol
52(1):235–244

9. Liang Y, Zhang D, Chen ZC, Ren J, Li X (2014) Tool ori-
entation optimization and location determination for four-axis
plunge milling of open blisks. Int J Adv Manuf Technol 70
(9):2249–2261

10. Han FY, Zhang DH, Luo M, Wu BH (2015) An approach
to optimize the tilt angle of indexable table for nonorthogo-
nal four-axis milling of impeller. Int J Adv Manuf Technol 76
(9):1893–1904

11. Lin Z, Shen H, Gan W, Fu J (2012) Approximate tool posture
collision-free area generation for five-axis CNC finishing pro-
cess using admissible area interpolation. Int J Adv Manuf Technol
62(9):1191–1203

12. Chu CH, Huang WN, Li YW (2012) An integrated framework of
tool path planning in 5-axis machining of centrifugal impeller with
split blades. J Intell Manuf 23(3):687–698

13. Chen L, Xu K, Tang K (2015) Collision-free tool orientation opti-
mization in five-axis machining of bladed disk. J Comput Des Eng
2(4):197–205

14. Ding S, Mannan MA, Poo AN (2004) Oriented bounding box and
octree based global interference detection in 5-axis machining of
free-form surfaces. Comput-Aided Des 36(13):1281–1294

15. Tang TD, Bohez ELJ, Koomsap P (2007) The sweep plane
algorithm for global collision detection with workpiece geom-
etry update for five-axis NC machining. Comput-Aided Des
39(11):1012–1024

16. Wang QH, Li JR, Zhou RR (2006) Graphics-assisted approach
to rapid collision detection for multi-axis machining. Int J Adv
Manuf Technol 30(9):853–863

17. Bi QZ,Wang YH, Ding H (2010) A GPU-based algorithm for gen-
erating collision-free and orientation-smooth five-axis finishing
tool paths of a ball-end cutter. Int J Prod Res 48(4):1105–1124

18. Ding H, Bi Q, Zhu L, Xiong Y (2010) Tool path generation and
simulation of dynamic cutting process for five-axis NCmachining.
Chin Sci Bull 55(30):3408–3418

19. Chuang LC, Young HT (2007) Integrated rough machining
methodology for centrifugal impeller manufacturing. Int J Adv
Manuf Technol 34(11):1062–1071

20. Wu B, Zhang D, Luo M, Zhang Y (2013) Collision and inter-
ference correction for impeller machining with non-orthogonal
four-axis machine tool. Int J Adv Manuf Technol 68(1):693–700

21. Balasubramaniam M, Sarma SE, Marciniak K (2003) Collision-
free finishing toolpaths from visibility data. Comput-Aided Des
35(4):359–374

22. Lee YS, Chang TC (1995) 2-Phase approach to global tool
interference avoidance in 5-axis machining. Comput-Aided Des
27(10):715–729

23. Hsueh YW, Hsueh MH, Lien HC (2007) Automatic selection of
cutter orientation for preventing the collision problem on a five-
axis machining. Int J Adv Manuf Technol 32(1):66–77

24. Wang N, Tang K (2007) Automatic generation of gouge-free and
angular-velocity-compliant five-axis toolpath. Comput-Aided Des
39(10):841–852

25. Li LL, Zhang YF (2006) Cutter selection for 5-axis milling of
sculptured surfaces based on accessibility analysis. Int J Prod Res
44(16):3303–3323

26. Morishige K, Kase K, Takeuchi Y (1997) Collision-free tool
path generation using 2-dimensional C-space for 5-axis control
machining. Int J Adv Manuf Technol 13(6):393–400

27. Lu J, Cheatham R, Jensen CG, Chen Y, Bowman B (2008) A
three-dimensional configuration-space method for 5-axis tessel-
lated surface machining. Int J Comput Integr Manuf 21(5):550–
568

28. Jun CS, Cha K, Lee YS (2003) Optimizing tool orientations for
5-axis machining by configuration-space search method. Comput-
Aided Des 35(6):549–566

29. Lasemi A, Xue D, Gu P (2010) Recent development in
CNC machining of freeform surfaces: a state-of-the-art review.
Comput-Aided Des 42(7):641–654

	Accessible regions of tool orientations in multi-axis milling of blisks with a ball-end mill
	Abstract
	Introduction
	Strategy to solve accessible regions
	Algorithm to search critical points
	Search start points of profiles
	Search critical points

	Algorithm to solve accessible regions
	Data processing
	Combine accessible regions

	Algorithm verification
	Applications
	Analysis
	Comparisons

	Conclusion and outlook
	Acknowledgments
	References

