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Abstract Indirect Tool Condition Monitoring (TCM)
methods have shown significant potential to automatically
detect worn tools without intervention in the machining pro-
cess. This paper presents the development of a non-intrusive
and online TCM system for large diameter indexable insert
drills. The TCM system developed used two cutting force-
related signals of a horizontal boring machine, namely the
spindle motor current and the axial feed motor current, and
features extracted from these signals were taken as the inputs
to a series of models to predict the tool wear state and the hole
diameter. A tool replacement strategy based on applying limits
to the predicted hole diameter was also developed. Adjusting
these limits allows the strategy to be tuned for either hole
accuracy or tool life depending on the requirements of a spe-
cific application. Experiments of drilling of 39.0-mm-diame-
ter holes in 2205 Duplex stainless steel in an industrial field
were designed and performed with the results to illustrate the
effectiveness of developed TCM and strategies. Specifically,

the TCM system ensured that none of over tolerance holes
would have been drilled, which is critically important since
any over-tolerance hole can result in the failure of an entire
finished product of tubesheet; the replacement strategy for
tool life resulted in a 44 % increase in tool life and a non-
trivial reduction in machine down time due to fewer tool
changes while holding a hole diameter tolerance of ±0.1 mm.

Keywords Cutting .Machine tools .Manufacturing
automation .Monitoring

1 Introduction

Optimizing tool life in machining operations is a continuous
challenge for machine shops. A balance between productivity
and tooling costs must be found in order to maximize profit.
Drilling holes is a common machining operation where tool
life is critical. If a drill fails while drilling, it often results in a
hole with the diameter and/or surface finish out of tolerance.
To prevent this, drills are changed at regular intervals prior to
failure. This usually prevents out of tolerance holes but often
results in prematurely changing drills that are still capable of
drilling significantly more holes. A method for real-time mon-
itoring of the drill condition (tool condition monitoring, TCM)
would allow drills to be consistently used to their maximum
life while preventing out of tolerance holes.

The manufacture of heat exchangers requires drilling thou-
sands of identical holes through plate varying from 6 mm
thick up to 600 mm thick for tubesheets and baffles. Some
heat exchangers can require 30,000 plus holes per unit in
materials such as stainless steel, chrome alloys, inconel, and
low alloy steels. In this repetitive process, even little improve-
ment over the life of drills, or using drills until slightly closer
to the end of their life, can substantially reduce the
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manufacturing time and overall cost of a heat exchanger. An-
other significant benefit to utilizing a TCM system is the abil-
ity to allow unmanned drilling operation. With an automatic
tool changer and a reliable TCM system, the only operator
input required would be to change inserts one or two times
per shift allowing the operator to run several machines at once
or allow machines to be run completely unmanned in between
shifts.

1.1 Tool condition monitoring

There has been a lot of research into TCM systems over the
last several decades. These systems can be broken down into
two broad streams, direct and indirect systems [1, 2]. Direct
TCM systems rely on direct measurements of tool wear
through visual inspection [3] or computer inspection. This
prevents them from being used online while machining, mak-
ing them less efficient than indirect systems that rely on mea-
surements of process parameters such as cutting forces or
vibration to infer the wear of the tool. The online monitoring
capabilities of indirect systems make them preferable in in-
dustrial settings. An indirect system typically involves sens-
ing, feature extraction, and classification to estimate the tool
condition (Fig. 1).

Cutting forces such as feed force and spindle torque as well
as related parameters such as feed and spindle motor currents
have been widely measured [2, 4, 5]. Cutting forces are pro-
portional to motor currents which allows simple and econom-
ical implementation of TCM systems based on these signals
[6–11]. A problem with utilizing cutting forces for TCM is
that they are affected by cutting conditions, heterogeneous
workpiece material properties, and environmental noise in ad-
dition to tool wear [8, 9, 12, 13]. Mechanical vibrations, up to
20 kHz, are also related to tool wear and have been used to
infer the tool wear state [14, 15]. Vibrations are also suscepti-
ble to being affected by the same factors as cutting forces.
Vibrations of higher frequencies which are referred to as
acoustic emission (AE), typically over 100 kHz, have also

been used to infer the tool wear state [16–19]. AE is much
less susceptible to workpiece materials, cutting conditions,
and environmental factors but is sensitive to signal attenuation
and part geometry [4, 19, 20]. Each of the mentioned signals
have pros and show promise for TCM but also have limita-
tions and drawbacks; therefore, more than one parameter is
typically measured and data fusion is used to increase system
reliability and robustness [21].

It is difficult to infer the tool wear state based on the raw
sensor data so features that enable classification are often ex-
tracted. These features can be in either the time or the frequen-
cy domain. Some commonly extracted features in the time
domain are the arithmetic mean [1], the root mean square
(RMS) value [16], standard deviation [21], peak values [22],
kurtosis [15], and parameters for time series models of the
measured signals [5, 23]. Fast Fourier transforms (FFT) can
be used to analyze signals in the frequency domain by deter-
mining the distribution of components with different frequen-
cies [4, 14]. The major drawback of the frequency-based
methods is the FFT calculation tends to attenuate the frequen-
cy content of transient phenomena and thus is not very suit-
able for non-stationary signals such as those found in TCM
systems [4]. Time-frequency methods such as the wavelet
transform or one of its modified forms allow the extraction
of both time domain and frequency domain information from
the signals simultaneously [17, 23–25]. Classifiers are then
used to divide the feature space into regions representing the
different tool wear states. Some classifiers that have been used
in TCM systems are rule-based expert systems [25], support
vector machines [3], neural networks [10, 17, 24, 26–28], and
other pattern recognition approaches [29, 30].

All of the referenced research above related to drilling has
involved twist drills, most of which were high speed steel and
smaller than 20 mm in diameter. There has been no research
done on TCM systems using 25 mm diameter or greater drills.
Modern, large diameter drills typically have a steel body with
replaceable coated carbide inserts like the drill shown in
Fig. 2. Preliminary research has shown significant potential
for utilizing cutting force related signals (based on the spindle
current and the feed motor current) in a TCM system for large
drills.Machinin
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Fig. 1 Block diagram of an indirect TCM system Fig. 2 Drill with inserts a full drill and b outside insert closeup
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1.2 Machining accuracy prediction

Machining accuracy is the variance between desired geometry
of a part and the actual geometry. Inaccuracies can come in a
number of different forms: size, geometrical position, and sur-
face finish [31]. For the drilling process, machining accuracy
is comprised of the hole position, hole size, and surface finish.
Inaccuracies can be caused by cutting forces, cutting condi-
tions, tool wear and deflections, and thermal-induced defor-
mation of machine tools [18, 32]. Two types of models have
been developed to predict machining errors: physical models
and phenomenological models. Physical models are based on
the governing physical laws [33] and typically have compli-
cated forms and require intensive calculations [32] limiting
their usefulness in industry. Phenomenological models relate
machining errors to the contributing factors mathematically
with limited consideration of the underlying physics. Rigor-
ously selecting the mathematical equations based on experi-
mental data can result in models with simpler structures com-
pared to physical models.

Typically, the development of phenomenological models
involves three steps. First, dominating factors are identified
and selected as the inputs to the models to represent the ma-
chining errors. Second, drilling experiments, as designed by
experiment design methods such as the central composite de-
sign method [34] or the Taguchi method [35], are performed
while the machining errors are measured and evaluated. Last,
specific model structures, such as the response surface models
and linear polynomial models, are chosen to represent the
relationship between the selected factors and the machining
errors. Model coefficients are then identified from the record-
ed experimental data, and methods such as analysis of vari-
ance (ANOVA) and residual analysis are often employed for
model validation and improvement [35]. The response surface
model combined with ANOVA and residual analysis are ef-
fective for identifying dominating factors. As such, these
methods were adopted and employed in the development of
models relating hole size and flank wear to the measured cur-
rent signals in the present study.

Most of the research on TCM systems involves models re-
lating the flank wear to measured signals so as to inform tool
replacement [8–11, 13, 17, 21, 26]; little research has been com-
pleted on relating actual hole quality (machining accuracy) to the
measured signals [18, 32]. Furthermore, research on TCM sys-
tems for large diameter drills has not been reported in the liter-
ature. The goal for this study is to develop a TCM system to
monitor the hole quality, along with the tool wear, for large
diameter tube drilling and on this basis, to develop strategies
for the tool replacement so as to maximize tool lifetime while
ensuring hole accuracy. Cutting experiments in an industrial
field (Mitsubishi Hitachi Power Systems Canada, LTD) were
designed and performed with the results to illustrate the effec-
tiveness of developed TCM and strategies.

2 Model development for tool wear and replacement

In this paper, hole accuracy is represented by the mean diam-
eter (ED), which is evaluated from three points of a hole.
Surface finish is another aspect of hole quality and accuracy
that is important in some heat exchanger designs and many
drilling applications; however, it is typically a secondary con-
sideration to the hole size and was not considered in this paper.
Hole accuracy is related to the wear state of the drill inserts,
and previous research has shown that the wear state of a drill is
related to the spindle and feed motor currents [4, 9, 10, 25, 36]
providing a link between the measured signals and the desired
output namely the hole accuracy.

The tool wear (Vb) is represented by the wear on the flank
surface of the drilling insert cutting edges and is measured
optically with a microscope. For this project, only the flank
wear on the outside insert was considered since the outside
insert typically wears twice as fast as the inside insert as well
as the fact that the outside insert is directly responsible for
cutting the surface of the hole.

Given that the tool wear and the hole accuracy depend on
cutting conditions as well as the cumulative cutting time for a
particular insert, i.e., the number cumulative number of holes
drilled (a), it is rational to model them as a dynamic system
where the inputs are the cutting conditions, i.e., the cutting
speed (S) and the feed rate ( f ), and the features extracted from
the drilling process by the current sensors (i.e., F1and F2) are
treated as system states, characterizing the system dynamics.
Figure 3 is a block diagram of the proposed model, which
consists of three sub-models to represent the system states,
tool wear, and hole accuracy.

The first model,M1, could be any discrete dynamic model.
Data related to this project that was collected previously indi-
cated that the autoregressive-with-exogenous-inputs (ARX)
or one of its modified forms was promising. An ARX model
for modeling each of three features extracted from the steady
state drilling portion over the life a set of drilling inserts is:

F j nð Þ ¼ −
XN

k¼1

ck F j n−kð Þ þ
XM

k¼0

ak f n−kð Þ

þ
XL

k¼0

bkS n−kð Þ þ e nð Þ ð1Þ

where Fj are the features being modeled, f is the feed rate, S is
the surface speed, and e is the error.

However, in order to determine the coefficients ak, bk, and
ck, the inputs f(n) and S(n) must be “rich” or have persistence
of excitation. For tubesheet drilling in general, the feed rate
and the surface speed are not normally changed throughout
the life of the insert; thus, the inputs for the equation above are
constant over the life of each time series and therefore do not
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qualify as rich inputs. Removing the terms associated with the
inputs results in an autoregressive (AR) model of the follow-
ing form, which is only dependent on the previous outputs that
can be measured:

F j nð Þ ¼ −
XN

k¼1

ck F j n−kð Þ þ e nð Þ ð2Þ

A number of features make an ARmodel attractive. First of
all, depending on the number of terms used in the model (the
model design parameter N), the model provides a degree of
smoothing to the actual data. Secondly, the AR model allows

forecasting of the value of F̂ j up to N holes into the future,
thus permitting the forecasting of future hole diameters and
allowing inserts to be changed prior to drilling holes with a
high potential to be out of tolerance.

To allow the AR models to accurately predict the extracted

features, F̂ j, for the initial holes drilled in a time series (i.e.,
n <N), surface response models can be used. Fj(n − k)
fork>=n, Fj can be estimated with a polynomial model with
inputs of feed rate and spindle speed.

F j ¼ f x1; x2;⋯xkð Þ þ ε ð3Þ

The second and third models,M2 andM3, shown in Fig. 3
are also surface response models. These models are not dy-
namic since the relationship between the measured signals and
the tool wear and subsequently the hole accuracy does not
change with time. The second model will use the machining
parameters, feed rate, f, and spindle speed, S, as well as the

predicted values for F̂ j to predict the flank wear on the outside
drilling insert using up to second-order polynomials of the
form shown in Eq. (3). The proposal for the third model to
predict the hole diameters has the machining parameters and
the predicted features as inputs to a polynomial surface re-
sponse model similar to model 2.

3 Experimental methodology

3.1 Experiment design

There are many factors that may influence the life and accu-
racy of a drill including the machining parameters (spindle

speed and feed rate), drill type, insert grade, insert shape, type
of insert chip breaker, use of coolant, coolant volume, coolant
pressure, machining center rigidity, and part/setup rigidity. In
this paper, the influence of two factors of machining parame-
ters, i.e., spindle speed and feed rate, was investigated, while
the others were held constant in the cutting experiments. With
two varying factors, a simple and efficient experiment design
is a two factor–two level full factorial design with 4 different
test conditions, which, however, only provides information
enough for identifying a linear model. Adding an additional
test condition in the center of the 4 test conditions provides
additional data to test for non-linearity. If further test condi-
tions are added along each axis, enough information could be
obtained for quadratic, 2nd order models. This design is called
a central composite design, which is an efficient design for
fitting up to 6 coefficients in two factor 2nd order models. This
design includes 8 runs plus the runs at the center point (typi-
cally 3 to 5 runs). These runs at the center point provide an
idea of the variability of the process being studied, especially
where only a single replicate can be run at each of the other
test conditions.

The center point of the experiment was chosen based on
Hitachi’s current operating conditions, specifically a feed rate
of 0.130 mm/rev at a surface speed of 130 m/min for the
steady-state portion of the hole. All of the test conditions for
the experiment are shown in Table 1.

As mentioned above, the remaining factors were held as
constant during the cutting experiments. Specifically, a
Toshiba BF-130A horizontal boring mill (HBM) with high
pressure, through the tool, coolant at 700 psi was used for
all testing. All tests were completed with the same drill, on
the same workpiece, and in the same setup.

The drill is a 39.0-mm diameter SandvikCorodrill 880 drill
capable of drilling to a depth of two times the diameter
(Sandvik part number 880-D3900L40-02). This drill requires

Fig. 3 Block diagram of the proposed dynamic model

Table 1 Experimental conditions

Run f s f (mm/rev) s (m/min)

1 0 0 0.130 130

2 −1 1 0.090 140

3 1 −1 0.170 120

4 0 0 0.130 130

5 1 1 0.170 140

6 −1 −1 0.090 120

7 0 0 0.130 130

8 −1.4 0 0.074 130

9 0 1.4 0.130 144

10 1.4 0 0.186 130

11 0 −1.4 0.130 116

12 0 0 0.130 130

13 0 0 0.130 130
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two indexable carbide inserts, the inside insert used for all the
experimental testing is a general machining chip breaker in a
1044 grade (Sandvik part number 880–07 04 06H-C-GM
1044), and the outside insert is a light machining 4024 grade
(Sandvik part number 880–07 04 W10H-P-LM 4024). Each
insert, both the inside and the outside, has a total of four
cutting edges obtained by simply rotating the insert 90°. The
aim of the experiment was to drill as many holes with a single
cutting edge as possible at each combination of cutting param-
eters, and both inserts were always indexed prior to starting a
new run.

Figure 4a, b shows a new and a worn OD insert with a ×5
magnification of the flank of the outside insert. As these in-
serts are used, a clear wear line develops along the flank of the
inserts. As more holes are drilled, this wear line typically
advances across the flank of the insert in a fairly linear fashion
with the greatest wear occurring near the tip of the insert. The
width of this wear pattern increases sharply upon first use
when the insert is new slows to a consistent increase in wear
until near the end of the life of the insert when the wear will
tend to accelerate again.

The large wear pattern visible near the right side of the
insert shown in Fig. 4b is an example of the random increased
wear patterns that can develop and which also can affect the
resulting hole diameter depending on the where the wear
occurs.

The two signals required for the TCM system are the cur-
rent of spindle motor and the current of axial feed motor. The
HBM used for the testing has a built in spindle loadmeter with
a 0–10 V output proportional to the spindle motor current. It
did not have a similar meter for the axial feed force, so anOhio
Semitronics CT8-017D RMS current sensor with a propor-
tional output of 0–10 V and an input range of 0–20 Amps
was installed. The current signals for the spindle motor and
the axial feed motor were both recorded using a National
Instruments USB 6351 DAQ and a custom interface written
using the Data Acquisition Toolbox ofMatlab. Figure 5 shows
the experimental setup of the present study.

A 2 kHz sampling rate was used for all data analysis. Since
the spindle torque and the axial feed force are proportional to
the motor currents, in this paper, the motor currents (measured
in volts, V) will be referred to as the spindle torque and the
axial force even though actual torques and forces were not
calculated.

The results for the wear and hole diameter measure-
ments for the experiment are shown in the following

figures. The maximum flank wear for all the runs can be
seen in Fig. 6, and the hole diameter for each hole is
shown in Fig. 7. The diameter for the four runs at the
center point (0.13 mm/rev feed and 130 m/min surface
speed) is shown in Fig. 8.

Since these runs are all at the same machining param-
eters, this graph provides a good indication of the inherent
variability for the Sandvik drill used. There is ±0.075 mm
diameter variation with the same drill and the same pa-
rameters (the maximum difference in the diameters be-
tween the runs up until 60 holes when wear variations
starts to increase the variability). This variability indicates
the maximum accuracy, i.e., the minimum variability that
can be expected for a TCM system using large size
indexable insert drills.

The models in the proposed TCM system are based on
features extracted from the raw motor currents. In order to
extract features from the raw signals, algorithms were devel-
oped to recognize the current signature for an individual hole
and to identify the steady state drilling portion of each hole.
For this project, all the features used for building the TCM
models were extracted from the steady state drilling portion of
the drilling cycle.

3.2 Parameter identification

The first step to building a dynamic AR model for the
extracted features is to model the initial values of the
features to accurately predict the initial time series points.
The first ten values in the recorded time series were av-
eraged to obtain a single data point for each experimental
run. Using ANOVA analysis and a least squares fit the
mean torque and force can be calculated by the models
shown in Eq. (4), and similar results are shown in Eq. (5)
for the initial maximum axial feed force. The axial feed
force is mainly influenced by the feed rate with only a
small dependence on the spindle speed. There is also
more variation in the maximum values of the force that
is not accounted for in the model resulting in a lower
coefficient of determination of 0.87.

Tmean V½ � ¼ −1:37þ 10:48 f mm
.
rev

h i

þ 0:017S m
.
min

h i
ð4Þ

Fmax V½ � ¼ 1:26þ 2:0 f mm
.
rev

h i
−0:003S m

.
min

h i
ð5Þ

Similar models were built for other extracted features such
as the mean axial force, the RMS value of the torque, as well
as others. However, the two features detailed above, the max-
imum axial force, and the mean spindle torque provided the
best results in models 2 and 3.Fig. 4 OD Inserts at ×5 magnification a new and b 135 Holes Drilled
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Development of the AR models required the determination
of the optimum form of the models as well as the coefficients
for the chosenmodel order to predict the maximum axial force
and the mean spindle torque. Potential coefficients for the
mean spindle torque AR model were determined for each
run (each run is an individual time series) using the least
squares method for up to a ninth order model. Run 9 was
not used in the training of any of the models since it was used
for verification.

The 12 values for each coefficient (for each order) needed
to be combined into a single value for use in the final AR
model. Several methods were used to determine the best
way to perform this consolidation including visualization
and ANOVA analysis. There is no apparent correlation be-
tween the input parameters, feed rate and spindle speed, and
the coefficients. Similarly, ANOVA analysis indicated that
there is no statistical correlation between these input parame-
ters and the coefficients. Since there was no correlation, an
arithmetic mean was used to combine the 12 calculated coef-
ficients into a single value for the AR model. The same pro-
cess was carried out for the maximum axial force with similar
results. The value of the coefficients has limited change as the
model order is increased beyond a 6th order model, and the

6th order model also performed better as inputs to the subse-
quent models than lower order models, so the 6th order coef-
ficients were chosen. The model output is demonstrated on
run 09 in Fig. 9.

The proposedmodel for predicting the insert flank wear is a
polynomial surface response model. A variety of inputs were
investigated for this model including the machining parame-
ters as well as many different features extracted from the cur-
rent measurements. A number of flank wear measurements
were used in the analysis were the overall maximum wear at
any point on the insert. Each of these indications of the insert
wear was investigated during the building of this model. The
input data and the measured flank wear data were aggregated
together for all the runs, except for run 09 which was used for
validation, to allow ANOVA analysis and the determination of
the model coefficients using the least squares method. The
predicted values for the extracted features were used in place
of the actual measured values as inputs to the model. The best
combination of inputs was found to be the feed rate and the
maximum axial feed force. The final model is shown in
Eq. (6), and the model was validated using run 09 which is
shown in Fig. 10, where the model reasonably matches the
shape of the actual data.

a bFig. 5 Experimental setup: a
schematic of TCM system and b
drilling a tubesheet on a boring
machine

Fig. 6 Maximum flank wear for all runs Fig. 7 Minimum hole diameter for all runs
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V̂ b ¼ 1916þ 14135� f −4978� F̂max

þ 3169� F̂
2

max−13422� f � F̂max

ð6Þ

3.3 Hole diameter model

The final model of the TCM system is a surface response
model to predict the machining accuracy of the drill or the
hole size in particular. The proposed model was a polynomial
model with the machining parameters, the extracted features,
and the predicted flank wear from the second model as inputs
and the minimum hole diameter as the output. The same pro-
cess as was used to determine the coefficients for the second
model were used to develop this model. The best results ob-
tained with the proposed inputs resulted in the model given by
Eq. (7). The data and the fitted model are shown in Fig. 10,
where the green vertical lines show the division between in-
dividual experiment runs. The model is not able to fit the data
with a high degree of accuracy, but it is able to capture most of
the overall trends. The data and the fit for Run 04 are an
example of this. The model captures the downward trend in
the diameter but is not able to accurately predict the actual

diameters. There are a number of reasons for this including:
variability in insert size or the possibility of the insert not
seating exactly in the pocket. Neither of these problems would
cause a significant change in the axial feed force or the spindle
torque, so the model cannot predict the hole size accurately
but they would directly affect the hole diameter.

ÊD ¼ 38:5−4:07� f −0:0026� S−0:19 F̂max þ 1:41� T̂mean

−0:24� T̂
2

mean−0:36� F̂max � T̂mean þ 1:44� f � F̂max � T̂mean

ð7Þ

The validation run using the data from run 09 is shown in
Fig. 11. The model predicts the hole diameter within about
0.05 mm with a downward trend as shown in the actual data.
An item of interest that is shown by this plot can be seen
around hole 100. Just before hole 100, the model predicts a
sudden drop in the hole diameter while the actual hole diam-
eter increased slightly (a similar occurrence can be seen by
looking at the data for run 02 in Fig. 10 above). The reason for
this behavior and why the model cannot accurately predict the
diameter in these instances is that all wear on the inserts, either
the inside or the outside insert appear to result in increased
axial feed force and increase spindle torque. However, de-
pending on the location of the wear, if it is on the tip of the
outside insert or on the inside edge of the inside insert, the
diameter can either temporarily decrease or increase. The
overall trend is for the diameter to decrease over the life of

Fig. 8 Minimum hole diameters for all the center runs (same parameters)

Fig. 9 AR model results for run 09 mean torque

Fig. 10 Model 2: flank wear model validation

Fig. 11 Model 3: hole diameter model fit using extracted features
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the inserts since the majority of the wear does occur on the
outside insert and the tip of the outside insert tends to have the
most wear. Chips which were observed on the inside insert
around hole 100 are most likely the cause of the increase in
diameter. Looking back at Fig. 12, the data for the maximum
feed force and the mean spindle torque are shown and both
show increases just before 100 holes matching the change in
predicted diameter and the wear observed on the inside insert.

3.4 Tool replacement strategy

The final step in a TCM system is determining when the tool
being used needs to be replaced, i.e., in this instance, when the
drilling inserts need to be indexed or replaced. For this project
the tool replacement strategy was based on the following
process:

1. Drill the first hole and record the predicted diameter of the
first hole (based on the machining parameters and the
measured features).

2. Set limits for the hole diameter based on the first hole.

a. Upper limit – the minimum of:

i. 1st hole predicted diameter+upper offset or
ii. Absolute upper limit (a maximum upper limit to

reduce the risk of oversize holes)
b. Lower Limit – the maximum of:

i. 1st hole predicted diameter – lower offset or
ii. Absolute lower limit (a minimum lower limit to

reduce the risk of undersize holes)
3. Predict the diameter for the next hole, if the prediction is

outside the limits, stop drilling.
4. Drill another hole, average the predicted diameters of the

first 2 holes and automatically adjust the limits based on
the rules in step 2.

5. Repeat steps 3 and 4 for the first 5 holes (continue
adjusting the limits based on the average of the first 5
holes).

6. After the fifth hole, continue drilling. For each hole, if the
predicted diameter of the next hole is out of the limits,
stop drilling.

This process is completely automatic and the results of
implementing it are illustrated in Fig. 13 with average limits
to minimize the risk of out of tolerance holes and maintain a
tolerance of 38.925 mm±0.1 mm. The following limits were
set:

1. Minimum Diameter Tolerance – 38.825 mm
2. Upper Offset – 0.035 mm
3. Lower Offset – 0.045 mm
4. Absolute Upper Limit – 39.00 mm
5. Absolute Lower Limit – 38.85 mm

Figure 13 illustrates how the TCM system can detect the
changing hole diameter and stop drilling prior to drilling out of
tolerance holes. The model limits can be adjusted tighter or
looser depending on the required hole tolerance and the conse-
quences of out of tolerance holes. A limitation of the TCM
system as described in this paper is that the current models are
not capable of detecting sudden tool failure. The models in the
TCM system as described are only designed to detect incremen-
tal tool wear and are only capable of determining the tool wear
state after each hole is completely drilled. An instantaneous tool
failure can result in an out of tolerance hole that these models
cannot detect. A robust TCM system also requires another mod-
el to detect sudden changes that occur during catastrophic tool
failure and stop the drill immediately. With the settings listed
above, the system failed to indicate that tool replacement should
occur on four experimental runs, runs 1, 3, 5, and 6. Runs 3 and
6 had no out of tolerance holes, but the insert chipped on the last
hole drilled and drilling was stopped by the operator to prevent
damage to the drill. Run 5 was drilled at parameters that caused
significant vibration resulting in an extreme wear rate and

Fig. 12 Model 3: hole diameter model validation (using extracted
features) Fig. 13 Tool replacement strategy
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drilling was stopped by the operator, again to prevent damage to
the drill. A total of 4 holes out of 989were slightly undersize and
there were no oversize holes. Not including runs 5 and 10, which
were run at very high machining parameters and were beyond
the capabilities of the inserts for the given material, 87 holes
were drilled per insert on averagewhich is a significant improve-
ment to the prior operating procedure to change the inserts every
60 holes. The TCM system was able to automatically indicate
when inserts should be changed and prevented any significantly
out of tolerance holes. The small number of holes which were
slightly out of tolerance on the small side which is not a signif-
icant problem since a small hole can easily bemade larger. Holes
that are out of tolerance on the large side of the tolerance are a
much bigger concern as there is often no method available to fix
the hole, especially on tubesheets and baffle where welding not
usually allowed.

Overall, this test shows that the TCM system with the drill
used for this experiment would be capable of holding the holes
to a ±0.1 mm diameter tolerance with approximately a 44 %
increase in tool life and a significant reduction in the risk of
out of tolerance holes.

4 Conclusions and discussion

The present study concerns the process of drilling over thou-
sand tight-tolerance holes on a single tubesheet accomplished
by means of a horizontal boring mill. To maintain the hole
accuracy and protect the boring mill from damage during the
process, it is vital to ensure the drill or tool is in good condi-
tion. Unfortunately, models of tool wear and hole accuracy for
such a drill process are not available in the literature. In this
paper, a TCM system involving three models was developed
for the tool wear monitoring and hole accuracy prediction,
thus determining the time when the tool needs to be replaced,
and experiments of drilling holes with a diameter 39.0 mm on
tubesheets of 2205 Duplex stainless steel were designed and
performed for testing the effectiveness of the developed TCM
system. The results obtained illustrated that the TCM system
with the drill used for this study is capable of holding the holes
to a ±0.1 mm diameter tolerance with approximately a 44 %
increase in tool life and a significant reduction in the risk of
out of tolerance holes. It should be noted that if this TCM
system is implemented into a production environment, the
hole recognition and state determination algorithms would
be performed in real time allowing the features to also be
extracted in real time. The extracted features are all that would
need to be saved to allow optimization and updating of the
model coefficients for changing tooling or materials.

The AR models for the maximum axial force and the mean
torque for each hole were simple and useful models. The initial
values for each feature were modeled with a very simple surface
response model and then the ARmodels allowed forecasting the

extracted features a number of holes into the future as well as
providing some smoothing to themeasured data. After each hole
is drilled, the data can be used to update the model and allow a
more accurate forecast based on the new information. If the
extracted features are stored for each hole that is drilled, the
TCM system could automatically recalculate the AR model co-
efficients at the completion of each run (insert life).

The 2nd model in the system to predict insert flank wear
was accurate with a very simple 2nd order model based only
on the feed rate and the axial feed force. The main discrepan-
cies between the fitted model and the actual data are attribut-
able to the challenges in measuring the flank wear. For this
project, the flank wear measurements were taken at a limited
number of points and only on the outside insert. By taking
more data points on the outside insert as well as some on the
inside insert, a more robust method of averaging the wear
could likely be developed and an even better fit between the
model and the data could be determined. However, due to the
inherent randomness in the drilling process, the benefit of this
is limited. Measuring the flank wear is a time-consuming and
difficult process that requires a microscope and image analysis
software which limits the ability to have it measured on a
regular basis in a production environment making it difficult
and impractical to update the model fit over time.

The 3rd model in the system, used to predict the hole di-
ameter, was significantly less accurate and the model fit was
lower than that for the 2nd model. However, the accuracy of
the model was sufficient to provide a reliable indication of the
hole diameter. An advantage of the 3rd model over the second
model is that the hole diameters can be measured easily on the
shop floor which allows the model coefficients to be updated
as a machining job progresses.

The main reason for the relatively poor model fit for the
hole prediction model is the fact that the location of the wear
points on the drilling inserts has a significant effect on the non-
axial forces in the drill resulting in an increased or decreased
drilling diameter depending on the wear locations. However,
the increased wear appears to have a similar effect on the feed
force and the spindle torque regardless of where the wear
occurs. This results in the model typically predicting a de-
crease in diameter with any increase in forces instead of accu-
rately predicting the actual machined diameter.

A reasonably accurate tool replacement strategy can be
implemented as long as changes in the wear state result in
measureable changes in the motor currents. A tool replace-
ment strategy was tested using the experimental data and the
testing showed that using these drills, a tolerance zone of
±0.1 mm can be held reliably with a significant 44 % increase
in tool life and a non-trivial reduction in machine down time
due to fewer tool changes. A tolerance zone of ±0.1 mm is
acceptable considering that the variation in hole diameters
with new inserts at the same machining parameters is
±0.075 mm as shown previously in Fig. 7.
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As anticipated, the main limitation to the TCM system as
tested is that it is not capable of detecting catastrophic failure
of inserts that are not worn out. The TCM system as described
in this project would detect the damaged insert on the next
hole, but it would not detect it quickly enough to prevent the
drill body from being damaged beyond use or repair since the
models only update after every hole.
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