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Abstract In this paper, we present a new reliability model
and a unique condition-based maintenance model for complex
systems with dependent components subject to respective
degradation processes, and the dependence among compo-
nents is established through environmental factors. Common
environmental factors, such as temperature, can create the
dependence in failure times of different degrading compo-
nents in a complex system. The system under study consists
of one dominant/independent component and n statistically
dependent components that are all subject to degradation.
We consider two aspects that link the degradation processes
and environmental factors: the degradation of dominant/
independent component is not affected by the state of other
components, but may influence environmental factors, such as
temperature; and the n dependent components degrade over
time and their degradation rates are impacted by the environ-
mental factors. Based on the thermodynamic study of the re-
lationship between degradation and environmental tempera-
ture, we develop a reliability model to mathematically account
for the dependence in multiple components for such a system.
Considering the unique dependent relationship among com-
ponents, a novel condition-based maintenance model is devel-
oped to minimize the long run expected cost rate. A numerical
example is studied to demonstrate our models, and sensitivity
analysis is conducted to test the impact of parameters on the
models.

Keywords Dependent degrading components .

Environmental factors . Physics-of-failure . Thermodynamic
study . Arrhenius relationship . Condition-basedmaintenance

1 Introduction

Complex systems operate under dynamic environmental
stresses that impair their functionality and life. Maintenance
activities are essential to prevent unexpected sudden failures,
and reduce downtime cost and production loss. For mainte-
nance purposes, reliability analysis of such systems should
incorporate an accurate description of the degradation evolu-
tion under these conditions [1], especially when the degrada-
tion processes of different components are not independent
under common environmental conditions. In this paper, we
analyze the reliability of complex systems with failure-
dependent components subject to respective degradation pro-
cesses, where the dependence among components is
established through environmental factors, such as tempera-
ture. Using the reliability analysis results, a unique condition-
based maintenance scheme is developed for the complex sys-
tem with an aim to minimize the expected total cost rate.

The degradation of many components can be affected by
environmental factors, such as temperature and humidity,
which either affect the degradation rate or change the relative
frequency of different failure modes of sensitive components.
On the other hand, environmental conditions are subject to
change due to the degradation of certain components. For
instance, the friction of two sliding surfaces in a component
can cause wear degradation in the form of material loss in the
wear tracks, and the dissipation of frictional energy can in-
crease the local temperature [2]. Consequently, the elevated
temperature can accelerate the degradation process of nearby
temperature-sensitive components, such as resistors. This
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causal relationship generates a set of interesting and challeng-
ing research problems in reliability analysis and maintenance
modeling of systems. In this paper, based on the study of
physics-of-failure mechanisms and the relationships between
degradation and environmental factors, we analyze the reli-
ability of complex systems with dependent components sub-
ject to respective degradation processes.

Extensive studies have been done for reliability analysis of
systems experiencing degradation [3–6], and for systems sub-
ject to independent or dependent failure processes of degrada-
tion and random shocks [7–14]. For systems with multiple
dependent components, Schottl [15] studied the dependence
caused by random environmental effects concerning all com-
ponents, such as number of shocks, cracks, or dust particles.
Coit and English [16] introduced a system reliability model
where components are dependent because of the shared envi-
ronmental exposure. Zhang and Horigome [17] presented re-
liability analysis of systems that endure environmental shocks,
which can result in the failure of one or more components due
to a cumulative shock process. Kotz et al. [18] investigated
how the degree of correlation affects the increase in the mean
lifetime for parallel redundant systems when the two compo-
nents are positively quadrant dependent. Burkschat [19] pro-
posed a model for describing the lifetimes of coherent sys-
tems, in which the failures of components may have an impact
on the lifetimes of the remaining components.

Although various types of dependence among components
have been studied in the literature, very little research has been
devoted to study the dependence among degrading components
when the degradation processes and the failure times of compo-
nents are dependent due to environmental factors. In this paper,
we study a system with multiple components that include one
dominant/independent component and n statistically dependent
components. The dominant component degrades over time, and
its degradation rate or lifetime distribution is not affected by the
state of other components. However, the degradation process of
the dominant component may cause the change in environmen-
tal conditions. For example, as the component wears, its tem-
perature increases, which causes the ambient temperature to
increase. In the meanwhile, the dependent components degrade
over time and their degradation rates increase as the ambient
temperature increases. Therefore, the degradation processes of
the dependent components are statistically dependent on the
degradation process of the dominant component via the envi-
ronmental factors. The dependence among different components
creates an interesting and challenging problem to analyze the
reliability of this type of system, which is lacking in the litera-
ture. In this paper, we attempt to fill this void by investigating the
dependence between the degradation processes through the
analysis of physics-of-failure mechanisms, and developing the
reliability and maintenance models for such systems.

Although the maintenance of systems with single compo-
nents has been extensively studied, the research onmaintenance

modeling of systems with multiple components is limited. The
latter topic is more practical to industry applications, yet much
more difficult due to the dependence among components.
Typically, three types of dependence are considered for multi-
component systems: economic dependence, structural depen-
dence, and failure dependence [20, 21]. Economic dependence
considers that there are cost/time-savings to jointly perform
maintenance on multiple components, instead of on individual
components. Structural dependence implies that the compo-
nents are structurally connected, and therefore, maintenance
actions on a failed component require dismantling other com-
ponents. Failure dependence refers to the dependence between
the failure of one component and that of other components in
the system. It also refers to situations when the components
suffer from the common-cause failure from external sources.

After the first survey paper on maintenance policies for
multi-component systems conducted by Thomas in 1986
[20], this topic has attracted increasing attention. Another
three survey papers on this topic are provided by Cho and
Parlar [22] for group, block, and opportunistic models;
Dekker et al. [23] with a focus on economic dependence;
and Wang [21] with an emphasis on single-component sys-
tems. More recently, condition-based maintenance of multi-
component systems, where economic dependence exists
among different components, was investigated [24, 25].
Laggounce et al. [26] proposed a preventive maintenance plan
for a multi-component system, where economic dependence is
considered to reflect the influence of component operation/
maintenance costs on the overall system costs.

Most of the literature on maintenance policies for multi-
component systems studies the economic dependence among
the components. The failure dependence has rarely been con-
sidered in maintenance policies for multi-component systems.
In this paper, we develop a unique condition-based mainte-
nance model for a complex system with multi-components
that are failure dependent. Each of the components is subject
to a respective degradation process, and the dependence
among the components is established through environmental
factors.

The remaining sections are arranged as follows. Section 2
describes the thermodynamic study in analyzing the relation-
ships between degradation and temperature. Section 3 pre-
sents the system reliability model. The proposed condition-
based maintenance model for multi-component systems is in-
troduced in Section 4. Section 5 gives a numerical example to
demonstrate our models with sensitivity analyses. Concluding
remarks are summarized in Section 6.

2 Thermodynamic study for physics-of-failure

For a system consisting of one dominant/independent compo-
nent and n statistically dependent components that are all
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subject to degradation, we consider two aspects that link the
degradation processes and environmental factors [27]:

& The dominant/independent component degrades over
time, and its degradation rate or lifetime distribution is
not affected by the state of other components. However,
the degradation process of the dominant component may
influent environmental factors, such as temperature. For
example, the wear degradation of a microengine increases
ambient temperature.

& The n dependent components degrade over time, and their
degradation rates are impacted by the environmental fac-
tors. For instance, the elevated temperature accelerates the
degradation of resistors.

To demonstrate the thermodynamic analysis and reli-
ability modeling, we use an example application. The dom-
inant component in an example system is a microengine
that experiences wear degradation over time, and the wear-
out process increases the ambient temperature. In the sys-
tem, there are n temperature-sensitive thin film resistors
whose resistances increase over time, and the degradation
rates increase as the temperature elevates due to the wear-
out process of the microengine. Considering that the sub-
system of dependent components (e.g., thin film resistors)
is typically sealed in a small package, the temperature rise
among dependent components is not significantly differ-
ent. There may be other examples where the temperature
differentials are not small and our model is not applicable
for those examples. In order to analyze reliability perfor-
mance of this system, we need to understand physics-of-
failure mechanisms for these degradation processes, spe-
cifically through the study of thermodynamics.

The relationship between wear degradation and temper-
ature has been of great interest to many researchers in ther-
modynamics. Bryant et al. [28] developed a thermodynam-
ic characterization of degradation dynamics, which em-
ploys entropy, a measure of thermodynamic disorder, as
the fundamental measure of degradation. Ramalho and
Miranda [29] conducted experimental studies on the rela-
tionship between wear and dissipated energy in sliding
systems using the energetic approach, and the results show
that the dissipated energy is linearly related to wear vol-
ume. The experimental work on the relationship between
wear and thermal response in sliding systems from Amiri
et al. [30] shows that the temperature rise is linearly corre-
lated with the material loss, and the slope of the linear
relationship is a measure of the wear coefficient. On the
other hand, the impact of elevated temperature on compo-
nent degradation is usually modeled by the Arrhenius re-
lationship in the literature. Tencer et al. [31] presented a
method of assessing the effective temperature essential for
predicting the temperature acceleration of the wear-out

mechanism using the Arrhenius equation. Kuehl [32] de-
veloped a method for prediction of resistive value changes
due to aging for any relevant condition in the temperature-
time expanse, and the method is based on and derived from
the Arrhenius equation.

2.1 Wear degradation and thermal response

The degradation due to wear over time can follow various
degradation path models, such as a linear degradation path
with random coefficients or a randomized logistic degradation
path [10]. For the dominant component (e.g., a microengine),
its wear degradation X(t) follows a linear degradation path,
X(t)=φ+βt [33]. The initial value φ and the degradation rate
β are both random variables following normal distributions,
φ∼N(μφ,σφ2) and β∼N(μβ,σβ2), respectively, characterizing
the unit-to-unit variability. σφ and σβ are assumed to be sub-
stantially smaller than μφ and μβ, respectively, and the prob-
ability that φ or β takes negative values is negligible. The
microengine is considered to be failed when the wear degra-
dation is greater than a failure threshold value H.

The degradation of the dominant component leads to the
rise of ambient temperature. According to Amiri et al. [30],
the temperature rise ΔT at the interface during steady state
operation has a linear relationship with the wear degrada-
tion rate:

ΔT ¼ Ψ
ξ
β; ð1Þ

where ξ is a constant, ξ ¼ K
ημaveh

, K is the wear coefficient, η is

the heat partitioning factor, μave is the friction coefficient, h is
the material hardness, and Ψ is a constant. Because β follows a
normal distribution, β∼N(μβ,σβ2), the temperature rise ΔT at
the steady state is also a normal random variable with mean of
μβΨ/ξ and variance of σβ

2Ψ2/ξ2.

2.2 Arrhenius relationship

Similar to the degradation process modeling of the dominant
component, we want to incorporate the unit-to-unit variability
in the degradation process modeling of the dependent compo-
nents as well. For the n dependent components, such as thin
film resistors, the resistance ri(t) increases linearly over time,
ri(t)=r0i+ρit. The initial resistance of component i, r0i, is a
random variable following a normal distribution, r0i∼N(μri,
σri

2), for component i, i=1, 2, …, n. The degradation rate of
component i, ρi, is affected by the temperature via the
Arrhenius relationship [31, 32]:

ρi ¼ Aiexp −
Ea

kT

� �
; ð2Þ

where Ea is the activation energy in eV, k is the Boltzmann
constant, T is the temperature in Kelvin, and Ai is an
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experimental constant. Because the ambient temperature rise
ΔT is a function of β given in Eq. (1), the degradation rate ρi is
a random variable depending on β, characterizing the unit-to-
unit variability among the n dependent components.
Therefore, the resistance is expressed as

ri tð Þ ¼ r0i þ ρit ¼ r0i þ Aitexp −
Ea

kT

� �
: ð3Þ

A thin film resistor is considered to be failed when the resis-
tance is beyond the failure threshold value, Li, i=1, 2, …, n.
Figure 1 shows 30 pairs of simulated degradation processes of a
dominant component and a dependent component. The param-
eters and their values used for this simulation are listed in
Table 1. We can notice that the lifetime of the dependent com-
ponent has a much larger variance than that of the dominant
component, because the degradation rate of the dominant com-
ponent significantly affects the degradation rate of the depen-
dent component. For a series system with dependent compo-
nents, we develop its reliability function and a unique
condition-based maintenance policy in the following sections.

3 System reliability modeling

Consider a series system with one dominant component and n
dependent components, e.g., a microengine and n thin film
resistors connected in series. System reliability at time t is
the probability that it survives by time t, that is, the degrada-
tion level of each component should be less than the corre-
sponding failure threshold level [27]:

R tð Þ ¼ P X tð Þ < H ; r1 tð Þ < L1;…; rn tð Þ < Lnð Þ: ð4Þ

Because the degradation processes of these components are
dependent through temperature change, we need to compute it
by finding the conditional probability givenΔT. Based on the
law of total probability, we then integrate this conditional
probability multiplied by the probability density function
(pdf) of ΔT to derive the system reliability, as shown in
Eq. (5):

R tð Þ ¼ P X tð Þ < H ; r1 tð Þ < L1;…; rn tð Þ < Lnð Þ

¼
Z þ∞

−∞
P X tð Þ < H ; r1 tð Þ < L1;…; rn tð Þ < Ln ΔT ¼ sjð Þ f ΔT sð Þds

¼
Z þ∞

−∞
P X tð Þ < H ΔT ¼ sjð Þ∏

n

i¼1P ri tð Þ < Li ΔT ¼ sjð Þ f ΔT sð Þds;

ð5Þ
where the conditional probabilities of X(t) and ri(t) given ΔT
are derived, respectively:

P X tð Þ < H ΔT ¼ sjð Þ ¼ P φþ tsξ=ψ < Hð Þ
¼ P φ < H−

ξ
ψ
st

� �

¼ Φ
1

σφ
H−

ξ
ψ
st−μφ

� �� �
;

ð6Þ
Fig. 1 Simulation of the stochastic degradation processes for dominant/
independent and dependent components

Table 1 Parameters and values

Parameters Values Sources

k 8.6171×10−5 eV/K

Ea 1.29 eV (for TaN) [34]

A1, A2 2.911×1010 (for TaN) [34]

T0 293 K

h 11.5 Gpa [35]

K 1×10−4 [35]

μave 0.7 [35]

η 0.5 [30]

ξ 2.484×10−14/pa Calculation

Ψ 4.55×1014 K/W Assumption

H 0.005μm3 Assumption

β ∼N(μβ,σβ2) [10, 36]
μβ=8.4823×10

−9 μm3/time unit

σβ=6.0016×10
−10 μm3/time unit

φ ∼N(μφ,σφ2) Assumption
μφ=0μm

3

σφ=5.0000×10
−5μm3

r01 ∼N(μr1,σr12) Assumption
μr1=250.48 Ω, σr1=0.5 Ω

r02 ∼N(μr2,σr22) Assumption
μr2=250.48 Ω, σr2=0.5 Ω

L1, L2 300.58 Ω [34]
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P ri tð Þ < Li ΔT ¼ sjð Þ

¼ P r0i þ Aitexp −
Ea

k T0 þ sð Þ
� �

< Li

� �

¼ P r0i < Li−Aitexp −
Ea

k T0 þ sð Þ
� �� �

¼ Φ
1

σri
Li−μri−Aitexp −

Ea

k T0 þ sð Þ
� �� �� �

: ð7Þ

The temperature riseΔT is a normal random variable with
mean of μβΨ/ξ and variance of σβ

2Ψ2/ξ2, and its pdf can be
expressed as

f ΔT sð Þ ¼ ξ
σβψ

ϕ
s−μβψ=ξ

σβψ=ξ

� �
; ð8Þ

where ϕ(⋅) denotes the pdf of a standard normal random
variable.

Finally, the reliability function in Eq. (5) is expressed as

R tð Þ ¼
Z þ∞

−∞
Φ

1

σφ
H−

ξ
ψ
st−μφ

� �� �
∏

n

i¼1Φ
1

σri
Li−μri−Aitexp −

Ea

k T0 þ sð Þ
� �� �� �

� ξ
σβψ

ϕ
s−μβψ=ξ

σβψ=ξ

� �
ds;

ð9Þ

where Φ(⋅) denotes the cumulative distribution function (cdf)
of a standard normal random variable.

4 Condition-based maintenance modeling

Due to the unique relationship between the dominant and
dependent components and their characteristics, we pro-
pose a new maintenance model for this type of system.
Since the dominant component plays a key role in this
system and it is typically expensive, we consider the case
when the replacement cost of the dominant component is
much higher than the replacement cost of all the dependent
components combined (or the subsystem). We assume that
the system is non-repairable or not worth repairing rather
than replacing. The replacement time for the whole system
and the subsystem of all dependent components is negligi-
ble. With more attention on the expensive dominant com-
ponent, the proposed maintenance strategy is designed as
follows and illustrated in Fig. 2.

& Periodic inspection of length τ is carried out to observe or
measure the degradation level X(t) of the dominant com-
ponent. If the degradation level is less than a warning
limit, D, no action is taken; and if the degradation level
is between the warning limitD and the failure thresholdH,
preventive replacement takes place.

& If the dominant component fails (the degradation level is
beyond the failure threshold H) between two inspection
actions, it is self-announcing and corrective replacement is
implemented.

& Every time the dominant component is replaced preven-
tively or correctively, the whole subsystem of dependent

components is replaced preventively for the purpose of
saving time/labor, shown as ‘PM’ in Fig. 2.

& The conditions of dependent components are not checked
during the periodic inspection actions. However, the fail-
ure of any dependent component is self-announcing. If
one of the dependent components in the subsystem fails,
we replace the whole subsystem correctively for the pur-
pose of saving time/labor.

To determine the inspection interval τ and the warning limit
D, we need to derive and optimize the expected total mainte-
nance cost per unit of time:

Expected cost rate ¼ Expected cost per cycle

Expected cycle length

¼ E Total Costð Þ
E Cycle Lengthð Þ : ð10Þ

As illustrated in Fig. 2, a renewal cycle of the dominant
component can be terminated due to a preventive replacement
(the degradation level is between D and H) or a corrective
replacement (the degradation level is beyond H). To find the
expected cost per renewal cycle and the expected renewal
cycle length, we need to consider these two cases.

4.1 Renewal cycle terminated due to preventive
replacement

We start with the case that a renewal cycle is terminated
when the degradation level exceeds the warning limit, and
therefore, preventive replacement is performed for the
dominant component. Let NPM denote the inspection count
at which a preventive maintenance/replacement is
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implemented. The probability of performing preventive
replacement is derived as follows.

1) The preventive replacement is performed at the 1st
inspection, or NPM=1:

P NPM ¼ 1ð Þ ¼ P D < X τð Þ < Hð Þ
¼ P D < φþ βτ < Hð Þ

¼ Φ
H−μφ−μβτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
φ þ σ2βτ

2
q

0
B@

1
CA−Φ

D−μφ−μβτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2φ þ σ2βτ

2
q

0
B@

1
CA:

ð11Þ

2) The preventive replacement is performed at the ith inspec-
tion, or NPM=i>1:

P NPM ¼ i > 1ð Þ¼ P D < X iτð Þ < H ;X i−1ð Þ
�
τ

� �
< D

� �

¼
Z þ∞

−∞
P D < X iτð Þ < H ;X i−1ð Þτð Þ < D β ¼ bjð Þ f β bð Þdb

¼
Z þ∞

−∞
P D < φþ biτ < H ;φþ b i−1ð Þτ < Dð Þ f β bð Þdb

¼
Z þ∞

−∞
P D−biτ < φ < min H−biτ ;D−b i−1ð Þτð Þð Þ f β bð Þdb

¼
Z H−D

τ

−∞
Φ

D−b i−1ð Þτ−μφ

σφ

� �
−Φ

D−biτ−μφ

σφ

� �� �
f β bð Þdb

þ
Z þ∞

H−D
τ

Φ
H−biτ−μφ

σφ

� �
−Φ

D−biτ−μφ

σφ

� �� �
f β bð Þdb:

ð12Þ

4.2 Renewal cycle terminated due to corrective
replacement

When the degradation level of the dominant component ex-
ceeds the failure threshold H, a renewal cycle is terminated
and corrective replacement is performed. To find the proba-
bility of performing corrective replacement upon failure, we
need to derive the failure time distribution of the dominant
component. The degradation process X(t) follows a normal
distribution with mean μX(t) =μφ+μβt, and variance
σX(t)
2 =σβ

2 t2+σφ
2 . If we denote Tx as the time of the degradation

path reaching a threshold x, then the cdf of TD is

P TD < tð Þ ¼ P X tð Þ > Dð Þ ¼ P φþ βt > Dð Þ

¼ 1−Φ
D−μφ−μβtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
φ þ σ2

βτ
2

q
0
B@

1
CA:

ð13Þ

Its pdf can be calculated by taking the first derivative of the
cdf with respect to t, which is

f TD
tð Þ ¼ dP TD < tð Þ

dt

¼ ϕ
D−μφ−μβtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
φ þ σ2

βτ
2

q
0
B@

1
CA μβσ

2
φ þ D−μφ

� �
σ2
βt

σ2
φ þ σ2

βt
2

� �3=2
: ð14Þ

In the case of a failure occurring between inspections, it
indicates that at the previous inspection the degradation level
of the dominant component does not reach the warning limit
D yet. We need to include this condition in our derivation of
the failure distribution for the dominant component. The cdf
of the failure time TH conditioning on TD is

τ 2τ 3τ 4τ τ 2τ 3τ

Degradation X(t)

H
D 

PM

CM

PM Renewal Cycle CM Renewal Cycle 

Degradation ri(t)

Li
CM

‘PM’ ‘PM’

Fig. 2 Proposed condition-based
maintenance model
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P TH < tjTD ¼ t0ð Þ ¼ P X tð Þ > H jX t0ð Þ ¼ Dð Þ
¼ P X tð Þ−X t0ð Þ > H−Dð Þ
¼ P β t−t0ð Þ > H−Dð Þ

¼ 1−Φ
H−D−μβ t−t0ð Þ

σβ t−t0ð Þ
� �

:

ð15ÞSimilarly, the pdf of the failure time TH conditioning on TD
can be derived as

f TH jTD
tjt0ð Þ ¼ dP TH < tjTD ¼ t0ð Þ

dt

¼ ϕ
H−D−μβ t−t0ð Þ

σβ t−t0ð Þ
� �

H−D
σβ t−t0ð Þ2 :

ð16Þ
4.3 Optimization model

The dominant component is either preventively replaced at
inspection or correctively replaced upon failure between in-
spections. Based on Eqs. (11)–(16), the expected renewal cy-
cle length can be found as:

E Cycle Lengthð Þ ¼
X ∞

i¼1
iτP NPM ¼ ið Þ

þ
X ∞

i¼1

Z iτ

i−1ð Þτ

Z iτ

t0

t⋅ f TH jTD
tjt0ð Þdt⋅ f TD

t0ð Þdt0: ð17Þ

The overall maintenance cost includes preventive and cor-
rective replacement costs for the dominant component, CPI

and CCI; preventive and corrective replacement costs for the
subsystem of all dependent components, CPD and CCD; and
the inspection cost CI. The system downtime cost is not con-
sidered, as we assume that the time for maintenance actions,
such as inspection and replacement, is negligible.

When a renewal cycle is terminated at the ith inspec-
tion due to preventive replacement, the incurred cost
includes the preventive replacement cost of the domi-
nant component CPI, the preventive replacement cost
of the subsystem CPD, the cost for i inspection actions,
and the cost to correctively replace the subsystem be-
fore iτ. The subsystem can be correctively replaced
multiple times whenever one of the dependent compo-
nents fails before iτ. The number of corrective replace-
ments (or the number of failures) of the subsystem prior
to iτ can be calculated by the renewal function, M(t),
which is derived in the next section. When a renewal
cycle is terminated between (i−1)τ and iτ due to fail-
ure, the incurred cost includes the corrective replace-
ment cost of the dominant component CCI, the preven-
tive replacement cost of the subsystem CPD, the cost for
i−1 inspection actions before failure, and the cost to
correctively replace the subsystem before failure. Then,
the expected total maintenance cost is derived to be:

E Total Costð Þ ¼
X ∞

i¼1
P NPM ¼ ið Þ⋅ CPI þ CPD þ iCI þM iτð ÞCCDð Þ

þ
X ∞

i¼1

Z iτ

i−1ð Þτ

Z iτ

t0

CCI þ CPD þ i−1ð ÞCI þM tð ÞCCDð Þ⋅ f TH jTD
tjt0ð Þdt⋅ f TD

t0ð Þdt0:
ð18Þ

Based on Eqs. (17) and (18), we propose the following
constrained nonlinear optimization problem for the mainte-
nance optimization:

Min c τ ;Dð Þ ¼ E Total Costð Þ
E Cycle Lengthð Þ

Subject to : 0 < D < H
0 < τ < tmax

ð19Þ

where tmax is the allowed upper bound of the inspection inter-
val. The Sequential Quadratic Programming algorithm
(Matlab optimization toolbox) is used to solve this constrained
nonlinear optimization problem.

4.4 Renewal function of the subsystem

To calculate the expected total cost per cycle, we need to
have the number of corrective replacements (or the num-
ber of failures) of the subsystem in a renewal cycle,

namely, the renewal function, which requires the reliabil-
ity function of the subsystem of dependent components,
RSub(t):

RSub tð Þ ¼ P r1 tð Þ < L1;…; rn tð Þ < Lnð Þ

¼
Z þ∞

−∞
P r1 tð Þ < L1;…; rn tð Þ < Lnj ΔT ¼ sð Þ f ΔT sð Þds

¼
Z þ∞

−∞
∏

n

i¼1P ri tð Þ < LijΔT ¼ sð Þ f ΔT sð Þds

¼
Z þ∞

−∞
∏

n

i¼1Φ
1

σri
Li−μri−Aitexp −

Ea

k T0 þ sð Þ
� �� �� �

⋅
ξ

σβψ
ϕ

s−μβψ=ξ

σβψ=ξ

� �
ds

:

ð20Þ
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The renewal function is calculated to be M(t)=FSub(t)+
∫0t M(t−u)fSub(u)du, where FSub(t) and fSub(t) are the cdf and
pdf of the subsystem, respectively. It is difficult to derive the
closed form of the renewal function given the complicated
subsystem reliability function. Estimation of the renewal func-
tion is typically applied [37]:

M tð Þ ¼ FSub tð Þ þ
Z t

0

F2
Sub uð ÞZ u

0
RSub vð Þdv

du:

Even using the estimate of the renewal function, the
complex nonlinear optimization model is still difficult to
solve mathematically. One approach demonstrated in the
numerical example is to simplify the subsystem reliabil-
ity function by fitting it to a simple regression model
that could lead to a closed-form renewal function. For
example, when the failure time follows an exponential
distribution with arrival rate λ, its renewal function is
simply M(t)=λt.

5 Numerical example

In this numerical example, a system consisting of one
microengine (the dominant component) and two identi-
cal resistors (dependent components) is studied. The
three components are dependent because the degradation
of the microengine causes the temperature rise in the
surrounding environment, while the temperature rise ac-
celerates the degradation of both resistors. For this type
of system, we are interested in determining reliability
over time and the optimal maintenance strategies using
the reliability and maintenance models that we devel-
oped. The parameters and their values used in our
models are listed in Table 1. Figure 3 plots the reliabil-
ity of the system over time.

For the condition-based maintenance model, we assume
that the preventive and corrective replacement costs for the
subsystem of two dependent components are 40 and 50, re-
spectively. Because the replacement cost of the dominant
component is far more expensive than that of the dependent
components, the preventive and corrective replacement costs
for the dominant component are 400 and 500, respectively.
The inspection cost is 10 per inspection for the dominant
component.

It becomes difficult and inefficient to directly solve
the optimization problem, because of the complex form
of the subsystem reliability function and the resulting
renewal function. An alternative way is to simplify the
subsystem reliability function by using a regression
model to approximate it. Using the set of parameter
values provided in Table 1, we find that the exponential
regression model fits the subsystem reliability well, as
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Fig. 4 The subsystem reliability and exponential regression model

Fig. 5 3D plot of the expected cost rate vs τ and D
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shown in Fig. 4. The fitted exponential model is

R̂ ¼ e−1:332�10−6t, and the corresponding R2 value is
0.9869.

After fitting the subsystem reliability to an exponen-
tial regression model, the renewal function has a simple
form, which is M(t)=1.332×10−6t. Then, we use the
Sequential Quadratic Programming algorithm (in
Matlab R2013a) to solve this constrained nonlinear op-
timization problem in Eq. (19) and obtain the minimum
expected cost rate, 8.98×10−4, when τ*=5.57×105 and
D*=0.0025. The expected cost rates at different τ and
D levels are plotted in Fig. 5.

5.1 Sensitivity analysis

Sensitivity analysis is conducted to see the sensitivity of the
optimal results to the change of parameter values. The param-
eters of interest are the degradation failure threshold H, the
ratio of resistor failure threshold to its initial value L/r0, the
ratio of preventive replacement cost for the dominant compo-
nent to the preventive replacement cost for the subsystem of

all dependent componentsCPI/CPD, and the ratio of inspection
cost to preventive replacement cost for the subsystem of all
dependent components CI/CPD. The sensitivity analysis re-
sults are listed in Tables 2, 3, 4, and 5 and plotted in Figs. 6,
7, and 8.

Table 2 shows the values of the optimal inspection
interval τ* and warning limit D*, the minimum expect-
ed cost rate at different H values from 0.003 to 0.007.
When H increases from 0.003 to 0.007, τ* and D*
linearly increases (also shown in Fig. 6), while the min-
imum expected cost rate decreases. This is reasonable,
since a higher failure threshold means the system can
survive longer, requiring less frequent inspections and a
higher warning limit, leading to a reduced cost.

In this numerical example, we consider two depen-
dent resistors with identical failure threshold L and ini-
tial resistance r0. The change of L/r0 affects the

Table 5 Sensitivity analysis result on CI/CPD

CI/CPD CI τ* D* Min expected cost rate

0.1 4 5.55E+05 2.50E-03 8.88E-04

0.2 8 5.56E+05 2.50E-03 8.95E-04

0.3 12 5.57E+05 2.50E-03 9.01E-04

0.4 16 5.59E+05 2.50E-03 9.07E-04

0.5 20 5.60E+05 2.50E-03 9.13E-04

0.6 24 5.61E+05 2.50E-03 9.19E-04

0.7 28 5.63E+05 2.50E-03 9.25E-04

0.8 32 5.65E+05 2.50E-03 9.31E-04

0.9 36 5.67E+05 2.50E-03 9.37E-04

1.0 40 5.69E+05 2.50E-03 9.42E-04

Table 4 Sensitivity analysis result on CPI/CPD

CPI/CPD CPI CCI τ* D* Min expected cost rate

4 160 200 5.65E+05 2.50E-03 4.51E-04

5 200 250 5.62E+05 2.50E-03 5.26E-04

6 240 300 5.60E+05 2.50E-03 6.00E-04

7 280 350 5.59E+05 2.50E-03 6.75E-04

8 320 400 5.58E+05 2.50E-03 7.49E-04

9 360 450 5.57E+05 2.50E-03 8.24E-04

10 400 500 5.57E+05 2.50E-03 8.98E-04

11 440 550 5.56E+05 2.50E-03 9.72E-04

12 480 600 5.56E+05 2.50E-03 1.05E-03

13 520 650 5.56E+05 2.50E-03 1.12E-03

14 560 700 5.56E+05 2.50E-03 1.20E-03

15 600 750 5.55E+05 2.50E-03 1.27E-03

Table 3 Sensitivity analysis result on L/r0

L/r0 L λ τ* D* Min expected cost
rate

1.10 275.53 2.6810E-06 5.57E+05 2.50E-03 9.65E-04

1.15 288.05 1.7720E-06 5.57E+05 2.50E-03 9.20E-04

1.20 300.58 1.3320E-06 5.57E+05 2.50E-03 8.98E-04

1.25 313.10 1.0650E-06 5.57E+05 2.50E-03 8.85E-04

1.30 325.62 8.8640E-07 5.57E+05 2.50E-03 8.76E-04

1.35 338.15 7.5940E-07 5.57E+05 2.50E-03 8.69E-04

1.40 350.67 6.6440E-07 5.57E+05 2.50E-03 8.65E-04

Table 2 Sensitivity analysis result on H

H(μm3) τ* D* Min expected cost rate

0.0030 3.34E+05 1.51E-03 1.46E-03

0.0035 3.90E+05 1.76E-03 1.26E-03

0.0040 4.45E+05 2.01E-03 1.11E-03

0.0045 5.01E+05 2.25E-03 9.91E-04

0.0050 5.57E+05 2.50E-03 8.98E-04

0.0055 6.13E+05 2.75E-03 8.22E-04

0.0060 6.68E+05 3.00E-03 7.59E-04

0.0065 7.24E+05 3.25E-03 7.06E-04

0.0070 7.80E+05 3.50E-03 6.60E-04
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subsystem reliability and further the fitted regression
model parameter λ, shown in Table 3. From the sensi-
tivity analysis result, we can see that the increase of the
ratio of L to r0 does not affect τ* and D*. This result
implies that the L/r0 of dependent components has no
impact on determining τ* and D* on the dominant
component.

In the sensitivity analysis on CPI/CPD, CPD is fixed and the
value of CPI is changed, while maintaining the ratio of CPI to
CCI at 4/5 (when CPI increases, CCI increases accordingly). In
Table 4, when the ratio of CPI to CPD increases, τ* decreases
and the minimum expected cost rate increases (shown in
Fig. 7), while D* stays at a constant value of 0.0025. With
the increasing costs of preventive and corrective replacement,
inspections should be performed more frequently to prevent
failure and reduce cost. However, the increasing cost does not
affect the optimal warning limit D* notably.

The sensitivity analysis result in Table 5 shows that
when the ratio of CI to CPD increases, τ* and the min-
imum expected cost rate increase (also shown in Fig. 8),
which indicates that the inspection cost has great impact
on the optimal maintenance strategies. However, the in-
spection cost change has no impact on the optimal
warning limit D*.

6 Conclusions

In this paper, we study a complex system with dependent
components subject to respective degradation processes, and
the dependency among components is established via envi-
ronmental factors. We develop a new reliability model for this
type of system and use temperature as an example application
to demonstrate our model. Relationships between degradation
and environmental temperature are studied, and then, the reli-
ability function is derived for such a system. Based on the
unique dependent relationship among components within the
system and the reliability analysis, a novel condition-based
maintenance model is developed to assist systemmaintenance
and minimize cost. To illustrate our reliability and mainte-
nance models, a numerical example is used and sensitivity
analysis is also conducted to test the model sensitivity to pa-
rameter changes.
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