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Abstract On the basis of the classical Runge-Kutta method
and the complete discretization method, a Runge-Kutta-based
complete discretization method (RKCDM) is proposed in the
paper to predict the chatter stability of milling process, in
which the regenerative effect is taken into consideration. First-
ly, the dynamics model of milling process is simplified as a 2-
DOF vibration system in the two orthogonal directions, which
can be expressed as coefficient-varying periodic differential
equations with a single time delay. Then, all parts of the delay
differential equation (DDE), including delay term, time-
domain term, parameter matrices, and most of all the differ-
ential terms are discretized using the classical fourth-order
Runge-Kutta iteration method to replace the direct integration
scheme used in the classical semi-discretization method (C-
SDM) and the classical complete discretization scheme with
the Euler method (C-CDSEM), which can simplify the com-
plexity of the discretization iteration formula greatly. Lastly,
the Floquet theory is adopted to predict the stability of milling
process by judging the eigenvalues of the state transition ma-
trix corresponding to certain cutting conditions. Comparing
RKCDM with C-SDM and C-CDSEM, the numerical simu-
lation results show that RKCDM has the highest convergence
rate, computation accuracy, and computation efficiency. As
dichotomy search rather than sequential search is used in the
algorithm, the calculation time for obtaining the stability lobe
diagrams (SLDs) is greatly reduced. As a result, it is practical
to determine the optimal chatter-free cutting conditions for
milling operation in shop floor applications.
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1 Introduction

In milling process, machining chatter has a negative
effect on the machined surface quality, the cutting tool,
and even the machine tool. Prediction of chatter stability
is an important and effective way for optimal selection
of spindle speed and cutting depths to avoid chatter and
improve production efficiency. Based on the classical
dynamic model considering the regenerative effect de-
scribed by a delay differential equation (DDE) with time
varying coefficients [1], the stability lobe diagrams
(SLDs) can be obtained to find the critical cutting
depths and the corresponding spindle speeds [2, 3]. It
contains stability boundaries, below which vibration dies
down and above which vibration grows to finite ampli-
tudes eventually.

Besides experimental methods [4] and experimental-
analytical methods [5], numerical algorithms to predict
SLDs have been developed. The basic way to predict
SLDs is to transform DDEs from time domain to fre-
quency domain using the Laplace Transform. And then
the critical axial cutting depths and the corresponding
spindle speeds are calculated utilizing real and image
part of the characteristic equation of the system in fre-
quency domain under the premise of the giving radial
depth of cut. Utilizing this method, Altintas and Budak
[6] presented an analytical method (ZOA method) for
predicting milling stability lobe diagrams based on the
mean value of Fourier series of the dynamic milling
coefficients. Li et al. [7] proposed an analytical method
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to predict the stability lobe diagrams for orbital drilling
using a numerical approach to calculate the average di-
rectional cutting force coefficients, which is represented
by the ratio of the axial to the tangential feed per tooth
with regard to the spindle speed.

The ZOA is efficient and fast, but it is unable to
predict the existence of the additional stability regions
and period doubling bifurcations in case of low immer-
sion milling. To overcome this problem, several other
methods such as multi-frequency solution (MFS), tem-
poral finite element analysis (TFEA), semi-discretization
method (SDM), full-discretization method (FDM), and
direct numerical solution method (DNSM) have been
developed. The MFS was first explored by Budak and
Altintas [8], and then extended by Merdol and Altintas
[9] which considers harmonics of the tooth spacing an-
gle and spread of the transfer function with the har-
monics of the tooth passing frequencies. The TFEA
was presented by Bayly et al. [10, 11], which can be
utilized to predict both the milling stability and the sur-
face location error, but its prediction accuracy is chal-
lenged when the radial immersion ratio approximates to
one. SDM and the so-called 1st DM (first-order semi-
discretization method) were developed by Insperger and
Stepan [12, 13], and it is an efficient numerical method
for stability analysis of linear-delayed systems which
can be widely adopted as benchmarks methods to eval-
uate other methods of predicting milling stability in
time domain. On the basis of direct integration scheme,
Ding et al. [14] presented a FDM to predict milling
stability which has higher prediction efficiency without
sacrificing any prediction accuracy compared with
SDM. They [15] also developed a semi-analytical meth-
od, the numerical integration methods (NIM), to predict
milling stability on the basis of integration methods of
integral equations. The authors [16] proposed a time-
domain DNSM to obtain SLDs for milling operation,
in which a fourth-order Runge–Kutta method was uti-
lized to solve the dynamic differential equations, and
several chatter detection criterions were also applied to
the predicted time-domain data to determine the stability
of milling process.

Recently, a lot of researches have focused on present-
ing new methods with an aim to gain both high com-
putational efficiency and high convergence rate. Li et al.
[17] presented a complete discretization scheme with the
Euler’s method (CDSEM) for solving the one-DOF and
two-DOF motion equations of milling process. When
compared with SDM and FDM, the benchmark results
of one-DOF and two-DOF milling stability prediction
show that CDSEM can obtain acceptable precision in
most ranges, and CDSEM is faster than FDM. Ding
et al. [18] proposed two Runge-Kutta-based semi-

analytical methods, the classical fourth-order Runge-
Kutta method (CRKM) and the generalized Runge-
Kutta method (GRKM) to predict the stability of milling
process considering the regenerative effect. Simulation
results show that the convergence rate of the CRKM
is lower than expectation, and the GRKM is of high
convergence rate and high computation efficiency.

In all the discretization methods such as SDM, FDM,
CDSEM, CRKM, and GRKM, the algorithm used to
obtain the SLDs of milling process needs to iterate the
process of determining the stability of certain cutting
conditions for both discrete available axial depths of
cut and available discrete spindle speeds. Therefore,
the process to obtain the SLDs is very time-consuming
and not suitable for practical applications. On the basis
of the classical Runge-Kutta method and the complete
discretization scheme, this paper presents a Runge-Kutta
based complete discretization method (RKCDM) for
predicting the stability of milling process, in which an
iterative dichotomy search other than a sequential search
was used to determine the stable borders which results
in a decreased calculation amount by an order of
magnitude.

The rest of this paper is organized as follows. Section 2 sets
up the mathematical model of dynamic milling system and the
derivation of RKCDM. Section 3 gives the detailed algorithm
of RKCDM. Section 4 shows the numerical results of the
proposed RKCDM, compares it with other numerical methods
and lists some discussion. Some conclusions are drawn in
Section 5.

2 Complete discretization method based
on the classical Runge-Kutta method

2.1 Dynamics modeling of 2-DOF milling process

The governing equations of a 2-DOF milling model with cou-
ple and delay differential equations read
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where ωnx, ζx, kx, ωny, ζy, and ky are the natural frequency,
relative damping, and stiffness in x and y directions; ap is the
axial depth of cut; Kt is the tangential specific cutting force; T
is tooth passing period; x(t-T) and y(t-T) are the delayed terms;
the time varying directional coefficients read

hxx tð Þ ¼
XN
j¼1

−g j tð Þ sin2ϕ j tð Þ þ Kr 1−cos2ϕ j tð Þ
� �� �

hxy tð Þ ¼
XN
j¼1

−g j tð Þ 1þ cos2ϕ j tð Þ
� �þ Krsin2ϕ j tð Þ
� �

hyx tð Þ ¼
XN
j¼1

g j tð Þ 1−cos2ϕ j tð Þ
� �þ Krsin2ϕ j tð Þ
� �

hyy tð Þ ¼
XN
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g j tð Þ sin2ϕ j tð Þ−Kr 1þ cos2ϕ j tð Þ
� �� �

ð2Þ

where N is the number of the teeth, Kr is the ratio of the radial
specific cutting force to the tangential specific cutting force,
ϕj(t) is angular position of tooth j defined as

ϕ j tð Þ ¼ 2πΩ=60ð Þt þ 2π j−1ð Þ=N ð3Þ

where Ω is the spindle speed in r/min. The function g(ϕj(t)) is
a screen function used to determine whether tooth j is in cut-
ting or not, which is defined as

g ϕ j tð Þ
� � ¼ 1 if ϕst < ϕ j tð Þ < ϕex

0 otherwise

�
ð4Þ

where ϕst and ϕex denote the start and exit angles of the
jth tooth, respectively. For up milling, ϕst = 0 and
ϕex = arccos (1-2ae/D); for down milling, ϕst = arccos
(2ae/D-1) and ϕex =π, where ae/D denotes the radial
immersion ratio (ae is the radial depth of cut, and D
is the diameter of the cutting tool).

2.2 Determine stability using classical Runge-Kutta
method

By transforming Eq. (1) to the space state form, the following
expression can be got

u̇ tð Þ ¼ A tð Þu tð Þ þ B tð Þu t−τð Þ ð5Þ

Where A(t), B(t) are time periodic coefficient matrices,
A(t+T) =A(t), B(t+T) =B(t), T is the time period, and τ is

the time delay, where T= τ for the single delay milling pro-
cess. A(t) and B(t) can be expressed as
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In order to solve Eq. (5) using the Runge-Kutta method, the
period T should be firstly divided into m intervals with a time
step Δt, T=mΔt, and m is the discrete number during one
tooth passing period. The classical fourth-order Runge-Kutta
method is an explicit form, written as [18]

uiþ1 ¼ ui þ Δt

6
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K4 ¼ f ti þΔt; ui þΔtK3ð Þ

ð7Þ

where ui represents u(iΔt), ui+1 denotes u((i+1)Δt), ti denotes
idt, and the variable i is an integer satisfying 0≤ i≤m. To solve
the Eq. (5) using the Runge-Kutta method, the following
equations can be deduced in sequence:

K1 ¼ Aiui þ Biui−m
K2 ¼ Fi;2ui þ Fi−m;2ui−m þ Fi−mþ1;2ui−mþ1

K3 ¼ Fi;3ui þ Fi−m;3ui−m þ Fi−mþ1;3ui−mþ1

K4 ¼ Fi;4ui þ Fi−m;4ui−m þ Fi−mþ1;4ui−mþ1

ð8Þ

where

Ai ¼ 1

Δt

Z tiþ1

ti

A tð Þdt

Bi ¼ 1

Δt

Z tiþ1

ti

B tð Þdt
ð9Þ

Fi;2 ¼ Aiþ0:5 þ 0:5ΔtAiþ0:5Ai

Fi−m;2 ¼ 0:5ΔtAiþ0:5Bi þ 0:5Biþ0:5

Fi−mþ1;2 ¼ 0:5Biþ0:5

Fi;3 ¼ Aiþ0:5 þ 0:5ΔtAiþ0:5Fi;2

Fi−m;3 ¼ 0:5ΔtAiþ0:5Fi−m;2 þ 0:5Biþ0:5

Fi−mþ1;3 ¼ 0:5ΔtAiþ0:5Fi−mþ1;2 þ 0:5Biþ0:5

Fi;4 ¼ Aiþ1 þΔtAiþ1Fi;3

Fi−m;4 ¼ ΔtAiþ1Fi−m;3
Fi−mþ1;4 ¼ ΔtAiþ1Fi−mþ1;3 þ Biþ1

ð10Þ
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By substituting Eqs. (8) into (7), the following iterative
formula of u(t) can be obtained

uiþ1 ¼ Fiui þ Fi−mui−m þ Fi−mþ1ui−mþ1 ð11Þ
where the coefficients Fi, Fi-m, and Fi-m+1 can be expressed as

Fi ¼ Iþ Δt
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6
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ð12Þ

where I is an n×n identity matrix, and n is the dimension of
vector u(t).

To obtain the transition matrix, we first define a new
n× (m+1) dimensional vector zi as

zi ¼ col ui; ui−1;…; ui−mþ1; ui−mð Þ ð13Þ

Accordingly, the resulting discrete map is expressed as

ziþ1 ¼ Dizi ð14Þ
where the coefficient matrix Di can be constructed as a
(2 m+4)-dimensional matrix

Di ¼

Fi;11 Fi;12 Fi;13 Fi;14 0 ⋯ 0 Fi−mþ1;11 Fi−mþ1;12 Fi−m;11 Fi−m;12
Fi;21 Fi;22 Fi;23 Fi;24 0 ⋯ 0 Fi−mþ1;21 Fi−mþ1;22 Fi−m;21 Fi−m;22
Fi;31 Fi;32 Fi;33 Fi;34 0 ⋯ 0 Fi−mþ1;31 Fi−mþ1;32 Fi−m;31 Fi−m;32
Fi;41 Fi;42 Fi;43 Fi;44 0 ⋯ 0 Fi−mþ1;41 Fi−mþ1;42 Fi−m;41 Fi−m;42
1 0 0 0 0 ⋯ 0 0 0 0 0
0 1 0 0 0 ⋯ 0 0 0 0 0
0 0 0 0 1 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 1 0 0 0 0
0 0 0 0 0 ⋯ 0 1 0 0 0
0 0 0 0 0 ⋯ 0 0 1 0 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð15Þ

where Fi,hj, Fi-m+1,hj and Fi-m,hj are the elements of matrices Fi,
Fi-m+1 and Fi-m in the hth row and jth column. The (2m+4)-
dimensional transition matrix Φ is determined by coupling
Eq. (15) for i=0, 1, …, k-1:

Φ ¼ Dk−1Dk−2⋯D2D1 ð16Þ

According to the Floquet theory, if any of the modules of
the eigenvalues of the transition matrix Φ is larger than one,

Define a 2m+4 dimensional coefficient matrix

and set i = 1

Determine coefficient matrix Di according to

Eq.(15)

=Di* i =i + 1

i<m

Tag = max(abs(eig( )))

apl = ap

Tag<1

aph = ap

Calculate Ai, Bi, Ai+1, Bi+1, Ai+0.5, Bi+0.5

according to Eq.(6)

Y

N

apl = 0; aph = C1

aph - apl < C2

Determine discrete number m per tooth passing period T,

the spindle speed limits (nmin, nmax) and the speed step n
Set: n = nmin, s = 1

ap = (apl + aph )/2

Sld(s, 1) = n, Sld(s, 2) = ap

n < nmax

Output the stability lobe diagram with array Sld

n = n + n
s = s + 1

Input: Modal parameters, tool geometry, specific

cutting forces and cutting conditions

N

Y

N

Y

For i =1:2m, calculate hxx(i), hxy(i),hyx(i),hyy(i)
numerically according to Eq.(2)

Fig. 1 Flow chart of
obtaining SLDs for milling
process using RKCDM
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the system is unstable; otherwise, the system is stable. There-
fore, the boundary curve dividing stable areas and unstable
areas in the stability lobe diagram can serve as a criterion to
determine whether chatter occurs or not.

3 Algorithm to obtain SLDs using RKCDM

On the basis of the abovementioned RKCDM for stability
analysis of a 2-DOF milling system, a Matlab-based
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Fig. 2 Effect of the discrete
number m on the |u| among
C-SDM, C-CDSEM, and
RKCDM a ap = 0.1 mm,
|u0| = 0.9165 (stable) b ap = 0.
5 mm, |u0| = 1.9292 (unstable) c
ap = 1.0 mm, |u0| = 3.5213
(unstable)
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Fig. 3 Convergence rate
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ap = 0.1 mm, |u0| = 0.9165 (stable)
b ap = 0. 5 mm, |u0| = 1.9292
(unstable) c ap = 1.0 mm,
|u0| = 3.5213 (unstable)
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simulation module has been developed, which reads the input
data such as the modal parameters, tool geometry, specific
cutting forces and cutting conditions, and output the predicted
SLDs. The flow chart of the RKCDM is shown in Fig. 1. In
literature [18], different kinds of interpolation such as the La-
grange interpolation and barycentric Lagrange interpolation
were used to determine the middle points of intervals indirect-
ly. In order to improve the calculation accuracy of Ai+0.5, Bi+

0.5 corresponding to the middle points between discrete point i
and i+1, 2m discrete points rather than m discrete points dur-
ing one tooth passing time period were used in the paper to
calculate the directional cutting force coefficients hxx, hxy, hyx,
and hyy, and thus, the even points were be used to calculate the
value of Ai, Ai+1, Bi, and Bi+1, and the odd points were used to
calculate the value of Ai+0.5 and Bi+0.5.

As we know, both in the classical SDM algorithm provided
by Insperger et al. [12] or the CDSEM algorithm provided by
Li et al. [17], the stability must be determined for each discrete
axial depth of cut at each given discrete spindle speed, which
results in an unbearable computation time. To this end, firstly,

an iterative dichotomy search instead of a sequential search
was used to determine the stable borders which results in a
decreased calculation amount by an order of magnitude. Sec-
ondly, a one-dimensional array instead of a two-dimensional
array was used to save the SLDs data which results in a de-
crease of memory space. As a result, the simulation time is
greatly reduced and thus makes it possible to apply it in shop
floor applications.

4 Simulation result and analysis

Suppose the tooth number of the cutting tool used in the fol-
lowing simulations is 2 (N=2). The modal parameters of the
dominant mode of the milling system are ωnx=922.0 Hz,
ζx= 0.011, kx= 5.0 × 10

6 N/m; ωny= 922.0 Hz, ζy= 0.011,
ky=5.0×10

6 N/m. The tangential and radial specific cutting
forces are Kt = 7.96×10

8 N/m2 and Kr = 1.68× 108 N/m2. All
the programs in this paper are executed under the platform of
MATLAB 7.6.0 on a laptop (Intel ® Core (TM) 2 Duo CPU,

Table 1 Comparison of SLDs using C-SDM, C-CDSEM, and RKCDM
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2.4 GHz, 4G). In order to analyze the convergence rate of
RKCDM, the radial depth of cut ae is set as diameter of the
cutting tool D to avoid intermittent milling process (ae =D).
The spindle speed is selected at Ω=5000 r/min, and the axial
depths of cut ap are set as 1.0, 0.5, and 0.1 mm, respectively, to
reflect the condition of unstable and stable milling process.
The simulation results of the classical SDM [12] and the clas-
sical CDSEM [17] with the same parameters were also con-
sidered for further comparison and analysis, and they were
called C-SDM and C-CDSEM, respectively, for the sake of
simplicity.

Suppose the maximal module of the eigenvalues of the
transition matrix Φ is set as |u|, the effect of discrete number
m on the obtained |u| using RKCDM, C-SDM, and C-CDSEM
are shown in Fig. 2. The figure shows that with the increasem,
|u| shows a tendency of monotonically increasing and ap-
proaches to the theoretical value infinitely. As |u| is used to
determine the stability under certain cutting condition, and
thus, the predicted critical axial depth of cut is always larger
than the theoretical one, the predicted stable region obtained
using these numerical methods is always larger than the theo-
retical one. It means that the stable region near the border
dividing the stable and the unstable region is unreliable.

In order to assess the convergence rate of different numer-
ical methods such as RKCDM, C-SDM, and C-CDSEM, the
|u| obtained at the discrete number of 500 (m=500) is set as
|u0| which is regarded as the exact value. The comparisons of
convergence rate among RKCDM, C-SDM, and C-CDSEM

are shown in Fig. 3. The figure shows that no matter what
radial immersion ratio is, the convergence rate of RKCDM
is higher than that of C-SDM and C-CDSEM, and the
discretization error of the latter two is O(h2) [19]. It means
that the discretization error of the proposed RKCDM is corre-
sponding with the theoretical transaction error of the classical
fourth-order Runge–Kutta method (O(h5)). Ding et al. [14]
stated that the discretization error of CRKM (classical
fourth-order Runge–Kutta method) used for semi-analytical
prediction of milling stability was no higher than O(h3) and
attributed it to the fact that two-point barycentric Lagrange
interpolation formula was used to approximate the middle
points, and the remainder of the two-point interpolation is
O(h2). As a result, the convergence rate and approximation
accuracy of CRKM were limited. In the proposed RKCDM,
the middle points were calculated directly by discretization
method rather than by interpolation method. Therefore, the
convergence rate and approximation accuracy of RKCDM is
only determined by that of the classical fourth-order Runge–
Kutta method. The figure also shows that when m is larger
than 65, RKCDM has the minimum approximation error; and
whenm is less than 65, C-SDM has the minimum approxima-
tion error.

The SLDs under different radial immersion ratios ae/
D=0.05, 0.1, 0.5 are predicted and shown in Table 1, in which
discrete number m=50 and spindle speed step Δn=100 r/
min. The simulation results, obtained using C-SDM, C-
CDSEM, and RKCDM, demonstrate that the simulation
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results obtained using RKCDM is almost identical to that
obtained using C-SDM and C-CDSEM under different radial
immersion ratios, except some no distinct visual difference.

In order to further analyze the prediction accuracy of the
proposed RKCDM with that of C-SDM and C-CDSEM, as
well as the effect of discrete number m on the prediction ac-
curacy, two technical criterias were used. The first is the sum
of squared error (SSE), and the other is the arithmetic mean of
relative error (AMRE), which can be expressed as

SSE ¼
Xr

i¼1

api−api0
� �2

AMRE ¼ 1

r

Xr

i¼1

api−api0
		 		

api0

ð17Þ

where api, api0 is the predicted and expected critical axial
depth of cut at the ith discrete spindle speed, respectively,
and r is the total discrete points within the concerned spindle
speed range.

When C-SDM is used as a benchmark method to evaluate
other numerical methods to predict milling stability in time
domain, under the condition of discrete number per tool pass-
ing period m=200, the AMRE between RKCDM and C-
SDM is 2.1474 %, and the AMRE between C-CDM and C-
SDM is 2.6321 %. Therefore, the critical axial depths of cut
under each discrete spindle speed using C-SDM at m=200
can be used as the exact value to evaluate the effect of discrete

number m on the prediction accuracy using different numeri-
cal methods. The comparisons of SSE among C-SDM, C-
CDSEM, and RKCDM under different ae/D were shown in
Fig. 4, and the comparisons of AMRE among C-SDM, C-
CDSEM, and RKCDM under different ae/D were shown in
Fig. 5. Figure 4 shows that under the same discrete number per
tool passing period m, the SSE obtained using KCDM is less
than that obtained using C-SDM and C-CDSEM, and with the
increase of the discrete number per tool passing period m, the
SSE using RKCDM, C-SDM and C-CDSEM all decreased.
Figure 5 shows that the effect of the discrete number per tool
passing period m on AMRE is the same as that on SSE. Re-
gardless of the radial immersion ratio ae/D, when the discrete
number per tool passing period m is over than 40, the AMRE
obtained using RKCDM is less than 10 %. In other words, the
prediction accuracy of SLDs obtained using RKCDM is ac-
ceptable as m is over 40. If the AMRE obtained using
RKCDM is required less than 5 %, the discrete number per
tool passing period should be selected as m>60.

The comparisons of simulation time t between the pro-
posed RKCDM, C-SDM, and C-CDSEM under different dis-
crete number m and radial immersion ratio ae/D were shown
in Fig. 6. The figure shows that with the increase of m, the
simulation time t of RKCDM, C-SDM, and C-CDSEM all
show an exponential growth tendency, which means that it is
not economical to improve the prediction accuracy by only
increasing the discrete number m limitlessly. Under the same
discrete number m and the same cutting conditions, the
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simulation time t using RKCDM is the shortest, while that
using C-SDM is the longest, and there is an order of
magnitude of difference in simulation speed between
them. Most of this difference is due to the fact that
the dichotomy search was used in RKCDM while the
sequential search is used both in C-SDM and C-
CDSEM, and the remaining is due to the different na-
ture of these numerical methods. In order to further
reveal the effect of these methods on the simulation
time t, both the classical SDM and the classical
CDSEM were improved by applying dichotomy search
other than sequential search in constructing SLDs and
which were called I-SDM and I-FDM respectively. The
comparisons of simulation time t between RKCDM, I-
SDM and I-CDSEM under a different discrete number
m and radial immersion ratio ae/D were shown in
Fig. 7. The figure shows that the simulation time t
using I-SDM is the longest and that using the remaining
two methods have no significant difference. In short,
even compared with I-SDM and I-CDSEM, the pro-
posed RKCDM not only has the highest simulation pre-
cision but also has good simulation speed. Moreover,
with the application the of the dichotomy search, the
prediction of SLDs for milling process becomes practi-
cal in engineering applications.

5 Conclusions

This paper focuses on the exact prediction of milling stability
using a Runge-Kutta-based complete discretizaton method,
and the following conclusions can be drawn from this
research.

(1) The dynamic milling system is expressed as
coefficient-varying periodic differential equations
with a single time delay, all parts of which are
discretized using the classical fourth-order Runge–
Kutta method, the Floquet theory is adopted to
determine the stability of certain milling condition,
and when the above process is repeated for all
discrete spindle speeds and for all discrete axial
depth of cuts, the stability lobe diagrams can be
obtained.

(2) Comparisons have been conducted in the aspect of con-
vergence rate, prediction accuracy, and computation ef-
ficiency among the proposed method and other numeri-
cal stability prediction methods. The simulation results
show that the proposed method not only has the highest
convergency rate and thus the prediction accuracy but
also has the fastest computation speed when compared
with the classical semi-discretization method (C-SDM)

and the complete discretization scheme with the Euler
method (C-CDSEM).

(3) Simulation results indicate that as dichotomy search
rather than sequential search is used in constructing
the stability lobe diagrams, under the same predic-
tion accuracy, the simulation time of the proposed
method can be greatly reduced when compared
with other numerical stability prediction methods
for milling process. As a result, it can be used in
practical engineering applications.
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