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Abstract The dynamic properties of the machine tool struc-
ture usually contain multiple modes and significant cross-
frequency response functions whose vibration in one direction
is caused by a force in the orthogonal direction. To simplify
the stability prediction model, the stability of a milling process
has been traditionally predicted in the time domain by
selecting only the most flexible mode and neglecting the
cross-frequency response functions. This paper proposes an
effective stability prediction model simultaneously considering
multiple modes and the cross-frequency response functions
in the time domain. When introducing the cross-frequency
response functions, mechanical mobility and impedance trans-
formation method dealing with measured frequency response
functions is proposed to establish the dynamic matrix equa-
tion. In considering the multiple modes, the approaches of
multiple modal parameter normalization on the tool tip and
reducing the vibration variable number in modal space are
described in detail. The comparisons of numerical simulation
results between the proposed method and the frequency
domain method demonstrate the effectiveness of the proposed
model. A cutting experiment produces results in agreement
with the theoretical prediction. The analysis of the numerical
simulation and the experimental data indicates that the multiple
modes have great effect on stability boundary. Additionally, it

also shows that the cross-frequency response functions influ-
ence the stability boundary increasingly along with the increas-
ing amplitude ratio of the cross-frequency response functions
and direct frequency response functions.

Keywords Stability prediction . Time domain .Multiple
modes . Cross-frequency response functions

1 Introduction

As one of the most common phenomena during many
machining operations, chatter has significantly negative ef-
fect on productivity and quality guarantee of parts [1, 2].
Accurate prediction of the stability lobe diagram is very
important to avoid the machining chatter and thus im-
prove the productivity and part surface quality [3, 4].
The milling stability is related to the dynamic properties
of the machine tool structure. The frequency response
functions (FRFs) representing the dynamic properties at
the tool end point usually contain multiple modes and
have significant cross-FRFs whose vibration in one
direction is caused by a force in the orthogonal direction.
The two factors both effect the accurate prediction of the
milling stability.

Solis and Peres et al. [5] combined chatter’s analytical pre-
diction method with experimental multi-degree-of-freedom
(MDOF) system modal analysis. Mann et al. [6] simulta-
neously investigated the milling stability and surface location
error of a multiple mode system by employing the temporal
finite element analysis method. Tang et al. [7] proposed an
analytical stability prediction method with MDOF system
modal analysis and demonstrated the multi-mode interac-
tion on stability prediction. Wan et al. [8] developed a
dynamic model for milling processes dominated by
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multiple modes and analyzed the effect of the multiple
modes on stability boundary. Berglind and Ziegert [9] de-
veloped an analytical time domain model to predict the
motion of a multi-mode cutting tool during orthogonal turn-
ing operations. Cao et al. [10] found that the gyroscopic mo-
ment of the spindle shaft can increase the cross-FRFs which
influence the stability boundary obtained by Nyquist stability
criterion. Zhang [11] investigated the cross-FRF coupling and
revealed that the cross-FRF coupling has a great effect on
stability prediction during the practical milling process.
As a precondition for the accurate prediction of the
chatter, the multi-mode interaction and cross-FRF effect
should both be considered in the stability prediction model
when the cross-FRFs have significant magnitude compared
with the direct cross-FRFs.

Using frequency domain methods, such as the zero-
order approximation (ZOA) method [12] and the multi-
frequency (MF) method [13, 14], stability prediction con-
sidering multi-mode interaction can be achieved by scan-
ning the chatter frequencies around all of the dominant
modes of the FRFs. The eigenvalue equation of the fre-
quency domain methods can contain the cross-FRFs. In
addition to the frequency domain methods, there are also
many time domain methods for the stability prediction,
such as the temporal finite element analysis (TFEA) meth-
od [15], the semi-discretization method (SDM) [16, 17],
the full-discretization method (FDM) [18], the numerical
integration method [19, 20], and the Runge-Kutta
methods [21]. Although frequency domain solution can
efficiently predict stability lobe simultaneously consider-
ing multiple modes and cross-FRF effect, the time domain
methods have advantages of being applicable to various
machining conditions, such as cutter run-out, surface lo-
cation error, and stable isolated zones. Gradišek et al. [22]
investigated the additional type of instability causing pe-
riodic chatter that is predicted only by the time domain
method SDM. Mann et al. [23] proved the unstable
islands in the stability charts and predicted the surface
location error by an updated TFEA. Munoa et al. [24]
studied the stability of a two-mode milling process, indi-
cating that the MF method and the SDM lead to the same
exact solution in all cases while the MF method has prob-
lems in determining stable isolated zones.

When the multiple modes and cross-FRFs are consid-
ered simultaneously, the time domain modal will be com-
plex and difficult to solve. In previous stability studies in
the time domain, to simplify the prediction model, the
stability of a milling process dominated by multiple
modes was traditionally predicted by selecting only the
most flexible mode and neglecting the cross-FRFs, alter-
natively, separating the multiple modes and the cross-
FRFs. To obtain a more accurate stability lobe in the time
domain, this paper proposes an effective stability model in

the time domain simultaneously considering multi-mode
interaction and the cross-FRF effect. Due to the introduc-
tion of the cross-FRFs, the mechanical mobility and im-
pedance transformation method dealing with measured
FRF is proposed to establish the dynamic matrix equation.
Due to the consideration of the multiple modes, the ap-
proaches of multiple modal parameter normalization on
the tool tip and reducing vibration variable number in
modal space are described. The stability lobe diagrams
obtained by the proposed time domain model and the
ZOA method are compared to verify the availability of
the proposed model, and cutting experiments are per-
formed to verify the accuracy of the stability prediction.
The structure of the paper is as follows. In Sect. 2, the
derivation of the stability model formulations of multi-
mode system considering the cross-FRFs is provided in
detail. In Sect. 3, the numerical simulation and compari-
son of the proposed model and the ZOA method are pro-
vided. Additionally, the effect of the multiple modes and
cross-FRFs on the stability boundary is analyzed. The
modal parameter identification and experimental verifica-
tion are provided in Sect. 4. Finally, the conclusions are
presented in the last section.

2 Stability model of the multi-mode system

2.1 Mechanical mobility and impedance transformation
approach for dynamic equation

A schematic milling system dominated by multiple modes is
shown in Fig. 1. To simplify the milling process dynamics and
focus on the modeling of the multi-modes and cross-FRF
effect, the tool is assumed to be flexible compared with the
rigid workpiece.
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The modal impact test and the measured FRFs are illustrat-
ed in Fig. 2. It can be seen that the FRFs of the machine tool

structure contain the direct FRFs Hxx and Hyy and the cross-
FRFs Hxy and Hyx, and all of the FRFs have multiple modes.
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For the mechanical model in Fig. 1 and the measured FRFs
in Fig. 2, the dynamic equation can be written in the frequency
domain in the form of mechanical mobility (dynamic
flexibility)

X ωð Þ ¼ HxxFx ωð Þ þ Hxy Fy ωð Þ
Y ωð Þ ¼ HyxFx ωð Þ þ HyyFy ωð Þ ð1Þ

where X(ω) and Y(ω) denote the vibration of the tool tip in the
x direction and y direction, respectively, and Hij(i,j=x,y) is
the FRFs shown in Fig. 2. And, the subscript “ij” denotes the
vibration in the i direction caused by the force in the j direc-
tion. Fx(ω) and Fy(ω) are the cutting forces.

In Eq. (1), the vibrations of the tool tip in the x direc-
tion and y direction contain two vibration components,
respectively: one is contributed by the direct FRFs, and
the other is contributed by the cross-FRFs, which cannot
be integrated as a multi-dimension matrix equation only
containing the total vibration variable of the tool tip.
Therefore, Eq. (1) should be converted to the form of
the mechanical impedance (dynamic stiffness).

Fx ωð Þ
Fy ωð Þ

� �
¼ Hxx Hxy

Hyx Hyy

� �−1
X ωð Þ
Y ωð Þ

� �
¼ Rxx Rxy

Ryx Ryy

� �
X ωð Þ
Y ωð Þ

� �

⇒
Fx ωð Þ ¼ RxxX ωð Þ þ RxyY ωð Þ
Fy ωð Þ ¼ RyxX ωð Þ þ RyyY ωð Þ

�
ð2Þ

where the subscript ij of Rij(i, j=x,y) denotes the force in
the i direction caused by the vibration in the j direction.

In contrast to Eq. (1), Eq. (2) contains two force compo-
nents, respectively: one is contributed by the direct mechani-
cal impedance, and the other is contributed by the cross-
mechanical impedance. The force Fi(ω)(i=x,y) in Eq. (2)
can be expressed as the sum of two forces

Fx ωð Þ ¼ Fxx ωð Þ þ Fxy ωð Þ
Fy ωð Þ ¼ Fyx ωð Þ þ Fyy ωð Þ ð3Þ

where the subscript ij of Fij(ω)(i,j=x,y) denotes the force
in the i direction caused by the vibration in the j direction and

Fxx ωð Þ ¼ RxxX ωð Þ
Fxy ωð Þ ¼ RxyY ωð Þ
Fyx ωð Þ ¼ RyxX ωð Þ
Fyy ωð Þ ¼ RyyY ωð Þ

ð4Þ

According to the physical significance of the FRFs, Eq. (4)
should be rewritten as the form of mechanical mobility (dy-
namic flexibility) again

X ωð Þ ¼ 1

Rxx
Fxx ωð Þ ¼ H

0
xx Fxx ωð Þ

Y ωð Þ ¼ 1

Rxy
Fxy ωð Þ ¼ H

0
yx Fxy ωð Þ

X ωð Þ ¼ 1

Ryx
Fyx ωð Þ ¼ H

0
xy Fyx ωð Þ

Y ωð Þ ¼ 1

Ryy
Fyy ωð Þ ¼ H

0
yy Fyy ωð Þ

ð5Þ

where the subscript ij of Hij
′ (i,j=x,y) denotes the vibration in

the i direction caused by the force in the j direction.
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Equation (5) can be converted to four multi-DOF dynamic
systems in the time domain form as

M xx €X tð Þ þ CxxX
:

tð Þ þ KxxX tð Þ ¼ Fxx tð Þ
M xy €Y

0

tð Þ þ CxyY
: 0

tð Þ þ KxyY
0
tð Þ ¼ Fxy tð Þ

M yx €X
0

tð Þ þ CyxX
: 0

tð Þ þ KyxX
0
tð Þ ¼ Fyx tð Þ

M yy €Y tð Þ þ CyyY
:

tð Þ þ KyyY tð Þ ¼ Fyy tð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

And

Fxx tð Þ þ Fxy tð Þ ¼ Fx tð Þ
Fyx tð Þ þ Fyy tð Þ ¼ Fy tð Þ ð7Þ

where Mij, Cij, and Kij(i,j=x,y) are the structure mass matrix,
structure damping matrix, and structure stiffness matrix, re-
spectively. The subscript ij denotes the force in the i direction
caused by the vibration in the j direction.

M i j ¼ diag mi j;1 mi j;2 mi j;3 ⋯ mi j;nð Þ

C i j ¼

ci j;1 −ci j;1 0 0 0
−ci j;1 ci j;1 þ ci j;2 −ci j;2 0 0
0 −ci j;2 ci j;2 þ ci j;3 ⋱ 0
0 0 ⋱ ⋱ −ci j;n−1
0 0 0 −ci j;n−1 ci j;n−1 þ ci j;n

2
66664

3
77775

K i j ¼

ki j;1 −ki j;1 0 0 0
−ki j;1 ki j;1 þ ki j;2 −ki j;2 0 0
0 −ki j;2 ki j;2 þ ki j;3 ⋱ 0
0 0 ⋱ ⋱ −ki j;n−1
0 0 0 −ki j;n−1 ki j;n−1 þ ki j;n

2
66664

3
77775

ð8Þ
where diag(*) stands for diagonal matrix.

The reason why Eq. (6) has four time domain vibration
variables X(t), Y(t), X′(t), and Y′(t) can be explained as fol-
lows. The vibration variables X(ω) and Y(ω) in Eq. (5) denote
the vibration of the tool tip, while the time domain vibration
variables X(t), Y(t), X′(t), and Y′(t) in Eq. (6) denote the vibra-
tions of the corresponding structure mass blocks with different
modes. Note that only the first mass block denotes the tool tip.
Then, it follows

X tð Þ ¼ x1 tð Þ x2 tð Þ x3 tð Þ ⋯ xn tð Þ½ �T;

X
0
tð Þ ¼ x1 tð Þ x

0
2 tð Þ x

0
3 tð Þ ⋯ x

0
n tð Þ

� �T
Y tð Þ ¼ y1 tð Þ y2 tð Þ y3 tð Þ ⋯ yn tð Þ½ �T;

Y
0
tð Þ ¼ y1 tð Þ y

0
2 tð Þ y

0
3 tð Þ ⋯ y

0
n tð Þ

� �T
ð9Þ

where x1(t) and y1(t) denote the vibrations of the tool tip
and are equal to the vibration variables X(ω) and Y(ω) in
Eq. (5).

The forces Fx(ω) and Fy(ω) in Eq. (5) denote the cutting
forces on the tool tip, but the time domain vibration variables
Fxx(t), Fxy(t), Fyx(t), and Fyy(t) denote the forces on the corre-
sponding structure mass blockswith differentmodes, and only
the first mass block makes contribution to the cutting force on
the tool tip. Thus

Fi j tð Þ ¼ f i j;1 tð Þ 0 0 ⋯ 0
� �T

i; j ¼ x; yð Þ ð10Þ

where fxx,1(t)+ fxy,1(t)= fx(t) and fyx,1(t)+ fyy,1(t)= fy(t) are
equal to the cutting force on the tool tip in the x direction
and y direction, respectively.

The cutting forces fx(t) in the x direction and fy(t) in the y
direction are described as follows.

As seen in Fig. 3, every tooth of the tool is discretized in
microelements along the axial cutting depth direction. Consid-
ering the helix angle β, the contact angle of each differential
element varies with the change of the cutting depth. The in-
stantaneous cutting angle of the pth differential element of the
qth tooth is

φpq ¼
2πΩ
60

t‐
zptanβ

r
þ q

2π
N

ð11Þ

where zp is the coordinate of the pth element in the z direction,
Ω denotes the spindle speed (rpm), r is the radius of the tool,
and N is the number of teeth.

According to the mechanical force model [25], the cutting
forces of a differential element in the tangential and normal
directions are proportional to the chip load defined by the chip
thickness h(φpq) and the axial depth dz.

dFt;pq ¼ Kth φpq

� �
g φpq

� �
dz

dFn;pq ¼ Knh φpq

� �
g φpq

� �
dz

ð12Þ

where g(φpq) is a unit step function determining whether the
pth differential element of the qth tooth is cutting. Kt and Kn

denote the cutting force coefficients in the tangential and ra-
dial directions, respectively.

The chip thickness h(φpq) consists of a static component
due to the feed motion with the feed per tooth and a dynamic
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Fig. 3 Mechanical model
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component caused by the vibrations of the previous and cur-
rent tool tooth. The static component does not affect the

dynamic cutting thickness that generates chatter, so the chip
thickness h(φpq) can be expressed by only the dynamic com-
ponent as follows:

h φpq

� �
¼ Δxsinφpq þΔycosφpq ð13Þ

where T=60/(NΩ) is the tooth passing period, Δx=x1(t)−
x1(t−T), Δy=y1(t)−y1(t−T)

The cutting forces of a differential element in the tangential
and normal directions are translated into the x and y directions
as

dFx;pq ¼ dFt;pqcosφpq þ dFn;pqsinφpq

dFy;pq ¼ −dFt;pqsinφpq þ dFn;pqcosφpq
ð14Þ

The resultant forces acting on the cutter are the integration
of all of the infinitesimal cutting forces along the axial cutting
depth direction.

f x tð Þ ¼
XN
q¼1

dFx;pq

¼
XN
q¼1

Z ap

0
Kt Δxsinφpq þΔycosφpq

� �
g φpq

� �
cosφpq þ Kn Δxsinφpq þΔycosφpq

� �
g φpq

� �
sinφpq

� �
dz

f y tð Þ ¼
XN
q¼1

dFy;pq

¼
XN
q¼1

Z ap

0
−Kt Δxsinφpq þΔycosφpq

� �
g φpq

� �
sinφpq þ Kn Δxsinφpq þΔycosφpq

� �
g φpq

� �
cosφpq

� �
dz

ð15Þ

Table 1 Modal parameters for illustration

Frequency
(Hz)

Damping
(%)

Residue

xx First mode 701 5.63 9.129e−012−3.185e−004j
Second

mode
1293 3.13 −5.010e−011−1.586e−004j

xy First mode 705 3.52 1.389e−010−1.186e−004j
Second

mode
1288 2.37 1.023e−012−0.682e−004j

yx First mode 702 4.38 2.298e−012−1.504e−004j
Second

mode
1291 2.52 1.473e−011−0.755e−004j

yy First mode 698 4.66 −7.544e−011−2.758e−004j
Second

mode
1295 2.88 −2.205e−010−1.560e−004j
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The cutting force on tool tip can be written as

f x tð Þ
f y tð Þ

� �
¼ axx axy

ayx ayy

� �
Δx
Δy

� �
ð16Þ

axx ¼
XN
q¼1

Z ap

0
Ktsinφpqcosφpq þ Knsin

2φpq

� �
g φpq

� �
dz

axy ¼
XN
q¼1

Z ap

0
Ktcos

2φpq þ Knsinφpqcosφpq

� �
g φpq

� �
dz

ayx ¼
XN
q¼1

Z ap

0
− Ktsinφpqcosφpq−Knsin

2φpq

� �
g φpq

� �
dz

ayy ¼
XN
q¼1

Z ap

0
− Ktcos

2φpq−Knsinφpqcosφpq

� �
g φpq

� �
dz

ð17Þ

where ap is the axial cutting depth.
At this point, the dynamic equation for the milling

stability prediction simultaneously considering multiple
modes and the cross-FRF effect has been established.
However, according to Eq. (9), Eq. (6) has 4n-2 vibration
variables which should be reduced to 2n. Thus, the modal
space transformation is utilized to integrate the vibration
variables in Eq. (6).

2.2 Modal space transformation

The vibration variables in Eq. (6) can be expressed in the
modal coordinate as follows:

x1
x2
⋮
xn

2
664

3
775 ¼

uxx;11 uxx;12 ⋯ uxx;1n
uxx;21 uxx;22 ⋯ uxx;2n
⋮ ⋮ ⋯ ⋮

uxx;n1 uxx;n2 ⋯ uxx;nn

2
664

3
775

qxx;1
qxx;2
⋮
qxx;n

2
664

3
775;

y1
y
0
2

⋮
y
0
n

2
664

3
775 ¼

uxy;11 uxy;12 ⋯ uxy;1n
uxy;21 uxy;22 ⋯ uxy;2n
⋮ ⋮ ⋯ ⋮

uxy;n1 uxy;n2 ⋯ uxy;nn

2
664

3
775

qxy;1
qxy;2
⋮
qxy;n

2
664

3
775

x1
x
0
2

⋮
x
0
n

2
664

3
775 ¼

uyx;11 uyx;12 ⋯ uyx;1n
uyx;21 uyx;22 ⋯ uyx;2n
⋮ ⋮ ⋯ ⋮

uyx;n1 uyx;n2 ⋯ uyx;nn

2
664

3
775

qyx;1
qyx;2
⋮
qyx;n

2
664

3
775;

y1
y2
⋮
yn

2
664

3
775 ¼

uyy;11 uyy;12 ⋯ uyy;1n
uyy;21 uyy;22 ⋯ uyy;2n
⋮ ⋮ ⋯ ⋮

uyy;n1 uyy;n2 ⋯ uyy;nn

2
664

3
775

qyy;1
qyy;2
⋮
qyy;n

2
664

3
775

ð18Þ
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Fig. 5 FRFs H′ calculated by the FRFs in Fig. 4

Table 2 Modal parameters
identified by the FRFs in Fig. 5 Frequency (Hz) Damping (%) Residue

xx First mode 698 6.49 4.357e−006−2.545e−004 j

Second mode 1298 3.46 −1.356e−006−1.250e−004 j

xy First mode 683 7.58 −5.320e−005+5.836e−004j
Second mode 1300 3.09 −2.452e−005+2.427e−004j

yx First mode 690 6.43 −2.862e−005+4.545e−004j
Second mode 1299 2.88 −9.478e−006+2.181e−004j

yy First mode 694 4.78 4.048e−006−2.065e−004j
Second mode 1300 3.18 −3.125e−006−1.231e−004j
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where ui j;lv i; j ¼ x; y l; v ¼ 1; 2;⋯; nð Þ are the modal
m a s s n o r m a l i z e d s h a p e s a n d qi j;l
i; j ¼ x; y l ¼ 1; 2;⋯; nð Þ are the modal coordinate.

Equation (18) provides the following constraints

x1 ¼ uxx;11qxx;1 þ uxx;12qxx;2 þ⋯þ uxx;1nqxx;n ¼ uyx;11qyx;1 þ uyx;12qyx;2 þ⋯þ uyx;1nqyx;n
y1 ¼ uyy;11qyy;1 þ uyy;12qyy;2 þ⋯þ uyy;1nqyy;n ¼ uxy;11qxy;1 þ uxy;12qxy;2 þ⋯þ uxy;1nqxy;n

ð19Þ

where x1 and y1 denote the vibrations of the tool tip and can
indicate the occurrence of chatter. For the expression of x1,
qxx,l and qyx,l(l=1,2,⋯,n) denote the components of the l-
order natural frequency ωxx,l and ωyx,l(l=1,2,⋯,n). For the
linear structure, it is noted that ωxx,l is equal to ωyx,l(l=1,2,
⋯,n), which corresponds to the impact experiment results

discussed later. Consequently, the following equations are
deemed to be valid.

uxx;1lqxx;l ¼ uyx;1lqyx;l
uyy;1lqyy;l ¼ uxy;1lqxy;l l ¼ 1; 2;⋯; nð Þ ð20Þ

0.5a D 1a D
Fig. 6 Comparison of the stability lobes

0.5a D 1a D
Fig. 7 The effect of multiple modes on the stability lobes. The symbols are as follows: (1) open circle is stable case and (2) asterisk is unstable case
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According to Eq. (20), qyx,l and qxy,l can be expressed by
qxx,l and qyy,l(l=1,2,⋯,n).

qyx;1
qyx;2
⋮
qyx;n

2
664

3
775 ¼ diag uxx;11=uyx;11 uxx;12=uyx;12 ⋯ uxx;1n=uyx;1nð Þ

qxx;1
qxx;2
⋮
qxx;n

2
664

3
775

qxy;1
qxy;2
⋮
qxy;n

2
664

3
775 ¼ diag uyy;11=uxy;11 uyy;12=uxy;12 ⋯ uyy;1n=uxy;1nð Þ

qyy;1
qyy;2
⋮
qyy;n

2
664

3
775

ð21Þ

Next, Eq. (6) is transformed into the modal space by
substituting Eq. (18) into Eq. (6) and utilizing the orthogonal-
ity of the modal mass normalized shapes.

1
1

⋱
1

2
664

3
775

€qi j;1

€qi j;2
⋮
€qi j;n

2
6664

3
7775þ

2ξi j;1ωi j;1

2ξi j;2ωi j;2

⋱
2ξi j;nωi j;n

2
664

3
775

qi j;1

qi j;2
⋮
qi j;n

2
6664

3
7775þ

ω2
i j;1

ω2
i j;2

⋱
ω2
i j;n

2
664

3
775

qi j;1
qi j;2
⋮
qi j;n

2
664

3
775

¼
ui j;11
ui j;12
⋮
ui j;1n

2
664

3
775 f i j;1 tð Þ i; j ¼ x; yð Þ

ð22Þ

To add the forces fxx,1(t) and fxy,1(t),fyx,1(t), and fyy,1(t) in
Eq. (22), the matrixes Uij satisfying the following conditions
are constructed.

0.5a D 1a D
Fig. 8 Effect of cross-FRFs on the stability lobes
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Ui j

ui j;11
ui j;12
⋮
ui j;1n

2
664

3
775 ¼

1
1
⋮
1

2
664

3
775⇒Ui j ¼

1=ui j;11
1=ui j;12

⋱
1=ui j;1n

2
664

3
775 i ¼ x; y j ¼ x; yð Þ ð23Þ

Equation (22) is multiplied by the Uij and can be expressed
as

Ui j

1
1

⋱
1

2
664

3
775

€qi j;1

€qi j;2
⋮
€qi j;n

2
6664

3
7775þ Ui j

2ξi j;1ωi j;1
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⋱
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664

3
775

qi j;1
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⋮
qi j;n

2
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3
7775þ Ui j

ω2
i j;1

ω2
i j;2

⋱
ω2
i j;n

2
664

3
775

qi j;1
qi j;2
⋮
qi j;n

2
664

3
775

¼
1
1
⋮
1

2
664

3
775 f i j;1 tð Þ i; j ¼ x; yð Þ

ð24Þ

Substituting Eq. (21) into Eq. (24) and adding the force fij,
1(t)(i, j=x,y) according to fxx,1(t)+ fxy,1(t)= fx(t) and fyx,1(t)+
fyy,1(t)= fy(t), the dynamic equation in modal space can be
obtained as follows:

~Mxx ~Mxy

~Myx ~Myy

" #
€qx tð Þ
€qy tð Þ

" #
þ ~Cxx

~Cxy

~Cyx
~Cyy

" #
qx tð Þ
qy tð Þ

" #

þ ~Kxx ~Kxy

~Kyx ~Kyy

" #
qx tð Þ
qy tð Þ

� �

¼ B tð Þ qx tð Þ
qy tð Þ

� �
−

qx t−Tð Þ
qy t−Tð Þ

� �� �
ð25Þ

Table 3 Tool parameters of the
cutter Diameter

(mm)
Number of
flutes

Helix angle
(°)

Flute length
(mm)

Cutter overhang
(mm)

Cutter
material

16 4 50 42 97 Carbide alloy
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Fig. 10 Impact experiment and
FRFs of the tool tip

1046 Int J Adv Manuf Technol (2016) 86:1037–1054



where

qx tð Þ ¼ qxx;1 qxx;2 ⋯ qxx;n
� �T

qy tð Þ ¼ qyy;1 qyy;2 ⋯ qyy;n
� �T

~Mxx ¼ diag 1=uxx;11 1=uxx;12 ⋯ 1=uxx;1nð Þ
~Mxy ¼ diag uyy;11=u

2
xy;11 uyy;12=u

2
xy;12 ⋯ uyy;1n=u

2
xy;1n

� �
~Myx ¼ diag uxx;11=u

2
yx;11 uxx;12=u

2
yx;12 ⋯ uxx;1n=u

2
yx;1n

� �
~Myy ¼ diag 1=uyy;11 1=uyy;12 ⋯ 1=uyy;1nð Þ

~Cxx ¼ diag 2ξxx;1ωxx;1=uxx;11 2ξxx;2ωxx;2=uxx;12 ⋯ 2ξxx;nωxx;n=uxx;1n
	 


~Cxy ¼ diag 2ξxy;1ωxy;1uyy;11=u
2
xy;11 2ξxy;2ωxy;2uyy;12=u

2
xy;12 ⋯ 2ξxy;nωxy;nuyy;1n=u

2
xy;1n

� �
~Cyx ¼ diag 2ξyx;1ωyx;1uxx;11=u

2
yx;11 2ξyx;2ωyx;2uxx;12=u

2
yx;12 ⋯ 2ξyx;nωyx;nuxx;1n=u

2
yx;1n

� �
~Cyy ¼ diag 2ξyy;1ωyy;1=uyy;11 2ξyy;2ωyy;2=uyy;12 ⋯ 2ξyy;nωyy;n=uyy;1n

	 


~Kxx ¼ diag ω2
xx;1=uxx;11 ω2

xx;2=uxx;12 ⋯ ω2
xx;n=uxx;1n

� �
~Kxy ¼ diag ω2

xy;1uyy;11=u
2
xy;11 ω2

xy;2uyy;12=u
2
xy;12 ⋯ ω2

xy;nuyy;1n=u
2
xy;1n

� �
~Kyx ¼ diag ω2

yx;1uxx;11=u
2
yx;11 ω2

yx;2uxx;12=u
2
yx;12 ⋯ ω2

yx;nuxx;1n=u
2
yx;1n

� �
~Kyy ¼ diag ω2

yy;1=uyy;11 ω2
yy;2=uyy;12 ⋯ ω2

yy;n=uyy;1n
� �

B tð Þ ¼

axx axy 0 0 0 0 ⋯ 0
axx axy 0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
axx axy 0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0 ayx ayy
0 0 0 0 ⋯ 0 ayx ayy
⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 ayx ayy

2
66666666664

3
77777777775

uxx;11 uxx;12 ⋯ uxx;1n 0 0 ⋯ 0
0 0 ⋯ 0 uyy;11 uyy;12 ⋯ uyy;1n
0 0 0 0 0 0 ⋯ 0
0 0 0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ 0
0 0 0 0 0 0 ⋯ ⋮

uxx;11 uxx;12 ⋯ uxx;1n 0 0 ⋯ 0
0 0 ⋯ 0 uyy;11 uyy;12 ⋯ uyy;1n

2
66666666664

3
77777777775

The modal parameters ξ and ω in Eq. (25) and residues are
identified by the FRFs H′ in Eq. (5). According to [25], the
modal shapes ui j;1l i; j ¼ x; y l ¼ 1; 2;⋯; nð Þ in Eq. (25)

can be got by the relationship of the modal shapes and
residues.

Table 4 Fitted modal parameters
Frequency (Hz) Damping (%) Residue

xx First mode 1109 3.05 1.195e−004−4.517e−004j
Second mode 1494 2.65 −1.238e−004−5.031e−004j

xy First mode 1135 1.79 1.101e−005−3.040e−005j
Second mode 1510 1.18 3.901e−005−7.436e−005j

yx First mode 1130 1.28 −2.515e−006−4.941e−005j
Second mode 1487 1.20 −4.166e−005−7.996e−005j

yy First mode 1116 0.90 −1.669e−005−4.487e−004j
Second mode 1498 2.18 −6.263e−005−5.480e−004j
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Fig. 11 Fitted and measured
frequency response functions
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Note that since the residues are complex numbers, the
resulting mode shapes will be complex and depend on the
damped natural frequency ωd. It is possible to obtain simpli-
fied real mode shapes from the residues by considering that
the structures have proportional damping and discarding the
imaginary parts of the complex mode shapes [25].

3 Numerical simulation and analysis

The frequency domain method ZOA [12] can achieve an ac-
curate milling stability prediction simultaneously considering
multiple modes and the cross-FRFs by scanning the chatter
frequencies around all of the dominant modes of the transfer
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Fig. 12 The transformed FRFs

Table 5 Modal parameters
identified by the FRFs in Fig. 12 Frequency (Hz) Damping (%) Residue

xx First mode 1109 3.05 −1.270e−006−4.613e−004j
Second mode 1494 2.67 −8.610e−007−4.914e−004j

xy First mode 1116 0.90 4.109e−003+3.306e−003j
Second mode 1492 2.57 1.437e−003+3.485e−003j

yx First mode 1116 0.91 1.443e−003+2.102e−003j
Second mode 1523 2.18 3.024e−004+1.748e−003j

yy First mode 1116 0.90 −3.465e−006−4.488e−004j
Second mode 1497 2.21 −2.325e−006−5.322e−004j
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functions and introducing the cross-FRFs in the eigenvalue
equation. To verify the effectiveness of the proposed time
domain model for the accurate milling stability prediction,
the stability lobes obtained by the proposed model are com-
pared with those from the ZOA method. The proposed time
domain model is solved by utilizing the FDM [18].

The modal parameters with two modes in Table 1 are illus-
trated for the stability lobe calculation of the proposed time
doma in mode l and f r equency doma in me thod
ZOA.According to the modal parameters in Table 1, the FRFs
based on the modal shape fitting are shown in Fig. 4.By refer-
ring to Eq. (5), the transformed FRFs calculated by the FRFs
in Fig. 4 are shown in Fig. 5.

The modal parameters are identified by using the
PloyMAX modules of LMS Test. Lab® from the FRFs in
Fig. 5 and are shown in Table 2.

A four-fluted cutter with no helix angle and the cutting
force coefficients Kt=3127Mpa and Kr=1769Mpa are used
in the calculation. The simulations are performed using the
proposed time domain model and ZOA method for up-mill-
ing. The large radial depths of cut ratios a/D=0.5 and a/D=1
are adopted in simulations for reducing the influence of the
neglected harmonic components in the ZOA method. The
proposed time domain model is solved by the FDM with a
discrete number m=40 over a 200×100 sized grid. From the
stability lobes in Fig. 6, it is noted that the stability boundary
of the proposed time domain model is in agreement with the
ZOAmethod, which verifies the effectiveness of the proposed
time domain model for the milling stability prediction consid-
ering multiple modes and the cross-FRFs simultaneously.

The effects of multiple modes and cross-FRFs on the sta-
bility boundary are analyzed. As seen in Fig. 7, it is noted that
the two modes influence each other on the stability boundary,
especially on the third and fourth peaks of the lobes. Conse-
quently, point A is stable in the stability lobes when only
considering the second mode, but it is unstable when

b

The stability boundary is improved

by the 2st mode of the cross FRFs

a

c

Fig. 13 Theoretical stability boundaries with the corresponding chatter
frequencies and experimental results. The symbols are follows: (1) open
circle is clearly stable case, (2) asterisk is clearly unstable cutting test, and
(3) ⊗ is not clearly stable or unstable

Fig. 14 Cutting experiment
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spectrum of Fx at different
parameter points
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considering both modes. Point B is stable in the stability lobes
when only considering the first mode, but it is unstable when
considering both modes. Points C and D are the actual ma-
chining parameters without the occurrence of chatter.

In addition to the effect of multiple modes, the stability
boundary is also influenced by the cross-FRFs. In Fig. 8, it
can be found that the cross-FRFs increase the stability bound-
ary compared with the case where the cross-FRFs are
neglected.

Since the cross-FRFs have influence on the stability bound-
ary, it is reasonable to analyze the influence of the magnitude
variation of the cross-FRF Hxy and Hyx on stability boundary.
Four cases of different magnitude of the cross-FRF Hxy and
Hyx compared with the fixed direct FRF Hxx and Hyy are per-
formed to show this influence, as shown in Fig. 9.

As seen in Fig. 9, when the amplitude of the first mode of
cross-FRFs increases from 0 m/N (without cross-FRFs) to
4.194×10−7 m/N (case 1), the stability boundary barely
changes. However, in the similar amplitude difference 4×
10−7 m/N, the stability boundary increases significantly while
the amplitude increases from 4.194×10−7 m/N (case 1) to
8.125×10−7 m/N (case 2). Furthermore, the stability bound-
ary increases greatly when the amplitude increases from
9.949×10−7 m/N (case 3) to 1.137×10−7 m/N (case 4) and
has only 1.88×10−7 m/N difference. This indicates that the
magnitude of the cross-FRFs compared with the direct FRFs
is an essential factor influencing the stability boundary. When
the amplitude ratio of the cross-FRFs and direct FRFs is great-
er than 0.5, such as case 2, the cross-FRFs should be consid-
ered in the stability prediction.

4 Experimental validation

From the above numerical simulation analysis, the effective-
ness of the proposed time domain model for milling stability
prediction considering multiple modes and cross-FRFs simul-
taneously is verified. Meanwhile, it is known that the interac-
tions between multiple modes and the cross-FRFs both have
effect on the stability boundary. In this section, one experi-
mental case is studied to verify the effectiveness of the pro-
posed time domain model. In the experimental case, the FRFs
including the cross-FRFs should be acquired and analyzed by
the modal testing experiment. The cutting force coefficients
for the particular cutter and workpiece material are calibrated
by cutting force experiments.

4.1 Calibration of cutting force coefficients

A four-fluted helical mill cutter is used in the experiment, and
the parameters of the tool are listed in Table 3. The material
used in the experiment is the high-strength steel 300M, which
easily produces the chatter phenomenon due to its high

hardness after heat treatment. Using the milling force model
[26], the cutting force coefficients, Kt=3127 MPa and Kr=
1769 MPa, are calibrated by the experiment.

4.2 Identification of modal parameters

The modal parameters are obtained by a modal impact exper-
iment on a five-axis gantry machining center GMC 1600H/2.
The exciting force on the tool tip is applied by a PCB impact
hammer 086C03, and the vibration signal of tool tip is ac-
quired by a DYTRAN acceleration sensor 3224A1. LMS is
used for data acquisition and modal analysis. The modal im-
pact experiment is shown in Fig. 10a. The modal impact test-
ing is conducted five times in each direction, and the FRF is
averaged to reduce the impact uncertainty. The FRFs of the
tool tip are shown in Fig. 10b. It is clear that the direct FRFs
and cross-FRFs all have two modes (approximately 1115 and
1500 Hz).

The modal parameters are fitted using the PloyMAX mod-
ules of LMS Test. Lab® in the frequency range 500–3500 Hz.
The fitted modal parameters are listed in Table 4. The mea-
sured FRF and fitted curves are plotted in Fig. 11.

According to the explanation in Sect. 2, the transformed
FRFs H′ should be calculated as Eq. (5) for the stability cal-
culation when the cross-FRFs is considered. The transformed
FRFs are shown in Fig. 12, and the corresponding modal
parameters identified using the PloyMAX modules of LMS
Test. Lab® are listed in Table 5.

4.3 Comparison between stability prediction
and experiment

The milling stability prediction is performed using the modal
parameters identified in Table 5 with a radial depth of cut
ratios a/D=0.25 and a feed per tooth fz=0.07. Figure 13a
shows the stability lobes with the proposed time domain mod-
el and the ZOA method. The stability lobes with multiple
modes and the cross-FRFs are shown in Fig. 13b. The stability
predictions with single mode or no cross-FRF effect are also
plotted in Fig. 13b for comparison and analysis. Theoretical
chatter frequencies on the stability boundary are shown in
Fig. 13c.

A cutting experiment is performed to verify the stability
prediction of the proposed time domain model, as shown in
Fig. 14. During the experiment, a KISTLER 9257A dyna-
mometer and an NI PXIe-4499 data acquisition module are
used to record the force signals. The sampling rate is set to
30 kHz. The experiment results are plotted in Fig. 13b for
comparison with the theoretical prediction. The experimental
results agree well with the prediction.

The measured FRFs of the tool tip in Fig. 10 show that the
first mode amplitude of the cross-FRFs is much smaller than
that of the direct FRFs, while the second mode amplitude of
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the cross-FRFs is nearly half of that of the direct FRFs. Ac-
cording to the influences of multiple modes and cross-FRFs
on stability boundary, which are analyzed above, the second
mode of the cross-FRFs will improve the stability boundary
on the peaks of the lobe. The result of the stability boundary
improvement is shown in Fig. 13b.

The cutting forces at some parameter points (A, B, C,
D) are illustrated, and the spectrum of Fx is analyzed.
Figure 15 shows the cutting force and the spectrum of
Fx. The force spectrum in the x direction of point A
(4050 rpm, 0.4 mm) has the chatter frequencies of 1036,
1306, and 1577 Hz. The differences are 270 and 271 Hz,
which are equal to the tooth passing frequency
(4050/60×4=270 Hz). The chatter frequency (1577 Hz)
is close to the theoretical chatter frequency (1537 Hz) of
the stability boundary shown in Fig. 13c. On the other
hand, in point B (4050 rpm, 0.2 mm), only the harmonic
vibration frequencies (270, 540, 810, 1080 Hz, etc.) ap-
pear, where frequencies are integral multiples of the spin-
dle speed frequency (4050/60=67.5 Hz). Point C
(4450 rpm, 0.2 mm) is unstable due to the occurrence of
chatter frequencies (1132 and 1428 Hz). The chatter fre-
quency (1132 Hz) is close to the theoretical chatter fre-
quency (1124 Hz) of the stability boundary shown in
Fig. 13c. Point D (4450 rpm, 0.1 mm) is stable, and the
corresponding frequencies (890, 1187, 1483, 1780,
2077 Hz, etc.) in the spectrum are all of the harmonic
vibration frequencies. Above all, the comparisons show
that the milling stability prediction is in good agreement
with the experimental results. Consequently, in addition to
the theoretical simulation verification in Sect. 3, the pro-
posed time domain model simultaneously considering mul-
tiple modes and cross-FRFs has proved effective from
the experiments.

From the theoretical prediction and experimental results as
seen in Fig. 13b, the multi-mode interaction and cross-FRFs
both affect the accurate prediction of the stability lobe
diagram.

As seen in Fig. 13b, the two modes have great influence on
the stability boundary, especially on the second, fifth, and
sixth peaks of the lobe. The second mode reduces the stability
boundary on the basis of the first mode in the overlapping
region. And, as shown in Fig. 13c, the theoretical chatter fre-
quencies on the peaks of the lobe diagram are close to the
secondmode frequency of the tool tip. The chatter frequencies
on the troughs of the lobe diagram are close to the first mode
frequency of the tool tip. According to the chatter theory
researched by Altintas [13, 25], chatter appears around the
mode frequency. Thus, one stability point according to one
mode may be the chatter point when the chatter frequency of
this point locates around another mode.

In addition to the effect of multiple modes, it can be seen in
Fig. 13b that the cross-FRFs increase the stability boundary

compared with the case where the cross-FRFs are neglected.
The reason may be as follows [11].

Chatter is a kind of mechanism, which transfers energy into
the structure to sustain the vibration. The major part of the
energy is used for direct vibration (the exCitation in one
direction causes vibrations in the same direction) if the
cross-FRFs are neglected. When the cross-FRFs are simulta-
neously considered, the transferred energy is scattered (the
exCitation in one direction causes vibrations in two
directions). If we want to make the structure chatter still hap-
pen, more energy is needed, which is reflected in the large
cutting depth. So, the stability boundary is increasing.

5 Conclusions

In this paper, an effective time domain model simultaneously
considering multiple modes and cross-FRFs was proposed. In
the dynamic equation, the number of vibration variables is
more than the number of matrix dimensions due to the intro-
duction of the multiple modes. The approaches of multiple
modal parameter normalization on the tool tip and reducing
the vibration variable number in modal space are described in
detail and proven effective. When considering the cross-FRF
effect, the mechanical mobility and impedance transformation
method was proposed to calculate the transformed FRFs for
modeling of stability prediction. The comparisons of the nu-
merical simulation results between the proposed time domain
model and the frequency domain method ZOA demonstrate
the effectiveness of the proposed model. In addition, a cutting
experiment was performed, and the results are in good agree-
ment with the stability prediction. The proposed time domain
model was verified by the numerical simulation results and the
cutting experiment.

On the basis of the accurate prediction of stability lobe
diagram, the effect of multiple modes and cross-FRFs on the
stability boundary was analyzed. By comparing the stability
boundary with different magnitude of the cross-FRFs Hxy and
Hyx, it indicates that the amplitude ratio of the cross-FRFs and
direct FRFs is an essential factor influencing the stability
boundary. The stability boundary improves with the increas-
ing amplitude ratio. When the amplitude ratio of the cross-
FRFs and direct FRFs is greater than 0.5, the cross-FRFs have
significant effect on the stability prediction.
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