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Abstract It is usually assumed that a quality characteris-
tic in an item obeys a normal distribution in the case that
the quality of items is evaluated based on the variable prop-
erty. Then, the concept of Taguchi’s quality loss has been
accepted as the evaluation measure of quality instead of
the traditional attribute property such as the proportion of
nonconforming items. From this viewpoint, some variable
sampling plans indexed by the quality loss have been inves-
tigated before now. As a study earliest among them, the
variable single sampling plan based on operating charac-
teristics (OC) indexed by the quality loss was considered.
On the other hand, the attribute repetitive group sampling
plan on OC was proposed for reducing the sampling num-
ber in the inspection. Recently, the variable repetitive group
sampling (VRGS) plan on OC indexed by the quality loss
has been considered. By the way, the rectifying inspection
is known as one of the schemes of acceptance sampling
inspection. Then, Dodge-Romig single sampling plans are
known as the traditional rectifying inspection based on
attribute sampling plans. Dodge-Romig rectifying attribute
sampling plans provide the lot tolerance percent defective
(LTPD) scheme on each lot and the average outgoing quality
limit (AOQL) scheme for many lots. Furthermore, the recti-
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fying variable single sampling (RVSS) plan indexed by the
quality loss was investigated. In conformity with the tradi-
tional rectifying attribute sampling plans for the LTPD and
AOQL schemes, the acceptance quality loss limit (AQLL)
and specified permissible average outgoing surplus quality
loss limit (PAOSQLL) schemes are respectively proposed
in the RVSS plans indexed by the quality loss. In this arti-
cle, we suppose that the quality characteristic in an item
obeys a normal distribution. Under this condition, the recti-
fying variable repetitive group sampling (RVRGS) plan for
AQLL is considered for the purpose of reducing the average
total inspection (ATI). Specifically, the design procedure for
finding out the required sample size and inspection crite-
ria for satisfying the constraint of the quality assurance is
derived. Lastly, it is shown that ATI of the RVRGS plan is
reduced in comparison with that of the RVSS plan under the
same condition.

Keywords Average total inspection · Acceptance quality
loss limit inspection scheme · Patnaik’s approximation ·
Repetitive group sampling · Taguchi’s quality loss

1 Introduction

When inspection is for the purpose of acceptance or rejec-
tion of a item and/or a lot, based on adherence to a stan-
dard, the type of inspection procedure employed is called
acceptance sampling. The acceptance sampling plan has an
important role in the statistical quality control.

The investigations about acceptance sampling plans have
been actively practiced until now. In the detail, for exam-
ple, see a textbook [1]. Note that the acceptance sampling is
not directly productive and profitable. Consequently, reduc-
ing the number of samples is requested under the condition
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that the specified requirements for quality are satisfied.
For the purpose of reducing the number of samples in the
acceptance sampling, a variety of sampling plans have been
developed such as double, multiple, and sequential [2].

The repetitive group sampling plan [3] was devised as
one of them. The repetitive group sampling plan has two
criteria for judging the lot to be accepted, rejected, or pend-
ing. When pending, the inspection is repeated by taking a
new sample, where each judgment is not influenced by the
previous inspection records. The repetitive group sampling
plan achieves small number of samples in comparison with
the traditional single acceptance sampling plan.

On the other hand, when lots are rejected, acceptance
sampling programs frequently require corrective action. As
this corrective action, the form of screening through 100 %
inspection for rejected lots is taken generally. Then, all
discovered nonconforming items are either removed for
subsequent rework or returned to the supplier. Such sam-
pling programs are called rectifying inspection programs
[4]. In the case of the rectifying inspection programs, it is
requested to reduce the total inspection number including
the samples of sampling inspection and 100 % inspection.
Therefore, the rectifying inspection programs are formu-
lated as the minimizing problems of average total inspection
number under the specified requirements for quality.

The quality of lots has been traditionally evaluated based
on the attribute property such as the proportion of non-
conforming items in a lot. Then, a variety of acceptance
samplings have been developed using the proportion of
nonconforming items as the quality evaluation. However,
the traditional quality evaluation as the proportion of non-
conforming items has not distinguished among items that
fall within the specification limits. Naturally, the quality
between items that fall within the specification limits is
not definitely identical. Accordingly, in order to achieve
the strict quality assurance, more severe quality evaluations
have been required newly. In such a case, it is effective to
evaluate the quality of items by the variable property. And
then, it is usually assumed that a quality characteristic in an
item obeys a normal distribution. Under such a background,
a new concept of the quality evaluation has been proposed
by Taguchi [5, 6]. Taguchi has proposed the idea of inter-
preting the departure from the target value as the quality
loss.

By introducing the concept of quality loss into the accep-
tance sampling, Arizono et al. [7] have developed the
variable single sampling plan having desired operating char-
acteristics indexed by quality loss. Subsequently, Yen and
Chang [8] have considered similar variable acceptance sam-
pling plan. The repetitive group sampling plan by variables
has been studied actively, and many research results are
reported such as Balamurali et al. [9, 10] and Jun et al.
[11]. In particular, Aslam et al. [12] and Tomohiro et al.

[13] have proposed the variables repetitive group sampling
plan indexed by the quality loss. By introducing the repet-
itive group sampling plan, the reduction of sample number
is realized compared to the variable single sampling plan
indexed by quality loss by Arizono et al. [7].

On the other hand, the rectifying inspection programs
by quality loss have been considered by Morita et al. [14]
and Arizono et al. [15]. Note that their rectifying inspec-
tion programs are designed by the variable single sampling
plan indexed by quality loss. For the purpose of designing
the economic inspection program based on the reduction of
the average total inspection (ATI), we consider rectifying
variable repetitive group sampling (RVRGS) plan indexed
by quality loss. In particular, in conformity with the con-
cept of lot tolerance percent defective (LTPD) protection
in the traditional rectifying inspection programs, we design
the rectifying inspection programs based on the concept of
acceptance quality loss limit (AQLL) protection (RVRGS
plan for AQLL).

In this article, we suppose that the quality characteristic
of items obeys a normal distribution. Under this condi-
tion, the RVRGS plan for AQLL indexed by quality loss
for the purpose of designing the economic inspection pro-
gram based on the reduction of ATI is considered. Under the
consideration of the statistical property of the estimator of
the quality loss, the design algorithm for the RVRGS plan
for AQLL is investigated. Through some numerical simula-
tion, the utility of the proposed RVRGS plan for AQLL is
investigated.

The contents of this article are as follows. Section 2
explains the brief of quality loss. In this section, the dis-
tribution of the estimator of the quality loss is specified
based on the approximation technique proposed by Pat-
naik [16]. Section 3 presents the RVRGS plan for AQLL.
In this section, the design concept of the RVRGS plan
for AQLL in consideration of ATI is described. Succes-
sively, we show the design procedure of the RVRGS plan
for AQLL in Section 4. Then, the design conditions of the
RVRGS plan for AQLL in consideration of ATI is consid-
ered based on the the statistical property of the estimator.
Section 5 formulates the algorithm for deriving the optimal
RVRGS plan for AQLL. Through some numerical exam-
ples, the reduction of ATI in the proposed plan has been
verified in comparison with the RVSS plan indexed by qual-
ity loss in Section 6. Finally, we conclude this article in
Section 7.

2 Brief of Taguchi’s quality loss

In this section, the quality loss in the Taguchi method as
the quality evaluation of items based on the variable prop-
erty is briefed. When the mean and variance of the quality
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characteristics in individual items are given as μ and σ 2, the
expected loss per item can be evaluated as

kτ 2 = E[k(x − μT )2] = k{(μ − μT )2 + σ 2}, (1)

where k denotes the proportional coefficient based on the
functional limit of quality characteristic and gives the mon-
etary loss brought by the item which cannot fulfill its fun-
damental function, and μT indicates the mean in the ideal
quality characteristic distribution for items. Then, without
loss of generality, k can be specified as 1, because k is a con-
stant. Consequently, τ 2 can be redefined as the quality loss.
In this article, we treat τ 2 as the new evaluation measure of
quality instead of traditional attribute property such as the
proportion of nonconforming items.

In the viewpoint of the quality loss, even if the proportion
of nonconforming items was identical, the quality loss may
not be identical. That is, from Eq. 1, it is found that there are
innumerable combinations of (μ, σ 2) yielding same τ 2.

Suppose that the quality characteristic in an item obeys a
normal distribution N(μ, σ 2) where μ and σ 2 are unknown
parameters, respectively. Then, let xi, i = 1, 2, · · · , n be
observations obtained from random samples from the nor-
mal distribution N(μ, σ 2). In this situation, we have the
estimator τ̂ 2 of the quality loss τ 2 as follows:

τ̂ 2 = 1

n

n∑

i=1

(xi − μT )2 = (x̄ − μT )2 + s2, (2)

where x̄ and s2 denote the maximum likelihood estimators
of μ and σ 2 calculated as follows:

x̄ = 1

n

n∑

i=1

xi, s2 = 1

n

n∑

i=1

(xi − x̄)2 . (3)

Further, the statistic nτ̂ 2/σ 2 obeys the non-central chi-
square distribution with n degrees of freedom and non-
centrality parameter nξ , where ξ is defined as

ξ = (μ − μT )2

σ 2
. (4)

Note that the minimum variance is supposed to be given
as feasible performance depending on manufacturing costs
and environments. Then, the feasible minimum variance
under the ideal manufacturing environment is presented as
σ 2

T .
Since the non-central chi-square distribution is complex

and difficult in the stochastic analysis, Arizono et al. [7,
14, 15] have employed an approximation for the distribu-
tion of τ̂ 2 based on the approximation technique proposed
by Patnaik [16]. Then, Arizono et al. have considered the
following statistic ρ:

ρ = 1 + ξ

1 + 2ξ

nτ̂ 2

σ 2
. (5)

Based on the non-central chi-square distribution with n

degrees of freedom and non-centrality parameter nξ , the
mean and variance of the statistic ρ are given by

E [ρ] = 1 + ξ

1 + 2ξ
E

[
nτ̂ 2

σ 2

]
= n (1 + ξ)2

1 + 2ξ
, (6)

V [ρ] =
(

1 + ξ

1 + 2ξ

)2

V

[
nτ̂ 2

σ 2

]
= 2n (1 + ξ)2

1 + 2ξ
. (7)

It is found that the mean and variance of the statistic ρ coin-
cide with those of the central chi-square distribution with φ

degrees of freedom where

φ = n (1 + ξ)2

1 + 2ξ
. (8)

Accordingly, the central chi-square distribution with φ

degrees of freedom in Eq. 8 can be employed as the approx-
imate distribution of ρ. Further, it is easy to derive that
the function φ is the monotonous increasing function in ξ .
Then, it can be presented that φ ≥ n. It can be easily known
that the minimum value φmin = n is given by the condition
of ξ = 0.

From Eqs. 2–8, the statistic ρ can be rewritten as ρ =
φτ̂ 2/τ 2. Hereby, the distribution of the estimator τ̂ 2 is
specified approximately as follows:

τ̂ 2 ∼ τ 2

φ
χ2

φ, (9)

where χ2
φ means the central chi-square distribution with φ

degrees of freedom. Note that φ is a function consisting of
μ and σ 2. Hence, the distribution of τ̂ 2 is not unique even if
the value of τ 2 is identical.

3 Proposal of RVRGS plan for AQLL
in consideration of ATI

The feasible minimum variance under the ideal manufac-
turing environment can be supposed as σ 2

T . From this fact,
the state described by the combination (μT , σ 2

T ) can be
defined as the ideal state and the quality loss yielded by this
combination is expressed as τ 2T (= σ 2

T ).
Arizono et al. [15] have presented the RVSS plan for the

AQLL. In the RVSS plan for AQLL, the quality loss τ 21
which should be rejected and the probability of consumer’s
risk β are specified. And, it is necessary to determine the
inspection plan satisfying the probability of consumer’s
risk β about the arbitrary combination (μ, σ 2) yielding τ 21 .
Then, Arizono et al. [15] have considered the RVSS plan for
minimizing the average total inspection (ATI) in the ideal
state (μT , σ 2

T ). Remark that the incentive to improving the
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quality of items by optimising the RVSS plan for AQLL
based on ATI in the ideal state (μT , σ 2

T ) is formed.
In this section, we formulate the RVRGS plan for AQLL

in order to reduce the cost of sampling inspection in com-
parison with the RVSS plan for AQLL. Let c0 and c1 be the
acceptance and rejection criteria, respectively. And then, the
acceptance rule in the RVRGS plan for AQLL is constructed
as

⎧
⎨

⎩

if τ̂ 2 ≤ c0, then accept the lot,
if c0 < τ̂ 2 ≤ c1, then continue the inspection,
otherwise, reject the lot.

(10)

Then, the rejected lot is totally inspected. Note that, if the
inspection is continued, the judgment of successive inspec-
tion stage is not affected by the judgment of previous
inspection stage. This is a unique feature of the repetitive
group sampling plan introduced by Sherman [3].

In the RVRGS plan for AQLL, the quality loss τ 21 which
should be rejected and the probability of consumer’s risk β

are specified. And, it is necessary to determine the sampling
plan (n, c0, c1) satisfying the probability of consumer’s risk
β about the arbitrary combination (μ, σ 2) yielding τ 21 .

For developing the design procedure, we define the
following probabilities Pa(τ

2) and Pr(τ
2):

Pa(τ
2) = Pr{τ̂ 2 ≤ c0 | τ 2}, (11)

Pr(τ
2) = Pr{τ̂ 2 > c1 | τ 2}, (12)

where Pa(τ
2) and Pr(τ

2) are defined as the acceptance
probability and rejection probability of the lot with the qual-
ity loss τ 2 at each inspection stage with sampling plan
(n, c0, c1), respectively. Based on these two probability
functions Pa(τ

2) and Pr(τ
2), the probability PA(τ 2) that

the lot with the quality loss τ 2 is finally accepted is derived
as

PA(τ 2) =
∞∑

k=1

Pa(τ
2)

{
1 − Pa(τ

2) − Pr(τ
2)

}k−1

= Pa(τ
2)

Pa(τ 2) + Pr(τ 2)
. (13)

In the same manner, we have the probability PR(τ 2) that the
lot with the quality loss τ 2 is finally rejected as

PR(τ 2) =
∞∑

k=1

Pr(τ
2)

{
1 − Pa(τ

2) − Pr(τ
2)

}k−1

= Pr(τ
2)

Pa(τ 2) + Pr(τ 2)
. (14)

Furthermore, when ATI with the quality loss τ 2 in the
RVRGS plan is presented as AT I (τ 2), AT I (τ 2) is given as

AT I (τ 2) = n

∞∑

k=1

kPa(τ
2)

{
1 − Pa(τ

2) − Pr(τ
2)

}k−1

+ N

∞∑

k=1

Pr(τ
2)

{
1 − Pa(τ

2) − Pr(τ
2)

}k−1

= PA(τ 2)ASN(τ 2) + PR(τ 2)N, (15)

where N and ASN(τ 2) describe the lot size and average
sample number in the repetitive group sampling.

Then, ASN(τ 2) is derived as

ASN(τ 2) = n

Pa(τ 2) + Pr(τ 2)
. (16)

Notice that there are innumerable combinations of
(μ, σ 2) yielding same τ 2 due to the relation of τ 2 = (μ −
μT )2 + σ 2. Therefore, the required conditional expression
for satisfying the requirement of AQLL inspection scheme
is

max
(μ,σ 2)∈	(τ 21 )

PA(τ 21 ) ≤ β, (17)

where 	(τ 2) represents the set consisting of the combina-
tion in (μ, σ 2) satisfying the quality loss τ 2. Consequently,
the feasible sampling plan (n, c0, c1) should satisfy Eq. 17.
Then, there are many sampling plans (n, c0, c1) satisfying
the requirement of AQLL inspection scheme prescribed by
Eq. 17. In this article, we define the RVRGS plan for AQLL
in order to minimize ATI based on Eq. 15 in the case of the
ideal state (μT , σ 2

T ). That is, the design problem is to look
for the sampling plan (n, c0, c1) which satisfies Eq. 17 and
minimizes AT I (τ 2T ) based on Eq. 15 under the acceptance
rule of Eq. 10.

Although we can obtain the RVRGS plan for AQLL
optimised on ATI under any other assigned state (μ, σ 2)

except the ideal state (μT , σ 2
T ), we define the RVRGS

plan for AQLL in order to minimize ATI under the ideal
state (μT , σ 2

T ). This is because the purpose of the quality
inspection is to promote quality improvement in addition
to guaranteeing quality. It is obvious that the RVRGS plan
for AQLL optimised on AT I (τ 2T ) brings the incentive to
improve the quality of items.

4 Design procedure for RVRGS plan for AQLL
in consideration of ATI

In this section, we develop the design procedure for the
RVRGS plan for AQLL defined in the previous section.
Then, since PA(τ 21 ) is a function composed of Pa(τ

2
1 )

and Pr(τ
2
1 ), it is difficult to show the condition satisfy-

ing Eq. 17 analytically under the arbitrary combination of
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(μ, σ 2) yielding τ 21 . So, about Eq. 17, the following relation
is derived:

max
(μ,σ 2)∈	(τ 21 )

PA(τ 21 ) = max
(μ,σ 2)∈	(τ 21 )

Pa(τ
2
1 )

Pa(τ
2
1 ) + Pr(τ

2
1 )

= max
(μ,σ 2)∈	(τ 21 )

1

Pr(τ
2
1 )

Pa(τ
2
1 )

+ 1

≤ 1

min
(μ,σ 2)∈	(τ 21 )

Pr(τ
2
1 )

max
(μ,σ 2)∈	(τ 21 )

Pa(τ
2
1 )

+ 1

. (18)

From this relation, the required condition of Eq. 17 is always
satisfied if the following inequality is established:

1

min
(μ,σ 2)∈	(τ 21 )

Pr(τ
2
1 )

max
(μ,σ 2)∈	(τ 21 )

Pa(τ
2
1 )

+ 1

≤ β. (19)

Therefore, we consider the combination (μ, σ 2) maxi-
mizing Pa(τ

2
1 ) and the combination (μ, σ 2) minimizing

Pr(τ
2
1 ) individually. Note that it is not necessary that the

combination (μ, σ 2) maximizing Pa(τ
2
1 ) and the combina-

tion (μ, σ 2) minimizing Pr(τ
2
1 ) are the same combination

(μ, σ 2) in order to guarantee the establishment of Eq. 17.
At first, we consider the maximization of Pa(τ

2
1 ). We

define

max
(μ,σ 2)∈	(τ 21 )

Pa(τ
2
1 ) ≡ β† (0 < β† ≤ β), (20)

and represent (μ∗
1, σ

2∗
1 ) as (μ, σ 2) yielding the situation of

max(μ,σ 2)∈	(τ 21 ) Pa(τ
2
1 ). Note that the relation of Pa(τ

2
1 ) ≤

PA(τ 21 ) is satisfied from Eq. 13. Furthermore, the relation of
max(μ,σ 2)∈	(τ 21 ) Pa(τ

2
1 ) = β† is changed to

β† = max
(μ,σ 2)∈	(τ 21 )

Pa(τ
2
1 )

= max
(μ,σ 2)∈	(τ 21 )

Pr{τ̂ 2 ≤ c0 | τ 21 }

= Pr

{
τ̂ 2 ≤ min

(μ,σ 2)∈	(τ 21 )

χ2
φ1

(1 − β†)

φ1
τ 21

}

= Pr

⎧
⎨

⎩ τ̂ 2 ≤
χ2

φ∗
1
(1 − β†)

φ∗
1

τ 21

∣∣∣∣∣∣
(μ∗

1, σ
2∗
1 )

⎫
⎬

⎭ , (21)

where

φ1 = n(1 + ξ1)
2

1 + 2ξ1
, (22)

ξ1 = (μ1 − μT )2

σ 2
1

, (23)

and φ∗
1 and ξ∗

1 are in conformity to Eqs. 22 and 23. Hereby,
based on Eq. 21, the acceptance criterion c0 is derived as

c0 ≡ min
(μ,σ 2)∈	(τ 21 )

χ2
φ1

(1 − β†)

φ1
τ 21 . (24)

In this case, by applying the Wilson-Hilferty approximation
[17], the behavior of χ2

φ1
(1 − β†)/φ1 in τ 21 against φ1 can

be specified approximately as follows:

χ2
φ1

(1 − β†)

φ1
=

(
1 − 2

9φ1
+ u1−β†

√
2

9φ1

)3

, (25)

where u1−β† denotes the upper 100(1 − β†) percentile of
the standard normal distribution. Further, the differential
coefficient (primary derivative) for φ1 can be derived as

d

dφ1

(
χ2

φ1
(1 − β†)

φ1

)
=

√
1

2φ3
1

×
(
1 − 2

9φ1
+ u1−β†

√
2

9φ1

)2

×
(√

8

9φ1
− u1−β†

)
. (26)

Because β† should be less than β, and the small value such
as 0.10 is assigned to β, 1− β† is close enough to 1. There-
fore, u1−β† < 0 and Eq. 26 are positive. Hereby, Eq. 25 is a
monotonous increasing function in φ1 and minimized when
φ1 = φ1min, where φ1min is the minimum of φ1.

Furthermore, φ1 is specified as a function related to ξ1
and ξ1 ≥ 0. By differentiating φ1 from ξ1, the following
relation is obtained:

dφ1

dξ1
= 2nξ1(1 + ξ1)

(1 + 2ξ1)2
≥ 0. (27)

By Eq. 27, it is obvious that φ1 is a monotonous increasing
function in ξ1 and minimized when ξ1 is minimized. So,
φ1 is minimized when ξ1 = 0 because ξ1 ≥ 0. Based on
this logic, it is seen that Eq. 25 is minimized and Pa(τ

2
1 )

is maximized under the condition of (μ∗
1, σ

2∗
1 ) = (μT , τ 21 )

yielding ξ1 = 0.
Next, we consider the minimization of Pr(τ

2
1 ) under the

condition of max(μ,σ 2)∈	(τ 21 ) Pa(τ
2
1 ) = β†. From Eq. 19,

the following relation is established:

1

min
(μ,σ 2)∈	(τ 21 )

Pr(τ
2
1 )

max
(μ,σ 2)∈	(τ 21 )

Pa(τ
2
1 )

+ 1

= 1

min
(μ,σ 2)∈	(τ 21 )

Pr(τ
2
1 )

β† + 1

≤ β. (28)



2418 Int J Adv Manuf Technol (2016) 85:2413–2423

By changing Eq. 28, we obtain the following relation:

min
(μ,σ 2)∈	(τ 21 )

Pr(τ
2
1 ) ≥ 1 − β

β
β†. (29)

Consequently, we consider the following inequality:

max
(μ,σ 2)∈	(τ 21 )

{1 − Pr(τ
2
1 )} ≤ 1 − 1 − β

β
β†, (30)

where we define 1 − (1 − β)β†/β ≡ β‡ (β ≤ β‡ < 1)
and represent (μ∗∗

1 , σ 2∗∗
1 ) as (μ, σ 2) yielding the situation

of max(μ,σ 2)∈	(τ 21 ){1 − Pr(τ
2
1 )}. Successively, the relation

of max(μ,σ 2)∈	(τ 21 ){1 − Pr(τ
2
1 )} = β‡ is presented as

β‡ = max
(μ,σ 2)∈	(τ 21 )

{1 − Pr(τ
2
1 )}

= max
(μ,σ 2)∈	(τ 21 )

Pr{τ̂ 2 ≤ c1 | τ 21 }

= Pr

{
τ̂ 2 ≤ min

(μ,σ 2)∈	(τ 21 )

χ2
φ1

(1 − β‡)

φ1
τ 21

}

= Pr

⎧
⎨

⎩ τ̂ 2 ≤
χ2

φ∗∗
1

(1 − β‡)

φ∗∗
1

τ 21

∣∣∣∣∣∣
(μ∗∗

1 , σ 2∗∗
1 )

⎫
⎬

⎭ , (31)

where φ∗∗
1 is in conformity to Eq. 22. Hereby, based on

Eq. 31, the rejection criterion c1 is derived as

c1 = min
(μ,σ 2)∈	(τ 21 )

χ2
φ1

(1 − β‡)

φ1
τ 21 . (32)

By applying the Wilson-Hilferty approximation, the behav-
ior of χ2

φ1
(1 − β‡)/φ1 in τ 21 against φ1 can be specified

approximately as follows:

χ2
φ1

(1 − β‡)

φ1
=

(
1 − 2

9φ1
+ u1−β‡

√
2

9φ1

)3

. (33)

Further, the differential coefficient (primary derivative) for
φ1 can be derived as

d

dφ1

(
χ2

φ1
(1 − β‡)

φ1

)
=

√
1

2φ3
1

×
(
1 − 2

9φ1
+ u1−β‡

√
2

9φ1

)2

×
(√

8

9φ1
− u1−β‡

)
. (34)

If 1 − β‡ > 0.5, namely β‡ < 0.5, Eq. 33 is a
monotonous increasing function in φ1 and minimized when
φ1 is minimized. So, Pr(τ

2
1 ) is minimized under the condi-

tion of (μ∗∗
1 , σ 2∗∗

1 ) = (μT , τ 21 ) yielding the maximization
of Pa(τ

2
1 ).

On the other hand, when 1 − β‡ ≤ 0.5, we consider
based on the comparison of β‡ and γ yielding uγ = √

8/9n,
where

√
8/9n is the maximum of

√
8/9φ1.

Then, if 0 ≤ 1 − β‡ ≤ γ , namely 1 − γ ≤ β‡ < 1.0,
u1−β‡ is more than

√
8/9n

(≥ √
8/9φ1

)
. In this case, Eq. 34

is negative regardless of the value of φ1. Hereby, Eq. 33 is a
monotonous decreasing function in φ1 and minimized when
φ1 = φ1max, where φ1max is the maximum of φ1. Because
φ1 is a monotonous increasing function in ξ1, Eq. 33 is min-
imized when ξ1 is maximized. Further, from Eq. 23, because
ξ1 is the monotonous decreasing function in σ 2

1 , ξ1 is max-
imized when σ 2

1 = σ 2
T , where σ 2

T is the minimum of σ 2
1 .

As the result, Eq. 33 is minimized under the condition of

(μ∗∗
1 , σ 2∗∗

1 ) =
(

μT ±
√

τ 21 − σ 2
T , σ 2

T

)
.

Moreover, if γ < 1 − β‡ ≤ 0.5, namely 0.5 ≤ β‡ <

1 − γ , Eq. 33 is minimized when φ1 is maximized or min-
imized, because χ2

φ1
(1 − β‡)/φ1 is concave in φ1. In this

case, if
√
8/9φ1max−u1−β‡ ≥ 0, Eq. 33 is minimized when

φ1 is φ1min. On the other hand, if
√
8/9φ1min − u1−β‡ ≤ 0,

Eq. 33 is minimized when φ1 is φ1max. Further, if both
relations of

√
8/9φ1min − u1−β‡ > 0 and

√
8/9φ1max −

u1−β‡ < 0 are satisfied simultaneously, Eq. 33 is minimized
when φ1 is φ1max or φ1min. Hereby, we have the condition
of (μ∗∗

1 , σ 2∗∗
1 ) = (μT , τ 21 ) when Eq. 33 is minimized at

φ1min. On the other hand, the condition of (μ∗∗
1 , σ 2∗∗

1 ) =(
μT ±

√
τ 21 − σ 2

T , σ 2
T

)
is derived in the case that Eq. 33 is

minimized at φ1max.

Table 1 Sampling plans in AQLL inspection scheme under β† =
0.001 in the case of τ 21 = 2.25, β = 0.10, N = 500, and τ 2T = 1.00

n c0 c1 AT I (τ 2T )

48 1.089 3.252 69.74

49 1.098 3.241 69.51

50 1.107 3.230 69.36

51 1.116 3.219 69.26

52 1.125 3.209 69.23

53 1.134 3.199 69.25

54 1.142 3.189 69.32

55 1.150 3.180 69.44

56 1.158 3.171 69.60

57 1.166 3.162 69.81
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Fig. 1 Fluctuation ofAT I (τ 2T ) for each of the sample size under β† =
0.001 in the case of τ 21 = 2.25, β = 0.10, N = 500, and τ 2T = 1.00 in
AQLL inspection scheme

By the argument so far, the acceptance criterion under the
prescribed sample size n can be defined as

c0 = min
(μ,σ 2)∈	(τ 21 )

χ2
φ1

(1 − β†)

φ1
τ 21

= χ2
φmin

(1 − β†)

φmin
τ 21

= χ2
n(1 − β†)

n
τ 21 . (35)

And the rejection criterion under the prescribed sample size
n can be defined as

c1 = min
(μ,σ 2)∈	(τ 21 )

χ2
φ1

(1 − β‡)

φ1
τ 21

≡
χ2

φ∗∗
1

(1 − β‡)

φ∗∗
1

τ 21 , (36)

Table 2 Sampling plans in AQLL inspection scheme for each β† in
the case of τ 21 = 2.25, β = 0.10, N = 500, and τ 2T = 1.00

β† n c0 c1 AT I (τ 2T )

0.048 17 1.137 2.294 25.82

0.049 17 1.142 2.276 25.76

0.050 17 1.147 2.259 25.73

0.051 17 1.152 2.241 25.71

0.052 17 1.157 2.224 25.70

0.053 17 1.161 2.207 25.71

0.054 17 1.166 2.189 25.74

0.055 18 1.196 2.177 25.76

0.056 18 1.200 2.160 25.79

0.057 18 1.205 2.144 25.84

where β‡ is defined as

β‡ = 1 − 1 − β

β
β†, (37)

and φ∗∗
1 is represented as follows:

φ∗∗
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1min = n, (0 ≤ β‡ < 0.5)

φ1max =
n

(
τ 21

σ 2
T

)2

2
τ 21

σ 2
T

− 1

, (1 − γ ≤ β‡ < 1.0)

φ1min or φ1max, (0.5 ≤ β‡ < 1 − γ )

(38)

where φ∗∗
1 making Eq. 36 smaller is adopted in the case of

0.5 ≤ β‡ < 1 − γ .

5 Algorithm for designing optimal RVRGS plan
for AQLL

From the results mentioned above, the following algorithm
for the purpose of specifying the RVRGS plan (n, c0, c1) in
the AQLL inspection scheme is obtained:

(i) Set the initial value β† = 0.001.
(ii) Set the initial value n = 2.
(iii) Derive the acceptance criterion c0 based on Eq. 35

using the value of β†, n, and given τ 21 .
(iv) Derive β‡ based on Eq. 37 and calculate the rejection

criterion c1 based on Eq. 36 using the value of β‡, n,
and given τ 21 .

(v) Evaluate the value of AT I (τ 2T ) in Eq. 15 for the
sampling plan (n, c0, c1).

(vi) Reset n to n + 1. If n < N , then, go to (iii).
Otherwise, go to (vii).

Fig. 2 The relation of β† and AT I (τ 2T ) in the case of τ 21 = 2.25,
β = 0.10, N = 500, and τ 2T = 1.00 in AQLL inspection scheme
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Table 3 Sampling plans in AQLL inspection scheme for each τ 21 in
the case of β = 0.10, N = 500 and τ 2T = 1.00

τ 21 n c0 c1 AT I (τ 2T )

1.25 97 0.994 1.191 216.68

1.50 50 1.054 1.484 87.25

1.75 31 1.098 1.738 49.85

2.00 22 1.129 1.988 34.06

2.25 17 1.157 2.224 25.70

(vii) Reset β† to β† + 0.001, if β† < β. Then, go to (ii).
Otherwise, go to (viii).

(viii) Specify (n, c0, c1)minimizing the value ofAT I (τ 2T )

in the plans obtained by (i)-(vii) as the optimal
RVRGS plan for AQLL.

6 Numerical examples

In this section, we design the RVRGS plan for AQLL specif-
ically and verify the efficacy of the RVRGS plan for AQLL
proposed in this article through some numerical examples.
Let β = 0.10, τ 21 = 2.25, N = 500 and τ 2T = 1.00.

At first, set the initial value n = 2 and β† = 0.001 and
calculate the value of c0 and c1. Table 1 shows a part of
calculated results of (n, c0, c1) and AT I (τ 2T ) under β† =
0.001. Then, Fig. 1 illustrates the relation of sample size n

and AT I (τ 2T ) under β† = 0.001. In this case, the sampling
plan (n, c0, c1) = (52, 1.125, 3.209) is obtained.

Then, Table 2 shows a part of calculated results of
(n, c0, c1) and minimum value of AT I (τ 2T ) for each
β† (≤ β), and Fig. 2 illustrates a part of calculated
results of (n, c0, c1) and value of AT I (τ 2T ). Consequently,
(n, c0, c1) = (17, 1.157, 2.224) and AT I (τ 2T ) = 25.70
under β† = 0.052 is obtained as the optimal sampling
plan and minimum value of AT I (τ 2T ) through the above
numerical results.

Table 4 The reduction rate in ATI for each τ 21 in the case of β = 0.10,
N = 500, and τ 2T = 1.00

τ 21 nS AT IS(τ 2T ) Reduction rate (%)

1.25 154 243.29 10.94

1.50 91 120.83 27.79

1.75 60 75.37 33.86

2.00 44 53.79 36.68

2.25 35 41.61 38.24

Table 5 Sampling plans in AQLL inspection scheme for each τ 21 in
the case of β = 0.05, N = 500, and τ 2T = 1.00

τ 21 n c0 c1 AT I (τ 2T )

1.25 126 0.988 1.136 270.43

1.50 66 1.054 1.415 109.46

1.75 40 1.091 1.654 62.01

2.00 28 1.121 1.861 42.24

2.25 22 1.156 2.067 31.85

Next, we consider the proportion of the reduction of ATI
in the RVRGS plan for AQLL from ATIS in the RVSS
plan proposed by Arizono et al. [15] under the same con-
dition. Table 3 shows some calculated results of (n, c0, c1)

and AT I (τ 2T ) for each τ 21 against the variation of quality
loss τ 21 under β = 0.10, τ 2T = 1.00, and N = 500. Fur-
ther, Table 4 shows the relative reduction rates in ATI under
the proposed inspection in Table 3 and RVSS plan under
the same conditions. Then, nS and AT IS(τ 2T ) indicate the
sample size and ATI in the RVSS plan under the same con-
ditions. In addition, the values in reduction rate are given as
AT IS(τ 2T )−AT I (τ 2T )

AT IS(τ 2T )
. From the results in Table 4, the efficacy

of the RVRGS plan to the reduction of ATI is confirmed.
In the same manner, Table 5 shows some calculated

results of (n, c0, c1) and AT I (τ 2T ) for each τ 21 against the
variation of quality loss τ 21 under β = 0.05, τ 2T = 1.00, and
N = 500. Then, Table 6 shows the reduction rates in ATI
against the variation of quality loss τ 21 . From comparison
of Tables 4 and 6, we find that the smaller the probability
of consumer’s risk β is, the larger the sample size and ATI
are. Then, the rates of reduction in ATI are decreased in the
respective τ 21 .

Additionally, for the purpose of verifying the efficiency
of the proposed RVRGS plan, the reduction rates of the
designed RVRGS plans have been investigated in the cases
of various combinations of (μ, σ 2). For reference, Tables 7,
8, 9, and 10 are shown, where PRS(τ 2) describes the

Table 6 The reduction rate in ATI for each τ 21 in the case of β = 0.05,
N = 500, and τ 2T = 1.00

τ 21 nS AT IS(τ 2T ) Reduction rate (%)

1.25 186 287.41 5.91

1.50 111 145.75 24.90

1.75 74 91.11 31.94

2.00 54 65.08 35.09

2.25 43 50.40 36.81



Int J Adv Manuf Technol (2016) 85:2413–2423 2421

Table 7 The reduction rate in
ATI for each (μ, σ 2) in the
case of β = 0.10, N = 500,
(μT , σ 2

T ) = (0.0, 1.0), and
τ 21 = 1.50

τ 2 (μ, σ 2) PR(τ 2) AT I (μ, σ 2) PRS(τ 2) AT IS(μ, σ 2) Reduction rate (%)

1.10 (0.00, 1.10) 0.103 142.34 0.218 180.33 21.06

1.10 (0.10, 1.09) 0.102 142.34 0.218 180.33 21.06

1.10 (0.32, 1.00) 0.101 142.12 0.218 179.99 21.04

1.30 (0.00, 1.30) 0.571 339.04 0.640 352.68 3.87

1.30 (0.30, 1.21) 0.572 339.36 0.640 352.85 3.82

1.30 (0.55, 1.00) 0.576 342.79 0.645 354.61 3.33

1.50 (0.00, 1.50) 0.900 459.09 0.900 459.10 0.00

1.50 (0.30, 1.41) 0.902 459.33 0.901 459.28 −0.01

1.50 (0.71, 1.00) 0.918 466.69 0.913 464.78 −0.41

1.70 (0.00, 1.70) 0.978 490.63 0.980 491.83 0.24

1.70 (0.40, 1.54) 0.979 490.87 0.981 492.01 0.23

1.70 (0.84, 1.00) 0.988 494.82 0.988 495.17 0.07

1.90 (0.00, 1.90) 0.995 497.70 0.997 498.64 0.19

1.90 (0.50, 1.65) 0.995 497.86 0.997 498.74 0.18

1.90 (0.95, 1.00) 0.998 499.29 0.999 499.60 0.06

rejected probability by the RVSS plan. Then, we know that
under the situation of the poor quality such as τ 2 ≥ τ 21
there is not a difference between the power of the RVRGS
plan and the RVSS plan. Further, although some cases that
the value of AT IS(μ, σ 2) is smaller than the value of
AT I (μ, σ 2) are founded in Tables 7–10 under the situation
that the value of τ 2 is relatively big, these differences are not

so big. On the other hand, it is seen that the reduction rate
in ATI grows big as τ 2 becomes small and approaches τ 2T .
This fact means that the sampling cost for guaranteeing the
quality of items decreases by realizing good quality. By this
feature, it is confirmed that the RVSS plan for AQLL opti-
mised on ATI in the ideal state (μT , σ 2

T ) brings the incentive
to improve the quality of items.

Table 8 The reduction rate in
ATI for each (μ, σ 2) in the
case of β = 0.10, N = 500,
(μT , σ 2

T ) = (0.0, 1.0), and
τ 21 = 2.00

τ 2 (μ, σ 2) PR(τ 2) AT I (μ, σ 2) PRS(τ 2) AT IS(μ, σ 2) Reduction rate (%)

1.10 (0.00, 1.10) 0.020 46.70 0.064 73.12 36.14

1.10 (0.10, 1.09) 0.020 46.69 0.064 73.11 36.14

1.10 (0.32, 1.00) 0.019 46.51 0.063 72.79 36.10

1.30 (0.00, 1.30) 0.129 110.61 0.248 156.86 29.48

1.30 (0.30, 1.21) 0.128 110.43 0.247 156.67 29.51

1.30 (0.55, 1.00) 0.122 108.59 0.243 154.70 29.80

1.50 (0.00, 1.50) 0.398 236.36 0.501 272.28 13.19

1.50 (0.30, 1.41) 0.398 236.45 0.501 272.32 13.17

1.50 (0.71, 1.00) 0.397 239.41 0.504 273.82 12.57

1.70 (0.00, 1.70) 0.685 360.27 0.717 370.89 2.86

1.70 (0.40, 1.54) 0.686 361.10 0.718 371.38 2.77

1.70 (0.84, 1.00) 0.721 378.06 0.740 381.33 0.86

1.90 (0.00, 1.90) 0.853 433.50 0.856 434.31 0.18

1.90 (0.50, 1.65) 0.857 435.11 0.857 435.39 0.06

1.90 (0.95, 1.00) 0.901 455.52 0.890 449.64 −1.31

2.10 (0.00, 2.10) 0.931 468.22 0.932 468.74 0.11

2.10 (0.50, 1.85) 0.933 469.15 0.933 469.44 0.62

2.10 (1.05, 1.00) 0.968 485.38 0.962 482.44 −0.61

2.30 (0.00, 2.30) 0.966 484.09 0.969 485.68 0.33

2.30 (0.50, 2.05) 0.967 484.59 0.969 486.06 0.30

2.30 (1.14, 1.00) 0.990 495.36 0.989 494.88 −0.10
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Table 9 The reduction rate in
ATI for each (μ, σ 2) in the
case of β = 0.05, N = 500,
(μT , σ 2

T ) = (0.0, 1.0), and
τ 21 = 1.50

τ 2 (μ, σ 2) PR(τ 2) AT I (μ, σ 2) PRS(τ 2) AT IS(μ, σ 2) Reduction rate (%)

1.10 (0.00, 1.10) 0.121 179.73 0.273 216.99 17.17

1.10 (0.10, 1.09) 0.121 179.73 0.273 216.99 17.17

1.10 (0.32, 1.00) 0.119 179.61 0.272 216.71 17.12

1.30 (0.00, 1.30) 0.683 390.66 0.737 397.87 1.81

1.30 (0.30, 1.21) 0.684 391.03 0.738 398.09 1.77

1.30 (0.55, 1.00) 0.692 394.97 0.744 400.40 1.36

1.50 (0.00, 1.50) 0.950 480.16 0.950 480.55 0.08

1.50 (0.30, 1.41) 0.950 480.31 0.950 480.68 0.08

1.50 (0.71, 1.00) 0.962 484.93 0.960 484.41 −0.11

1.70 (0.00, 1.70) 0.992 496.69 0.994 497.51 0.17

1.70 (0.40, 1.54) 0.992 496.80 0.994 497.59 0.16

1.70 (0.84, 1.00) 0.996 498.44 0.997 498.80 0.07

1.90 (0.00, 1.90) 0.999 499.41 0.999 499.74 0.07

1.90 (0.50, 1.65) 0.999 499.46 0.999 499.77 0.06

1.90 (0.95, 1.00) 1.000 499.87 1.000 499.95 0.02

Table 10 The reduction rate in
ATI for each (μ, σ 2) in the
case of β = 0.05, N = 500,
(μT , σ 2

T ) = (0.0, 1.0), and
τ 21 = 2.00

τ 2 (μ, σ 2) PR(τ 2) AT I (μ, σ 2) PRS(τ 2) AT IS(μ, σ 2) Reduction rate (%)

1.10 (0.00, 1.10) 0.022 58.42 0.078 88.97 34.34

1.10 (0.10, 1.09) 0.022 58.41 0.078 88.97 34.34

1.10 (0.32, 1.00) 0.021 58.23 0.078 88.62 34.29

1.30 (0.00, 1.30) 0.166 142.73 0.309 191.87 25.61

1.30 (0.30, 1.21) 0.165 142.60 0.309 191.73 25.62

1.30 (0.55, 1.00) 0.159 141.32 0.306 190.25 25.72

1.50 (0.00, 1.50) 0.508 293.71 0.598 320.68 8.41

1.50 (0.30, 1.41) 0.509 297.53 0.598 322.79 7.83

1.50 (0.71, 1.00) 0.517 300.83 0.607 324.57 7.31

1.70 (0.00, 1.70) 0.794 410.93 0.809 414.57 0.88

1.70 (0.40, 1.54) 0.796 411.77 0.810 415.11 0.80

1.70 (0.84, 1.00) 0.833 428.44 0.834 425.85 −0.61

1.90 (0.00, 1.90) 0.921 464.50 0.920 464.35 −0.03

1.90 (0.50, 1.65) 0.923 465.69 0.922 465.23 −0.10

1.90 (0.95, 1.00) 0.955 479.65 0.947 476.16 −0.73

2.10 (0.00, 2.10) 0.968 485.30 0.969 486.25 0.19

2.10 (0.50, 1.85) 0.969 485.87 0.970 486.69 0.17

2.10 (1.05, 1.00) 0.988 494.64 0.987 494.02 −0.12

2.30 (0.00, 2.30) 0.986 493.51 0.989 494.91 0.28

2.30 (0.50, 2.05) 0.987 493.77 0.989 495.10 0.27

2.30 (1.14, 1.00) 0.997 498.64 0.997 498.80 0.03

7 Concluding remarks

In this article, we have considered the RVRGS plan indexed
by quality loss for the purpose of designing the economic
inspection program based on the reduction of ATI. At
first, the design concept of the RVRGS plan for AQLL
in consideration of ATI has been described. Successively,
under the consideration of the statistical property of the

estimator τ̂ 2 of the quality loss τ 2, we have developed the
design algorithm for the RVRGS plan for AQLL. Through
some numerical evaluation, the reduction of ATI in the
proposed plan has been verified in comparison with the
RVSS plan indexed by quality loss. As the result, the
economic program of the rectifying inspection for the repet-
itive group sampling plan indexed by quality loss has been
established.
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Michlin and Pistiner [18] have investigated the volumet-
ric tightness testing of underground storage tanks. In this
article, the probability of a leak has been evaluated under
the standard normal distribution. Then, it seems that the
RVRGS plan for AQLL can contribute the volumetric tight-
ness testing of underground storage tanks. Separately from
this, the variable sampling plan based on the process loss
index Le has been considered by Yen and Chang [8] and
Aslam et al. [12]. In addition, Pearn and Wu [19] consider
the variable sampling plan indexed by the process capability
index Cpm. Then, the process loss index is described as

Le = (μ − μT )2 + σ 2

d2
,

where d = (USL − LSL)/2 is the half specification width,
USL and LSL are the upper and lower specification lim-
its. Then, d is a fixed value. Further, the process capability
index Cpm is defined as

Cpm = d

3
√

(μ − μT )2 + σ 2
.

Then, we can know easily that the process loss index Le and
the process capability index Cpm are reduced to the qual-
ity loss τ 2. Consequently, in the situations that the variable
sampling plan based on the process loss index Le and the
variable sampling plan indexed by the process capability
index Cpm are adopted, the RVRGS plan for AQLL consid-
ered in this article can be applied. Then, the adoption of the
RVRGS plan for AQLL in the real case would like to be a
future problem.

Furthermore, as mentioned previously, Arizono et al. [15]
have considered the rectifying inspection programs by qual-
ity loss for the AQLL inspection scheme and PAOSQLL
inspection scheme. In this article, the rectifying inspection
program for AQLL based on the repetitive group sampling
plan is investigated. We would like to consider the rectifying
inspection program for PAOSQLL based on the repetitive
group sampling plan as a near future subject.
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