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Abstract The periodic inventory routing problem (PIRP) de-
termines the delivery routing and the inventory policies for
retailers from a supplier in a periodic time based on the min-
imal cost criterion. Since it is a non-deterministic polynomial-
time (NP)-hard problem, a heuristic method is needed for this
problem. In the past, different global heuristic methods, such
as tabu search (TS) and simulated annealing (SA), have been
proposed; however, they seem ineffective. Particle swarm op-
timization (PSO) is known as resolving multidimensional
combinatorial problems such as PIRP; however, it is easily
trapped in local optimality. The authors of this paper propose
a hybrid heuristic method for the PIRP. The hybrid method
integrates a large neighborhood search (LNS) into PSO to
overcome the drawbacks of PSO and LNS. The PSO is
adopted first. A local search is applied to each particle in
different iterations. Then, a local optimal solution (particle)
for each particle is obtained. Last, the LNS is applied to the
global best solution to avoid becoming trapped in local opti-
mality. The results show that the proposed hybrid heuristic
method is 10.93 % better than the existing method and
1.86 % better than the pure heuristic method in terms of aver-
age cost.
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1 Introduction

The inventory routing problem (IRP) has been discussed and
adopted in different industries [1, 20]. When supply chain
management (SCM) and vendor-managed inventory (VMI)
are adopted, they become strategic tools for companies to save
money. In the last three decades, companies have seen an
increasing importance placed on research in IRP. Since the
first integrated IRP proposed by Federgruen and Zipkin [4],
IRP has shown considerable efficiency. The IRP system could
save approximately 40 % of the total working hours in large
soft drink firms [19].Moreover, studies byGaur and Fisher [6]
and Fu and Fu [5] proposed that an IRP system could decrease
an organization’s total cost and improve their advantage, com-
pared to the approach of separating optimization.

Recently, the periodic inventory routing problem (PIRP) has
been garnering considerable attention, not only because of the
way it is applied, but also because it is from scientific research
[18, 21]. The PIRP determines vehicle routing and delivery
times for retailers from a supplier in a repeated period based
on the minimal transportation and inventory cost criterion. It
occurs often in practice, such as Albert Heign, a leading super-
market chain in the Netherlands [6],Walmart, and others [21]. In
the USA, car manufacturers need to set up a periodic time to
deliver new cars and accessories to car dealerships because of
the long distance. Therefore, PIRP is an important topic in both
practical and academic implications.

Comparing IRP and PIRP, IRP helps to allocate inventory
and decide routing schedules simultaneously in a supply chain
system. In order to achieve a global solution, IRP minimizes the
total cost (the distribution and inventory costs of retailers) [21].
PIRP is a multidimensional problem that includes delivery times
for retailers and vehicle routing for retailers in a fixed and re-
peated period. Since searching for an optimal solution for a
multidimensional problem is a non-deterministic polynomial-
time (NP)-hard problem, it is not feasible to adopt a mathemat-
ical method to resolve the problem [16]. Hence, a heuristic
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method is needed. In the past, different heuristic methods, such
as a tabu search (TS) [21], simulated annealing (SA) [29], etc.,
have been proposed for the PIRP. Because the structure of IRP
is similar to that of PIRP, the IRP is also reviewed.

Since the neighborhood-based approach can search different
dimensions quickly and can be addressed easily [8, 9], it is often
adopted for the IRP. The related approach includes a local
search [4, 7], TS [13, 28, 30], SA [29], and a variable neigh-
borhood search (VNS) [15, 23, 31]. In addition, a VNS is better
than a TS, SA, and local search [27, 31]. However, the VNS
lacks a learning mechanism. Recently, the particle swarm opti-
mization (PSO), an approach based on an evolving population,
has becomemore feasible for a multidimensional problem such
as PIRP [2, 11]. Furthermore, the PSO has been found to be
superior to neighborhood-based approaches [17, 24], although
it is easily trapped in local optimality. In addition, since PIRP
needs more complex representation and processes to search for
the global optimal solutions, other population-evolving-based
approaches such as ant colony optimization (ACO), path
relinking, scatter search, and parallel computing approaches
such as deoxyribonucleic acid computing are inappropriate for
solving the PIRP [25]. Hybrid heuristic methods for multidi-
mensional problems have proven to be better than a single pure
heuristic method [3]. For example, Küçükoğlu and Öztürk [12])
proposed a hybrid method integrating TS and SA to overcome
the shortcomings of using pure heuristic methods. Li et al. [14]
proposed a hybrid method integrating TS and VNS, and it
proved to be better than TS, SA, and GA. Marinakis et al. [17]
proposed a hybrid method integrating PSO and VNS, and it
proved to be better than PSO. However, according to the litera-
ture review, VNS outperforms SA, TS, and GA in vehicle
routing problems (VRP) [27, 31]. Compared to VRP, PIRP
needs more complex processes to search the global optimal so-
lutions. Additionally, the ACO approach presented lower perfor-
mance for resolving PIRP compared to other hybrid algorithms
such as TS, GA, VNS, and SA (Cho, Lee, Lee, & Gen, 2014;
Dehbari, Pour Rosta, Ebrahim Nezhad, Tavakkoli-Moghaddam,
& Javanshir, 2012; [25]. Wang et al. [26] proposed a hybrid
method integrating PSO and GA, and it proved to be better than
PSO and GA. According to the literature review, a hybrid heu-
ristic method integrating PSO and large neighborhood search
(LNS) to overcome the shortcomings of using pure heuristic
methods is best (LNS is a transformation of VNS). Therefore,
it makes more sense to adopt the hybrid heuristic method for
solving the PIRP in this paper.

2 The proposed hybrid heuristic method

Before the proposed hybrid heuristic method is introduced, the
authors should mention the formulation for the model first. The
model formulation for PIRP is the same as that in Qin et al. [21]
(please refer to Appendix for the details). Since finding the

optimal solution for the PIRP is an NP-hard problem, a heuristic
method is adopted. A hybrid heuristic method integrating PSO
and LNS is proposed to overcome the shortcomings of PSO or
LNS in this paper. The initial solutions (particles) and their
corresponding velocities are generated randomly by the algo-
rithm. Consequently, the algorithm will decide the global best
solution and particle best solution. A local search is applied to
each particle in different iterations in order to find better solu-
tions around each particle (since the solutions [particles] found
by PSO can be in a random position and better neighborhood
solutions are ignored, a local search finds better neighborhood
solutions of PSO-generated solutions). The local search is exe-
cuted repeatedly until no better neighborhood solution is found.
Then, a local optimal solution (particle) is obtained, and the
global best solution and particle best solution are revised. The
LNS is applied to the global best solution to avoid becoming
trapped in local optimality. If the new solution is better than the
global best solution, the global best solution is substituted with
the new solution. The position and velocity for each particle in
the new iteration are then revised. After a specific number of
iterations are executed, the final global best solution of the
proposed hybrid heuristic method is found, and the procedure
stops (Fig. 1).

2.1 Initialize parameters

Set ite=1 (the index of current iteration), ind=1 (the index of
current particle), I (the maximal iteration), np (the number of
particles), and nlns (the iteration for LNS).

2.2 Generate the position and velocity for each particle
in the first iteration

There are np particles generated randomly in the first iteration.
Each particleX includes period information, vehicle information,
routing information, and threshold information. The representa-
tion for X (solution) is shown in Table 1. There are six retailers
(from A to F) served by three vehicles (from V1 to V3) in two
periods (from T1 to T2). The value is randomly generated from
U[0, 10] (the range is experimentally decided based on the min-
imal cost criterion). The threshold values are 5.1 for the first
period and 7.8 for the second period. The value is randomly
generated from U[0, 10]. After Table 1 is generated, it is trans-
lated into Table 2 according to the threshold constraint. If the
value is less than the threshold value, it becomes 0; otherwise,
the value is unchanged.

If the retailer is supplied by different vehicles, the retailer is
supplied by the vehicle with the maximal value since each re-
tailer can be supplied only by a specific vehicle in any period (it
is experimentally decided based on theminimal cost criterion). If
all demands for retailers in a specific vehicle are greater than the
vehicle capacity, then the transportation service for the retailers
with smaller value is canceled until the vehicle capacity
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constraint is not violated (it is experimentally decided based on
the minimal cost criterion). Retailers B (V1 and V2), C (V1 and
V3), D (V2 and V3), E (V1 and V2), and F (V1 and V2) are
supplied by different vehicles in T1. According to the above
policy, Table 2 is translated into Table 3.

For each vehicle in any period, the retailer with the lower
value means that their delivery has a higher priority (it is exper-
imentally decided based on the minimal cost criterion). Based
on the policy, Table 3 is translated into Table 4.

After the particle is determined, the objective function value
for a specific particle can be computed based on the objective
function in the model mentioned in Appendix.

Vind
ite is generated randomly from U[−Vmax, Vmax]. Vmax is

generated using 15 % of each variable range [10].

2.3 Set the initial Gbest and Pbest

Gbest=Min{obj (X1
1) ,obj (X2

1) ,….,obj (Xnp
1 ) } obj (Xind

1 ) is the
objective function mentioned in Appendix A for Xind

1 , 1≤
ind≤np). Pbestind=Xind

1 (1≤ind≤np).

2.4 Apply a local search to the indth particle in the iteth

iteration and generate a new particle X

For the indth particle Xind
ite in the iteth iteration, a local search is

randomly selected and applied to the particle. There are four
local search approaches, including 1–0 insertion for routing
(randomly selects one retailer from one route and inserts it into
the same route or other routes), 1–1 exchange for routing (ran-
domly selects two retailers and exchanges them), replenishment
deletion (randomly selects a replenishment point for any specific
retailer and deletes the replenishment; the demand is sent by
previous delivery), and replenishment addition (randomly se-
lects any specific retailer without replenishment and inserts the

Start
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velocity for each particle in

the first iteration

Is ite = I ?

End
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Fig. 1 The flowchart for the proposed hybrid heuristic method

Table 1 The initial information for a particle X

T1 A B C D E F

V1 4.1 5.7 6.8 3.2 5.4 7.3

V2 3.2 6.3 2.5 8.9 8.4 6.2

V3 5.2 4.5 5.8 8.2 4.1 3.2

T2 A B C D E F

V1 4.3 9.2 4.2 3.3 3.1 6.1

V2 2.1 3.2 6.4 6.1 7.5 6.2

V3 8.2 5.3 8.4 7.2 5.4 7.1

Threshold T1 T2
Value 5.1 7.8

Table 2 The translation under the threshold constraint

T1 A B C D E F

V1 0 5.7 6.8 0 5.4 7.3

V2 0 6.3 0 8.9 8.4 6.2

V3 5.2 0 5.8 8.2 0 0

T2 A B C D E F

V1 0 9.2 0 0 0 0

V2 0 0 0 0 7.5 0

V3 8.2 0 8.4 7.2 0 0

Threshold T1 T2
Value 5.1 7.8
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replenishment; the demand is sent to satisfy the period needs
until the next replenishment). One approach is randomly select-
ed from four and applied to Xind

ite in order to generate a new
particleX. If the new particleX is better than the original particle
Xind
ite , Xind

ite is substituted by X(Xind
ite =X). Otherwise, Xind

ite is not
changed.

2.5 Is the stop criterion reached?

If ite=I, the procedure stops; otherwise, (1) apply LNS toGbest
(please refer toApply large neighborhood search (LNS) to Gbest
for the details), (2) set ite=ite+1 and ind=1, and (3) revise the
position and velocity for each particle.

2.6 Apply LNS to Gbest

For the purposes of this paper, the LNS method is to integrate
four local neighborhood search approaches mentioned above
into a heuristic search. LNS applies the four local search ap-
proaches with random sequence to Gbest and generates a new
particle X (after experiments, the search adopting four local
search approaches with random sequence is better than that with
fixed sequence in terms of average cost). If the particleX is better

thanGbest, thenGbest=X. The iteration number for LNS is nlns
(LNS is executed nlns times).

2.7 Revise the position and velocity for each particle

The position Xind
ite and velocity Vind

ite for a particle in the iteth

iteration are revised based on the Eqs. (1) and (2). In addition,
the range [0, 10] for the positionXind

ite and the range [−1.5, 1.5] for
the velocity Vind

ite are used to check their feasibility. If the position
or velocity violates the range constraints, the maximal (or min-
imal) value is used to substitute for the violated position or
velocity.

V ite
ind ¼ w� V ite−1

ind þ c1 � rand1� Pbestind−X ite−1
ind

� �
þ c2 � rand2� Gbest−X ite−1

ind

� � ð1Þ

X ite
ind ¼ X ite−1

ind þ V ite
ind ð2Þ

2.8 Parameter setting for the proposed hybrid heuristic
method

There are six parameters which are adopted and need to be
considered for this proposed hybrid heuristic method:
np (particle number), I (iteration number), w (inertia weight),
c1, c2 (learning factor), and nlns (the iteration number for
LNS). According to Shi and Eberhart [22] and Jordehi and Jasni
[10], l inear decreasing inertia weight is adopted

(w ¼ 0:9� 0:4ð Þ* I�iteð Þ
I þ 0:4 ), c1 is set 2, and c2 is set 2. The

other values are experimentally determined based on the
minimal average cost. np is tried from 30 to 50 (30, 40, 50). I
is tried from100 to 300 (100, 200, 300). nlns is tried from 3
to 7 (3, 5, 7).

3 Experimental results

3.1 Results

In order to examine the computational effectiveness and effi-
ciency of the proposed heuristic method (H1), three methods are
compared to the proposed method. The first method used is the
heuristic method (H2) proposed by Qin et al. [21]. The second
method is a heuristic method (H3) proposed by Zhang et al.
[29]. The third method is PSO (H4) (the H4 is almost the same
as H1. However, the Apply large neighborhood search to Gbest
procedure is deleted from H1). The heuristic methods are coded
using DEV C++, and the tests are carried out on a PC2.6 GHz
under WIN7, Intel Core Q8400, and 4-GB RAM.

A set of ten test instances is adopted based on the original ten
data sets given by Qin et al. [21]. All the instances involve a
planning horizon of seven time units, and the retailer set size
varies from 30 to 210, with an interval of 20 units geographically

Table 4 The final representation for X

T=1 A B C D E F

V1 0 0 1 0 0 2

V2 0 1 0 3 2 0

V3 1 0 0 0 0 0

T=2 A B C D E F

V1 0 1 0 0 0 0

V2 0 0 0 0 1 0

V3 2 0 3 1 0 0

Threshold T1 T2
Value 5.1 7.8

Table 3 The translation under the constraint of each retailer supplied
by one specific vehicle in any period

T1 A B C D E F

V1 0 0 6.8 0 0 7.3

V2 0 6.3 0 8.9 8.4 0

V3 5.2 0 0 0 0 0

T2 A B C D E F

V1 0 9.2 0 0 0 0

V2 0 0 0 0 7.5 0

V3 8.2 0 8.4 7.2 0 0

Threshold T1 T2
Value 5.1 7.8
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dispersed around the supplier. The distancematrix is obtained by
calculating the Euclidean distance. The customer demand rate is
modified to vary in each time unit, while the holding cost re-
mains the same, and a new vehicle fleet and capacity are adjusted
for the new demand. As for the parameter, np, I, and nlns, for the
proposed method H1, the value is determined based on the min-
imal cost criterion after experiments as follows: np=50, I=200,
and nlns=5.

Table 5 shows the best solutions in ten runs and their cor-
responding CPU times for different heuristic methods H1, H2,
H3, and H4. The table shows that H1 is better than H2, H3, and
H4 in terms of cost in all instances since H1 takes advantage of
PSO and LNS to effectively find a better solution (the average
cost for H1 is 102,940.2 smaller than 115,411.2 for H2, 105,
820.3 for H3, and 104,410.0 for H4). In addition, when the
problem size increases, the CPU time increases since the

search space increases for H1, H2, H3, and H4. Although H1

takes a little more time than other heuristic methods since a
local search is applied to each particle in different iterations
and a LNS is applied to the global best solutionGbest, it is still
acceptable (the average CPU time for H1 is 1330 s larger than
1144.5 s for H2, 1287 s for H3, and 1278 s for H4). Table 6
shows the average costs and gap (=(Hi−min{H1, H2, H4})/
min{H1, H2, H4}∗100 %) for H1, H2, and H4 (the average
costs for H3 are not available in [29]). This table shows that H1

is better than H2 and H4 since H1 takes advantage of PSO and
LNS to effectively find a better solution (the average cost
[gap] for H1 is 103,179.7 and is smaller than 115,917.0
[10.93 %] for H3 and 105,097.8 [1.86 %] for H4).

In addition to the methods used for the PIRP, the threshold
value determined in the proposed method and period size are
two important factors that influence the solution quality. Table 7

Table 5 Best solutions and CPU times for different heuristic methods

Instance H1 H2 H3 H4

Best cost CPU time (s) Best cost CPU time (s) Best cost CPU time (s) Best cost CPU time (s)

p_30_7 33,284.2 184 34,764.3 196 33,898.3 88 33,632.3 176

p_50_7 51,142.9 325 54,255.8 271 53,453.9 238 51,513.9 310

p_70_7 54,852.7 542 60,822.6 466 56,663.1 288 55,627.4 508

p_90_7 71,008.9 797 77,659.9 689 73,281.3 786 72,534.1 721

p_110_7 78,715.2 847 87,951.4 738 79,786.7 1025 79,253.8 793

p_130_7 88,694.2 1237 98,777.8 1051 89,527.5 1588 89,436.6 1192

p_150_7 119,237.6 1741 136,673 1517 123,493.9 1897 120,852.2 1627

p_170_7 149,872.3 2237 168,469 1921 157,274.9 1966 153,092.5 2148

p_190_7 179,692.6 2605 205,384 2375 184,316.3 2246 182,737.2 2582

p_210_7 202,901.7 2782 229,354 2221 206,507.4 2748 205,419.8 2721

Average 102,940.2 1330 115,411.2 1144.5 105,820.3 1287 104,410.0 1278

Table 6 Average costs for
different heuristic methods Instance H1 H2 H4

Average cost GAPa (%) Average cost GAP (%) Average cost GAP (%)

p_30_7 33,712.9 0 34,868.2 3.43 33,724.2 0.03

p_50_7 51,238.7 0 54,437.5 6.24 51,647.6 0.80

p_70_7 55,063.8 0 61,013.7 10.81 55,804.3 1.34

p_90_7 71,255.3 0 78,035.1 9.51 72,691.8 2.02

p_110_7 78,832.4 0 88,269.3 11.97 80,340.1 1.91

p_130_7 88,724.7 0 99,216.2 11.82 90,208.2 1.67

p_150_7 119,763.9 0 137,305.6 14.65 122,387.9 2.19

p_170_7 150,106.7 0 169,277.3 12.77 153,401.7 2.20

p_190_7 180,016.4 0 206,487.9 14.71 183,560.5 1.97

p_210_7 203,082.5 0 230,259.6 13.38 207,211.4 2.03

Average 103,179.7 0 115,917.0 10.93 105,097.8 1.86

The average costs for H3 are not available in Zhang et al. [29]
a GAP (%)=(Hi−min{H1, H2, H4})/min{H1, H2, H4}∗100 %
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shows the results in H1 with different threshold values. The H1

adopting the threshold value determined by PSO is better than
that equal to 0 in terms of average cost. Since different threshold
values perform variedly in different problems (from smaller size
to larger size), PSO can find better values than a fixed threshold
value of 0. Table 8 shows that the period size decreases from 7 to
5 (selected from the first five of seven periods adopted by [21]),
and the average cost decreases. The average cost (transportation
and inventory cost) decreases since the period size increases and
customer demand increases.

3.2 Practical and academic implications

Since PIRP is an NP-hard problem, different search approaches
have been proposed for solving the PIRP [21, 29]. Although
most of the studies have provided effective heuristic methods,
such as TS and SA, it is necessary to continually explore the
global optimal solution to help manufacturers or organizations
decrease transportation and inventory costs and increase their
benefits. Recently, PSO has become a promising method; how-
ever, it is easily trapped in local optimality. This paper proposed
a hybrid heuristic method integrating PSO and LNS to improve

the performance of pure heuristic methods and to overcome the
drawbacks of pure heuristic methods. Additionally, the pro-
posed hybrid heuristic method could explore better solutions
than those existing hybrid heuristic methods in terms of average
cost. Therefore, manufacturers or future studies should consider
the above conceptions and the hybrid heuristic method to im-
prove their competitive advantage.

4 Conclusions

The purpose of this paper was to adopt a hybrid heuristic meth-
od to search for the optimal solution for the PIRP. The results
are in line with previous studies: hybrid heuristic methods gen-
erate better results than single heuristic methods (PSO). The
hybrid heuristic method, combining PSO and LNS, for the
PIRP is 10.93 % better than the existing method (H2) and
1.86 % better than the pure heuristic method (H4) in terms of
average cost. Furthermore, two important factors, threshold val-
ue and period size, were analyzed for sensitivity analysis. The
experimental results also indicated that the method proposed by
this paper had better results for dealing with the PIRP.

As for future research directions, there are two issues that
require further attention: (1) More factors should be consid-
ered, such as time window constraint, pricing, location alloca-
tion, etc.; (2) better search algorithms should be developed to
help academic or practical industries find solutions easily and
fast. We are hopeful that future research will offer more de-
tailed results and efficient search algorithms. We also recom-
mend that the hybrid heuristic method in this paper be applied
to other IRPs.
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Appendix (adopted from Qin et al. [21])

Notations

T: The length of planning horizon
N: The number of retailers
K: The number of vehicles
t: The index for time units (1≤t≤T)
p: The index for time units (1≤p≤T)
i: The index for retailers (1≤i≤N); 0 means the supplier
j: The index for retailers (1≤j≤N)
k: The index for vehicle (1≤k≤K)
Q: The vehicle capacity
dit: The demand of retailer i on time unit t

Table 8 Average costs for different period sizes in H1

Instance Period size=7 Period size=5

p_30 33,712.9 25,872.1

p_50 51,238.7 42,039.4

p_70 55,063.8 46,812.6

p_90 71,255.3 60,182.3

p_110 78,832.4 66,219.7

p_130 88,724.7 74,819.8

p_150 119,763.9 102,872.9

p_170 150,106.7 131,538.2

p_190 180,016.4 156,091.5

p_210 203,082.5 181,012.4

Table 7 Average costs for different threshold value setting in H1

Instance Threshold value determined by PSO Threshold value (=0)

p_30_7 33,712.9 33,720.4

p_50_7 51,238.7 51,486.5

p_70_7 55,063.8 55,418.1

p_90_7 71,255.3 71,641.8

p_110_7 78,832.4 79,274.3

p_130_7 88,724.7 89,322.4

p_150_7 119,763.9 120,581.7

p_170_7 150,106.7 151,095.2

p_190_7 180,016.4 181,139.6

p_210_7 203,082.5 204,511.4
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hi: The holding cost at retailer i per unit of product
cij: The transportation cost directly from retailer i to

retailer j
dpipt: The quantity of the demand dit that is satisfied by the

delivery on time unit p
yipt: If dpipt>0, yipt=1; otherwise, yipt=0
xijtk: If retailer i immediately precedes retailer j on vehicle k

at time t, xijtk=1; otherwise, xijtk=0
qit: The quantity that delivered to retailer i at time t

The PIRP model is as follows:

minCt ¼ ∑ i∈N ;i≠0 ∑ t∈T ∑ T
P¼0

dqipthi t � pj j þ dqipthið∑ z<pdqiptÞ
dit þ 1

2
dqipthi

dqipt
dit

� �
2
664

3
775

þ ∑ t∈T ∑ k∈K ∑ i∈N ∑ j∈NCi jxijtk

Subject to

∑ i≠ j;i∈Nxijtk � ∑ p≠ j;p∈Nxjptk ¼ 0;∀ j∈N ;∀k∈K;∀t∈T ðA1Þ

∑ k∈K ∑ j∈Nxijtk ≤1;∀i∈N= 0f g;∀t∈T ðA2Þ

∑ i∈B ∑ j∈Bxijtk ≤ Bj j � 1;∀k∈K;∀t∈T ; B⊆N= 0f g; Bj j > 1

ðA3Þ
∑ i∈N ; j≠i ∑ j∈N0xijtkq jt ≤Q;∀k∈K;∀t∈T ðA4Þ

∑ t∈Tqit ¼ ∑ t∈Tdit; ∀i∈N= 0f g ðA5Þ
qit ≤M∑ j>i; j∈N ∑ k∈Kxijtk ;∀i∈N ;∀t∈T ðA6Þ

∑ j∈N ; j≠i ∑ k∈Kxijtk ≤Mqit;∀i∈N ;∀t∈T ðA7Þ

∑ pdqipt ¼ dit;∀i∈N ;∀t∈T ðA8Þ

∑ tdqipt ¼ qit;∀i∈N ;∀p∈T ðA9Þ
yipt ≤Mdqipt;∀i∈N ;∀p;∀t∈T ðA10Þ
Myipt ≥dqipt;∀i∈N ;∀p;∀t∈T ðA11Þ

∑ P∈B ∑ t∈Byipt ≤ Bj j � 1;∀i∈N ;B⊆T ; Bj j > 1 ðA12Þ
0≤dqipt; qit ≥0; dit ≥0; xijtk∈ 0; 1½ g;∀i∈N ;∀ j∈N ;∀t;P∈T ;∀k∈K

ðA13Þ

In the above formulation, the objective function is to min-
imize the sum of transportation cost and inventory cost. Con-
straint (A1) insures that every point entered by the vehicle
should be the same point that the vehicle leaves. Constraint
(A2) insures that if a vehicle arrives at retailer j on time t by
vehicle k, then the vehicle k must depart retailer j on the same
day, while each retailer is served by at most one vehicle in a
time unit. Constraint (A3) is a sub-tour elimination constraint.
Constraint (A4) states that the amount of each route to retailers

must be less than or equal to vehicle capacity. Constraint (A5)
guarantees that the delivery quantity satisfies the demand ex-
actly of each retailer over the horizon. The following two
constraints (A6) and (A7) give the relationship between deliv-
ery routes and the delivered quantity of retailer i. They show
that if no vehicle serves retailer i during this service time, there
should be no product delivered to i, and once a quantity is
delivered to retailer i, there is one and only one vehicle that
serves the retailer. Constraint (A8) guarantees that the sum of
the amount of products that is responsible for demand on time
t equals its demand for each retailer. Constraint (A9) ensures
that the sum of the amount of products that is responsible for
each time of each retailer on time t equals its delivered quan-
tity. Constraints (A10) and (A11) give the relationship be-
tween response relationship and response quantity. Constraint
(A12) is a sub-tour elimination constraint of the response re-
lationship. Constraint (A13) is the constraint for decision
variables.
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