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Abstract Due to intense competition in the market place,
effective scheduling has now become an important issue for
the growth and survival of manufacturing firms. To sustain in
the current competitive environment, it is essential for the
manufacturing firms to improve the schedule based on simul-
taneous optimization of performance measures such as
makespan, flow time, and tardiness. The current paper pre-
sents a novel particle swarm optimization (PSO) algorithm
for solving multi-objective flexible job shop scheduling prob-
lem with the goal of finding approximations of the optimal
Pareto front. The Pareto-optimal solutions obtained through
multi-objective particle swarm optimization (MOPSO) have
been ranked by the composite scores obtained through maxi-
mum deviation theory (MDT) to avoid subjectiveness and
impreciseness in the decision-making. The results are com-
pared with non-dominated sorting genetic algorithm-II
(NSGA-II) and multi-objective evolutionary algorithm
(MOEA) in terms of four performance metrics. Twenty-eight
benchmark instances from literature are solved by the

proposed algorithm. It is observed that MOPSO outperforms
NSGA-II and MOEA in four performance metrics in most of
the instances.

Keywords Flexible job shop . Particle swarm optimization .

MOPSO .Makespan . Flow time . Tardiness . Maximum
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1 Introduction

Scheduling is a decision-making process that plays an impor-
tant role both in manufacturing and service industries. It deals
with the allocation of operations on machines (i.e., a sequence
of operations on machines) in such a manner that some perfor-
mance goals such as makespan, flow time, and tardiness can be
minimized. Due to intense competition in the market place in
terms of shorter product life cycles, customized products, and
changing demand pattern, effective scheduling has now be-
come an important issue for the growth and survival of
manufacturing firms. To sustain in the current competitive en-
vironment, it is essential for the manufacturing firms to im-
prove the schedules based on simultaneous optimization of
performance measures such as makespan, flow time, and tardi-
ness. Minimizing the makespan ensures maximization of the
processor utilization, an important criterion from the manage-
rial point of view. Mean flow time criterion bears significance
from the operators’ point of view as it minimizes maximum in-
process time in the shop floor. Tardiness of a job equals to the
amount of time required to complete the job beyond its due
date. Tardiness is important from business perspective as tardy
jobs may cause loss of customers and damage the reputation of
the firm. Since all the scheduling criteria are important from
business operation point of view, it is vital to optimize all the
objectives simultaneously instead of a single objective.
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According to shop environment, the shop scheduling problems
can be classified into flow shop, flexible flow shop, job shop,
and flexible job shop scheduling. A classical job shop sched-
uling problem (JSP) deals with a set of jobs to be processed by
a set of machines. Each job is processed on machines in a given
order with a given processing time, and each machine can
process only one job at a time. In contrast, the flexible job shop
scheduling problem (FJSP) is an extension of the classical job
shop problem where operations are allowed to be processed on
any among a set of available machines at a facility. In general,
scheduling in flexible job shop environment is considered as
NP-hard problem [1]. FJSP is considered to be more difficult to
solve than classical JSP because it contains an additional con-
straint of assigning operations to machines at a facility. Further,
FJSP problem becomes more difficult to solve if multiple
criteria are simultaneously considered.

The solution strategy for multi-objective scheduling
problem (MOSP) is roughly classified into two types
such as weighting approach and Pareto-based approach.
The weighting approach usually solves by transforming
the multi-objective problem into a single-objective prob-
lem through assigning different weights for objectives.
The common combination function is known as linear
weighted function. However, linear weighted function
might not always be able to represent the trade-off rela-
tionship between the objectives because determination of
weights for objectives is a difficult task. Xia and Wu [2],
Tay and Ho [3], and Li et al. [4] have proposed various
algorithms to solve FJSP using weighting approach. The
Pareto approach, on the other hand, provides an alterna-
tive approach for multi-objective optimization. Multi-
objective flexible job shop scheduling problem (MFJSP)
has been solved incorporating Pareto-optimal criteria in
various algorithms like particle swarm optimization and
genetic algorithm [5–11]. In this work, a multi-objective
particle swarm optimization (MOPSO) technique is pro-
posed for solving the FJSP with an objective to minimize
makespan, mean flow time, and mean tardiness with the
goal of finding approximations of the optimal Pareto
front. In multi-objective optimization problems, conver-
gence and diversity are two important issues. The former
specifies the algorithm’s capability to find the true Pareto
optimal solutions and the latter imitates the algorithm’s
ability to find as much as possible diverse Pareto optimal
solutions. In order to improve diversity, a popular oper-
ator in genetic algorithm known as mutation is embedded
in the standard MOPSO algorithm to escape from local
optima [12]. However, MOPSO results in a large number
of non-dominated solutions. Therefore, maximum devia-
tion theory proposed by Wang [13] has been adopted for
ranking the solution to ease the decision-making process
of choosing the best solution from a set of non-
dominated solutions.

2 Literature review

In the past, scheduling problem in a hybrid or flexible job shop
has received attention of researchers because of its importance
from both theoretical and practical points of view. Brandimarte
[14] was the first to apply the decomposition approach com-
bining some existing dispatching rules for routing and Tabu
search heuristic for scheduling the FJSP. Perez et al. [15] have
proposed a new hierarchical heuristic algorithm for multi-
objective flexible job shop scheduling problems. Xing et al.
[16] have proposed a knowledge-based ant colony optimization
(KBACO) algorithm for solving the FJSP. Bagheri et al. [17]
have employed an artificial immune algorithm to solve the
flexible job shop problem. Chang et al. [18] have proposed
the gradual priority weighting approach to search the Pareto
optimal solution for multi-objective FJSP. The approach rests
on searching the feasible solution space for the first objective at
the beginning, and the search proceeds towards other objectives
step by step. Further, the multi-objective scheduling problems
consider makespan, total flow time, total tardiness, and maxi-
mum tardiness as the performance measures.

Suresh and Mohanasundaram [19] have applied Pareto ar-
chived simulated annealing to the multi-objective job shop
scheduling problem in which the related objectives are minimi-
zation of makespan and mean of flow time. Kacem et al. [5]
have proposed a localization approach to solve the resource
assignment problem and an evolutionary approach controlled
by the assignment model to solve the mono-objective and
multi-objective FJSP. Coello et al. [20] have proposed an ap-
proach in which Pareto dominance is combined into particle
swarm optimization in order to allow the heuristic to handle
problems with several objective functions. Lei [21] presents a
particle swarm optimization for multi-objective job shop sched-
uling problem in order to simultaneously minimize makespan
and total tardiness of jobs. Lei and Wu [22] have proposed a
crowding measure-based multi-objective evolutionary algo-
rithm (CMOEA) which makes use of the crowding measure
to adjust the external population and assign different fitness for
individuals. The comparison between CMOEA and strength
Pareto evolutionary algorithm (SPEA) reveals that CMOEA
performs better in job shop scheduling with two objectives like
minimization of makespan and total tardiness. Li et al. [9] have
presented a novel discrete artificial bee colony (DABC) algo-
rithm for solving the multi-objective flexible job shop schedul-
ing problem with maintenance activities. The considered per-
formance criteria are the maximum completion time, the so-
called makespan, the total workload of machines, and the
workload of the critical machine. Moslehi and Mahnam [8]
have suggested a Pareto approach hybridizing particle swarm
algorithm and local search to solve multi-objective FJSP. How-
ever, managing external archive and selection of best solution
from a set of Pareto solutions is difficult in multi-objective
optimization. In this paper, the searchmechanism of the particle
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swarm optimization is considered due its effectiveness to solve
different objectives simultaneously in FJSP addressing external
archive management and selection of best solution using max-
imum deviation theory.

3 Flexible job shop scheduling

The FJSP is considered as an extension of the traditional job
shop scheduling problem with added constraint of an opera-
tion of a job can be processed in more than one facility. The
problem is treated as non-deterministic polynomial-time hard
(NP-hard). The critical issues to solve the problem are as fol-
lows: (1) assignment of operations to alternative machines, (2)
sequencing the operations in each machine, and (3)
rescheduling policy when a disruption occurs. The several
assumptions and constraints in a hypothetical or deterministic
FJSP are usually formulated as follows:

The flexible job shop problem is to organize the execution
of n jobs on m machines. In this problem, there are a set of
machines, k=1,2,…,m, and a set of jobs, i=1,2,…,n, so that
each job consists of a predetermined sequence of operations.
Each operation requires one machine out of a set of available
machines. All jobs andmachines are available at time zero and
a machine can only execute one operation at a given time.
Preemption is not allowed, i.e., each operation must be com-
pleted without interruption once it starts. The FJSP is machine
dependent because the performance of each operation on each
allowable machine has a different processing time. The objec-
tive of the problem is to assign each operation to an appropri-
ate machine and sequence the operations on the machines in
order to minimize the makespan which is the time required
completing all the jobs.

3.1 Problem representation

In this work, a real number encoding system is proposed. The
integer part is used to assign the operations of each job to the
machine, and fractional part is used to sequence of the opera-
tions on each machine. The position of each particle is repre-
sented by a real number. The value of integer part allocates as
a priority level for each operation which is used to select the
machine for the operation. First sequencing of available ma-
chines for an operation according to the increasing order of
processing time is carried out. If tie occurs, the machine hav-
ing lower index number is given the priority. Priority levels for
all machines are generated for processing all the operations of
each job [2]. As an instance, a problem is to execute three jobs
on four machines. Table 1 represents data including jobs, op-
erations, and processing times on different machines. Table 2
shows the order of priority or priority level, i.e., 1, 2, 3, and 4
of machines corresponding to each operation.

Table 3 represents the stochastic particle position represen-
tation. Initial particle positions in the swarm are generated by
random number distributed uniformly on [xmin, xmax] where
xmin=1.0, xmax=mpl. The maximum position xmax of the par-
ticle is taken as the maximum value of priority level (mpl), i.e.,
the number of machines available. The position of the particle
must be a positive integer as each particle position value rep-
resents priority level for each operation. Hence, it lies in the
range [1, mpl]. For example, the 1st position is 2.25 and the
integer value is 2. Therefore, operation O1, 1 is assigned to
machine 3 as per the priority order in Table 2. The process
order of operations to be scheduled on the same machine
depends on the value of fractional parts. The operations are
sequenced according to the ascending order of the fractional
part which is processed by the same machine. For instance,
operations O1,2 and O3,2 are assigned to machine 2. The se-
quence of operations to be scheduled on machine 2 is opera-
tion (O3,2) followed by operation (O1,2) because the fractional
part of the particle position for O3,2 is greater than fractional
part of the particle position for O1,2. If the value of fractional
parts is equal then the operation processing sequence is ran-
domly chosen.

4 Multi-objective optimization

Multi-objective optimization is defined as the problem of find-
ing a vector of decision variables that satisfies all constraints
and simultaneously optimizes a vector function whose

Table 1 Example problem

Job Operations Machine 1 Machine 2 Machine 3 Machine 4

Job 1 O1,1 9 5 4 3

O1,2 7 8 9 5

O1,3 5 8 8 3

Job 2 O2,1 4 6 5 8

O2,2 5 4 6 2

Job 3 O3,1 3 8 6 3

O3,2 5 5 2 2

Table 2 Priority order

Job Operations Priority 1 Priority 2 Priority 3 Priority 4

Job 1 O1,1 M4 M3 M2 M1

O1,2 M4 M1 M2 M3

O1,3 M4 M1 M2 M3

Job 2 O2,1 M1 M3 M2 M4

O2,2 M4 M2 M1 M3

Job 3 O3,1 M1 M4 M3 M2

O3,2 M3 M4 M1 M2
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elements represent the objective functions. Mathematically,
the multi-objective optimization (MOO) problem can be for-
mulized as follows:

Minimizing or Maximizingð ÞF xð Þ ¼ f 1 xð Þ; f 2 xð Þ;…:: f q xð Þ
n o

subject to g xð Þ≤0; h xð Þ ¼ 0

AMOO solutionsminimizes (ormaximizes) the components
of a vector F(x) where x is n-dimensional decision variable
vector X=(x1,x2,………..xn) and g xð Þ≤0; h xð Þ ¼ 0 are
set of constraints that determine the feasible solution area in
minimizing (or maximizing) F(x) with ‘q’ objective functions.
In this study, the following objectives of FJSP are to be mini-
mized as follows:

Objective 1 (F1): The first objective is to minimize the
makespan (Cmax), i.e., the completion time of
all jobs in the last stage. Cmax=max{Ci} where
Ci is the completion time of job i at last stage

Objective 2 (F2): The second objective is to minimize the

mean tardiness T
� �

, i.e., the amount of time by
which the completion time of job i differs from
the due date.

T ¼ 1

n

X n

i¼1
max 0; Ci−dið Þf g max 0; Ci−dið Þf g ð1Þ

where di is the due date of job i
Objective 3 (F3): The third objective is to minimize the

mean flow time F
� �

, i.e., the amount of time
spent by job in the shop.

F ¼ 1

n

X n

i¼1
Ci−rið Þ ð2Þ

where ri is the release date.

5 Particle swarm optimization

Particle swarm optimization (PSO) algorithm, originally intro-
duced by Eberhart and Kennedy [23], is a population based
evolutionary computation technique motivated by the behav-
ior of organisms such as bird flocking and fish schooling. In
PSO, each member is called particle and each particle moves
around in the search space with a velocity which is

continuously updated by the particle’s individual contribution
and the contribution of the particle’s neighbors or the contri-
bution of the whole swarm. The members of the whole pop-
ulation are maintained during the search procedure so that
information is socially shared among all individuals to direct
the search towards the best position in the search space. Each
particle moves towards its best previous position and towards
the best particle in the whole swarm called the gbest based on
the global neighborhood. Each particle moves towards its best
previous position and towards the best particle in its restricted
neighborhood based on the local variant so-called the pbest
model. PSO is basically characterized as a simple heuristic
of well-balanced mechanism with flexibility to progress and
adjust to both global and local exploration capabilities. All the
particles tend to converge to the best solution rapidly even in
the local version in most cases as compared to genetic algo-
rithm. Due to the simple concept, easy implementation, and
rapid convergence, PSO has gained much attention and been
successfully applied to a wide range of applications such as
job scheduling, power and voltage control, mass spring sys-
tem, supply chain network, and vehicle routing problems
[12, 24–28].

In PSO, the initial population is generated randomly and
parameters are initialized. After evaluation of the fitness func-
tion, the PSO algorithm repeats the following steps iteratively:

& Personal best (best value of each individual so far) is up-
dated if a better value is discovered.

& Then, the velocities of all the particles are updated based
on the experiences of personal best and the global best in
order to update the position of each particle with the ve-
locities currently updated.

After finding the personal best and global best values, ve-
locities and positions of each particle are updated using Eqs. 3
and 4, respectively.

vti j ¼ wt−1vt−1i j þ c1r1 pt−1i j −x
t−1
i j

� �
þ c2r2 gt−1i j −x

t−1
i j

� �
ð3Þ

xti j ¼ xt−1i j þ vti j ð4Þ

where vij
t represents velocity of particle i at iteration t with

respect to jth dimension (j=1,2,……n). pij
t represents the po-

sition value of the ith personal best with respect to the jth

dimension. gij
t represents the global best (gbest), i.e., the best

of pbest among all the particles. xij
t is the position value of the ith

particle with respect to jth dimension. c1 and c2 are positive
acceleration parameters which provide the correct balance be-
tween exploration and exploitation and are called the cogni-
tive parameter and the social parameter, respectively. r1 and r2
are the random numbers provide a stochastic characteristic for
the particles velocities in order to simulate the real behavior of
the birds in a flock. The inertia weight parameterw is a control

Table 3 A stochastic particle position representation

Operation O1,1 O1,2 O1,3 O2,1 O2,2 O3,1 O3,2

Particle positions 2.25 3.64 1.12 2.44 3.14 2.05 4.82

Priority level 2 3 1 2 3 2 4

Processing machine M3 M2 M4 M3 M1 M4 M2
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parameter which is used to control the impact of the previous
velocities on the current velocity of each particle. Hence, the
parameter w regulates the trade-off between global and local
exploration ability of the swarm. The recommended value of
the inertia weight w is to set it to a large value for the initial
stages in order to enhance the global search of the search space
and gradually decrease it to get more refined solutions facili-
tating the local search in the last stages. In general, the inertia
weight is set according to the following Eq. 5 (Modares et al.
2011).

w ¼ wmax−
wmax−wmin

itermax
� iter ð5Þ

where wmin and wmax are initial and final weights and itermax is
the maximum number of iterations and iter is the current iter-
ation number.

6 Multi-objective particle swarm optimization
(MOPSO)

Multi-objective optimization (MOO) has been an active area
of research in last two decades. Such problems arise in many
applications where two or more objective functions have to be
optimized simultaneously. PSO has been extended for solving
the MOO problems, which is generally known as the multi-
objective particle swarm optimization (MOPSO). The main
difference between a basic PSO (single-objective) and
MOPSO is the distribution of gbest. InMOPSO algorithm, gbest
must be redefined in order to obtain a set of non-dominated
solutions (Pareto front). In single-objective problems, there is
only one gbest exists. In MOO problems, more than one con-
flicting objectives will be optimized simultaneously. There are
multiple numbers of non-dominated solutions which are lo-
cated on or near the Pareto front. Therefore, each non-
dominated solution can be the gbest. Extending PSO to handle
multi-objectives has been proposed by Mostaghim and Teich
[29] and Wang and Singh [30]. Coello et al. [20] have pro-
posed a MOPSO algorithm which adopts an external reposi-
tory and mutation operator for finding out Pareto-optimal set
of solutions.

6.1 Proposed MOPSO algorithm

Real world problems involve simultaneous optimization
of numerous contradistinctive and conflicting nature ob-
jectives. When all objectives are considered, these solu-
tions are optimum in the sense that none of the other
solutions in the search area are exceptionally good to
another solution. These solutions are called as Pareto-
optimal solutions. The image of the efficient set in the
objective space is named as non-dominated set as each

solution dominates the other solution. To identify the
non-dominance, each solution is compared with every
single solution and checked for satisfying the rules giv-
en below for the solution under consideration.

Obj:1 l½ � > Obj:1 m½ �and Obj:2 l½ �≥Obj:2 m½ � ð6Þ
Obj:1 l½ �≥Obj:1 m½ �and Obj:2 l½ � > Obj:2 m½ � ð7Þ

where l and m correspond to solution number in the popula-
tion. Obj.1 and Obj.2 are two objective function values.

The multi-objective optimization aims at two objectives:

(a) Converging to the Pareto-optimal solution set;
(b) Maintaining diversity and distribution in solutions.

While solving single-objective optimization problems,
the gbest that each particle uses to update its position is
completely determined once a neighborhood topology is
established. However, in the case of multi-objective op-
timizations problems, each particle might have a set of
gbest from which just one can be selected in order to
update its position. Such set of gbest is usually stored in
a different place from the swarm known as external
archive ‘At’. This is a repository in which the non-
dominated solutions found so far are stored. The
MOPSO maintains an external archive ‘At’of non-
dominated solutions of the population which is updated
after every iteration. The global archive ‘At’is empty in
the beginning and can store a user-specified maximum
number of non-dominated solutions. In case the number
of non-dominated solutions exceeds the maximum size
of the archive, some individuals are cropped. There are
several methods of controlling the external archive such
as Maximin fitness based size control [31], epsilon-
dominance based size control [29], and crowding dis-
tance based size control [32]. Archive size control is
critical because the number of non-dominated solutions
can grow very fast although there are studies where
archive size is unconstrained [33].

Crowding distance technique has been extensively ap-
plied in evolutionary multi-objective algorithms to pro-
mote diversity. The use of crowding distance measure in
MOPSO for gbest selection was first made in Raquel and
Naval [32]. The approach is quite capable in converging
towards the Pareto front and generating a well-
distributed set of non-dominated solutions. In this study,
crowding distance approach has only been applied to
make gbest selection. Crowding distance factor is defined
to show how much a non-dominated solution is
crowded with other solutions. The crowding distance
(CD) factor of a solution provides an estimate of the
density of solutions surrounding that solution [34, 35].
Figure 1 shows the calculation of the crowding distance

Int J Adv Manuf Technol (2016) 85:2353–2366 2357



of point k which is an estimate of the size of the largest
cuboid enclosing k without including any other point.
CD factor of boundary solutions which have the lowest
and highest objective function values (fmax and fmin, re-
spectively) are given an infinite crowding distance
values. For other solutions, CD factor for the solution
k is calculated by following relation.

CDk ¼
f kþ1− f k−1

� �
f max− f minð Þ ð8Þ

Finally, the overall crowding factor is computed by
adding the entire individual crowding distance values in
each objective function.

The non-dominated solutions in ‘At’are sorted in descend-
ing crowding distance values and top 10 % of them are ran-
domly used as gbest guides.

Particle swarm optimization typically converges rela-
tively rapidly at the beginning of the search and then
slows down or stagnates due to loss of diversity in the
population [12, 36]. To overcome this drawback, muta-
tion, a widely used operator in genetic algorithm, is
used to introduce diversity in the search procedure.
When the change of the whole archive tends to de-
crease, the mutation process will begin. If the number
of iteration is less than the product of maximum number
of iteration and probability of mutation then only the
mutation is performed on the position of the particle.
Given a particle, a randomly chosen variable, say mp,
is mutated to assume a value mp

′ as given by following
equation.

m
0
p ¼

mp þΔ t;UB−mp

� �
if flip ¼ 0

mp−Δ t;mp−LB
� �

if flip ¼ 1

�
ð9Þ

when flip denotes the random event of returning 0 or 1. UB
and LB denote the upper and lower bound of the variable mp,

respectively. The function Δ(t,x) returns a value in the range
[0,x] such that the probability of Δ(t,x) being close to 0 in-
creases as t increases.

Δ t; xð Þ ¼ x � 1−r 1− t
MAXTð Þb� �

ð10Þ

where r is the random number generated in the range [0, 1],
MAXT is the maximum number of iterations and t is the
number of iteration. The parameter b determines the degree
of dependence of mutation on the iteration number.

To summarize, the main difference between a basic PSO
(single-objective) and MOPSO is the distribution of gbest. In
single-objective problems, there is only one gbest exists. In
MOPSO algorithm, gbest must be redefined in order to obtain
a set of non-dominated solutions (Pareto front). Therefore,
multiple numbers of non-dominated solutions are located on
or near the Pareto front. Each non-dominated solution can be a
gbest. The important feature of MOPSO is that the individuals
also maintain a personal archive which is known as pbest ar-
chive with a maximum size. The pbest archive contains the
most recent non-dominated positions a particle has encoun-
tered in the past. In every iteration t, each particle i is allocated
with two guides pbest and gbest from its pbest archive and
swarms global archive ‘At’. After the guide selection, posi-
tions and velocities of particles are updated according to the
Eqs. 11 and 12 where vij

t represents velocity and xij
t is the

position value of the ith particle with respect to jth dimension.
Maximum number of generations is set as termination criteri-
on. The complete algorithm for MOPSO is shown as follows:

6.2 MOPSO algorithm

1. For i=1 to M (M is the population size)

a. Initialize position of the particles randomly
b. Initialize vij

t =0 (v is the velocity of each particle)
c. Evaluate each particle’s fitness
d. Compare each particle’s fitness with the particle’s p-

best. Compare the fitness with the population’s overall
previous best

e. Find out the personal best (pbest) and global best
(gbest).

2. End For
3. Initialize the iteration counter t=0
4. Store the non-dominated vectors found into archive ‘At’

(‘At’is the external archive that stores non-dominated
solutions found)

5. Repeat

a. Compute the crowding distance values of each non-
dominated solution in the archive ‘At’

i

F1

F2

i+1

i-1

Cuboid

Fig. 1 The crowding distance
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b. Sort the non-dominated solutions in ‘At’in descend-
ing crowding distance values

c. For i=1 to M

i. Randomly select the global best guide from a spec-
ified top 10 % of the sorted archive ‘At’ and store its
position to gbest.

ii. Compute the new velocity:

vti j ¼ wt−1vt−1i j þ c1r1 pt−1i j −x
t−1
i j

� �
þ c2r2 Atð Þt−1i j −x

t−1
i j

� �
ð11Þ

((At)ij
t − 1 is the global best guide for each non-

dominated solution)
iii. Calculate the new position of

xti j ¼ xt−1i j þ vti j ð12Þ

iv. If (t<(MAXT*PMUT), then perform mutation on
xij
t .
(MAXTis themaximumnumber of iterations and

PMUT is the probability of mutation)
v. Evaluate xij

t

d. End For
e. Insert all new non-dominated solution into archive

‘At’ if they are not dominated by any of the stored
solutions. All dominated solutions in the archive are
removed by the new solution from the archive. If the
archive is reached its maximum, the solution to be
substituted is determined by the following steps:

i. Compute the crowding distance values of each non-
dominated solution in the archive ‘At’

ii. Sort the non-dominated solutions in archive ‘At’in
descending crowding distance values

iii. Randomly select a particle from a specified bottom
10 % of the sorted archive ‘At’ and replace it with
the new solution

f. Increment iteration counter t
g. Update the personal best solution of each particle. If

the current pbest dominates the position in the memo-
ry, the particle position is updated.

6. Until maximum number of iterations is reached

6.3 Solution ranking by maximum deviation theory

Since MOPSO results in a large number of non-dominated
solutions, choosing a best solution depends on decision-
maker’s judgement and intuition. Usually, multi-attribute deci-
sion-making (MADM) approaches are adopted to obtain scores
for the solutions and the solution exhibiting maximum score is

selected as the best one. However, the weights assigned in
multi-attribute decision-making process for convertingmultiple
objectives into a single equivalent objective score are reason-
ably subjective in nature and affect the decision of ranking the
alternative solutions considerably. In order to avoid uncertainty
of subjective assigning of weights from the experts and extract
the accurate information from the available data, maximum
deviation theory (MDT) suggested by Wang [13] is adopted
in this work. The basic idea of MDT rests on smaller weight
should be assigned to the attribute having similar values in
comparison to the attribute having larger deviations.

The non-dominated solutions obtained in MOPSO solu-
tions are used as the decision matrix. Every element of the
decision matrix denotes the value of jth attribute for ith alter-
native where i=1, 2 …n, and j=1, 2…m. Normalization of
each attribute is carried out to transform different scales and
units among various attributes into a common measurable
scale. The normalization of the attribute depends on its type
such as “higher the better” and “lower the better.” The follow-
ing equations are used for normalization of attributes.

x*i j ¼
maxi xi j

� �
−xi j

maxi xi j
� �þmini xi j

� � ; for lower the better attributes

ð13Þ

x*i j ¼
xi j−mini xi jf g

maxi xi j
� �

−mini xi j
� � ; for higher the better attributes

ð14Þ

The difference of performance values for each alternative is
computed. For the attribute {Aj| j=1, 2…m}, the deviation
value of the alternative {Si| i=1, 2 ….n} from all the other
alternatives can be computed by the following equation.

Di j wj

� � ¼ X n

i¼1
d ~ri j;~rl j
� �

wj ð15Þ

where wj is the weight of the attributes to be calculated and
Dij(wj) is the deviation value of the alternatives.

The total deviation values of all alternatives with respect to
other alternatives for the attribute {Aj| j=1, 2… m} can be
computed by the following relation.

Dj wj

� � ¼ X n

i¼1
Di j wj

� � ¼ X n

i¼1

X n

i¼1
d ~ri j;~rl j
� �

wj ð16Þ

where Dj(wj) is the total deviation value of all the alternatives.
The deviation of all the attributes along all the alternatives

can be calculated by the relation.

D wj

� � ¼ XM

j¼1
Dj wj

� � ¼ XM

j¼1

X N

i¼1

X N

l¼1
d ~ri j;~rl j
� �

wj ð17Þ

where D(wj) is deviation of all the attributes along all the
alternatives.
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A linear programming model is constructed for finding out
the weight vectorw to maximize all deviation values for all the
attributes and is given by as follows:

D wj

� � ¼ XM

j¼1

X N

i¼1

X N

l¼1
d ~ri j;~rl j
� �

wj

s:t
XM

j¼1
w2

j ¼ 1; wj≥0; j ¼ 1; 2;……;M

8><
>: ð18Þ

A Lagrange function is constructed for solving the above
model.

L wj;α
� � ¼ XM

j¼1

X N

i¼1

X N

l¼1
d ~ri j;~rl j
� �

wj

þ α
XM

j¼1
w2

j−1
	 


ð19Þ

where α is the Lagrange multiplier. The partial derivative of L
(wj,α) with respect to wj and α are as follows:

∂L
dwj

¼
X N

i¼1

X N

l¼1
d ~ri j;~rl j
� �

þ 2∝wj ¼ 0

∂L
d∝

¼
XM

j¼1
w2

j−1 ¼ 0

8><
>: ð20Þ

Further,wj and α values are calculated from Eqs. 19 and 20

2∝ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1

X N

i¼1

X N

l¼1
d ~ri j;~ri j
� �	 
2

s

wj ¼
X N

i¼1

X N

l¼1
d ~ri j;~ri j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1

X N

i¼1

X N

l¼1
d ~ri j;~ri j
� �	 
2

s

8>>>>>>>><
>>>>>>>>:

ð21Þ

The normalized attribute weights can be further determined
by the following relation.

wj ¼
X N

i¼1

X N

l¼1
d ~ri j;~ri j
� �

XM

j¼1

X N

i¼1

X N

l¼1
d ~ri j;~ri j
� � ð22Þ

The non-dominated solutions obtained through MOPSO
algorithm are ranked by estimating the composite score of
each solution by addition of the weighted performance of all
attributes. Considering the ranking of the solutions, the sched-
uler may choose suitable parametric setting from the top rank-
ing solutions to justify the objectives set by the industry.

7 Result and discussion

In the present work, multi-objective particle swarm op-
timization (MOPSO) has been developed for solving the
flexible job shop scheduling problem (FJSP) with bi-
objective criteria, i.e., minimize makespan as primary

objective and mean flow time and mean tardiness as
secondary objective with the goal of finding approxima-
tions of the optimal Pareto front. In the proposed
MOPSO algorithm, problem representation presented in
section 3 is used to solve the FJSP. The algorithm is
implemented in Matlab 7 on a Pentium IV running at
2 GHz on the Windows XP operating system. Simula-
tion study is carried out to demonstrate the potentiality
of MOPSO algorithm. A trial run is carried out for a set
of problems to set the algorithm parameters. The initial
population chosen for the algorithms is 80. The param-
eters employed for MOPSO are as follows: the size of
archive is 100, the inertia weight is 0.4, and both the
cognitive and social parameters (c1 and c2) are taken as
2. A maximum CPU time limit of 1000 s is set for each
run of the algorithm to ensure that all algorithms are
executed for the same CPU time for a meaningful
comparison.

The proposed algorithm is tested on two sets of prob-
lem instances from Brandimarte [14] and Dauzere-peres
[37] (DP data). Brandimarte [14]’s (BR) data set con-
tains a set of 10 problems denoted as Mk01 to Mk10.
The number of jobs ranges from 10 to 20, the number
of machine ranges from 4 to 15, and the number of
operations for each job ranges from 5 to 15. These
two data sets are the most commonly adopted bench-
mark instances in the literature on FJSP. The DP data
set is a set of 18 problems referred as 1a to 18a. The
number of jobs ranges from 10 to 20, the number of
machine ranges from 5 to 10, and the number of oper-
ations for each job ranges from 15 to 25. The effective-
ness of the proposed MOPSO algorithm is compared
with two popular multi-objective algorithm known as
multi-objective evolutionary algorithm (MOEA) and
non-dominated sorting genetic algorithm II (NSGA-II)
which is successfully applied in many multi-objective
problems [27, 38–40].

In Pareto approach, the solutions are compared based on
the Pareto dominance relation. Solution ‘A’ dominates solu-
tion ‘B’, if ‘A’ is not worse than ‘B’ for all objectives or is
better than ‘B’ for at least one objective. Solution ‘A’ is Pareto
optimal if it is not dominated by any other solution. The Pareto
approach produces a set of Pareto optimal solutions which
represent the trade-off between objectives through the distri-
bution of obtained solutions. Pareto front determined by eval-
uating each member of the Pareto optimal solution set. The
user can select the favorite solution directly from the number
of Pareto optimal solutions.

Based on exhaustive experimentation, Figs. 2 and 3 are
drawn to show the Pareto front between makespan and mean
flow time and makespan and mean tardiness for the bench-
mark instances of FJSP. The Pareto fronts reveal that a small
decrease of makespan can cause a large increase in the other
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conflicting objective. The results convey two messages: (1)
Focusing on optimizing a single objective may result in bad
performance of the other objective and (2) The trade-off rela-
tionship between the objectives is not always easy to predict.

7.1 Performance measures

There are two goals in a multi-objective optimization: (1) con-
vergence to the Pareto-optimal set and (2) maintenance of di-
versity in solutions of the Pareto-optimal set. These two tasks
cannot be measured adequately with one performance metric.
Many performance metrics have been suggested to evaluate the
non-dominated solutions [34, 41]. To evaluate comprehensive-
ly the non-dominated solutions obtained by the MOPSO,
NSGA-II, and MOEA algorithm, four performance metrics
are adopted in this paper. The following performance measures
are used to compare the results of non-dominated solutions
obtained by multi-objective algorithms.

Mean ideal distance (MID) The MID measurement presents
the proximity between non-dominated solutions and ideal
point (0, 0). Algorithm A is considered to have more oppor-
tunity to reach the Pareto frontier than algorithm B if A has the
lower value ofMID than B.MID of algorithm can be obtained
by the following formulation.

MID ¼
X n

i¼1
Ci

n
ð23Þ

where n is the number of non-dominated solutions and

Cið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21i þ f 22i

q
f1i and f2i are the objective function values for solution i.

The performance of the algorithm will be better if the value of
MID is lower.

The rate of achievement to two objectives simultaneously
(RAS) The value of this measure is calculated from the
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following relation. Smaller value of this criterion indi-
cates a higher quality solution.

RAS ¼
X n

i¼1
f 1i− f

best
1

�� ��þ f 2i− f
best
2

�� ��
n

ð24Þ

f1
bestand f2

best are the best solutions in the non-dominated sets
for objectives 1 and 2.

Spread of non-dominance solutions (SNS) The spacingmet-
ric aims at assessing the spread (distribution) of vectors
throughout the set of non-dominated solutions. This criterion,
which is known as an indicator of diversity, is calculated from
the following relation:

SNS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
MID−Cið Þ2
n−1

s
ð25Þ

Diversification matrix (DM) This performance measure
gives an indication of the diversity of solutions obtained from
a given algorithm.

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max f 1−min f 1ð Þ2 þ max f 2−min f 2ð Þ2

q
ð26Þ

where maxf1 and maxf2 is the maximum objective functions
value of the non-dominated solutions and minf1 and minf2 is
the minimum objective functions value of the non-dominated
solutions. Larger values of SNS and DM are indicative of
higher quality solutions.

The effectiveness of the algorithms is tested by solving 28
different benchmark problems of Brandimarte and Dauzere-
peres data set. The results obtained by the proposed algo-
rithms are compared in terms of the performance metrics with
the NSGA-II and MOEA. Tables 4 and 5 illustrate the com-
parative results of two algorithms with respect to four perfor-
mance measures. From Tables 4 and 5, it can be concluded

Table 5 Performance metrics results of Pareto front obtained by the objective of makespan and mean tardiness

Problem n×m MID RAS SNS Diversity (DM)

MOPSO NSGA-II MOEA MOPSO NSGA-II MOEA MOPSO NSGA-II MOEA MOPSO NSGA-II MOEA

Mk 01 10×6 48.26 49.6 49.671 11.64 10.37 10.585 7.42 7.4063 7.1413 27.99 26.91 26.547

Mk 02 10×6 34.1 43.59 40.536 5.15 8.741 7.4559 82.55 84.37 82.189 28.65 21.013 29.804

Mk 03 15×8 234.9 259.68 254.91 32.0726 37.66 32.966 16.486 15.52 15.976 52.0522 59.55 55.354

Mk 04 15×8 85.46 108.75 86.011 11.79 16.6 15.104 11.62 6.17 8.824 27.982 12.6 19.113

Mk 05 15×4 207.8 217.201 205.99 21.96 24.64 22.51 9.406 10.23 11.351 44.391 43.75 44.644

Mk 06 10×15 128.96 131.97 129.97 6.0175 5.979 5.1123 2.153 1.274 1.243 6.562 10.598 6.0462

Mk 07 20×5 193.196 212.9 202.61 30.09 34.74 32.257 22.65 23.74 22.228 68.78 69.77 70.862

Mk 08 20×10 585.142 572.823 567.18 6.64 17.94 11.957 4.624 5.158 4.086 9.18 7.7846 8.1701

Mk 09 20×10 426.732 378.553 334.59 54.01 31.918 40.435 34.36 31.107 32.518 94.66 89.18 92.919

Mk 10 20×15 941.95 1016.71 952.96 512.16 304.73 375.55 302.92 300.25 294.17 432.55 409.43 428.47

1a 10×5 2569.941 2566.48 2643.7 36.1 39.45 37.904 28.513 23.787 26.499 65.397 68.216 64.261

2a 10×5 2427.752 2358.34 2409.1 263.23 349.18 299.67 128.801 125.165 127.31 495.1 430.6 482.19

3a 10×5 2540.038 2781.75 2684.3 344.798 381.75 367.66 237.84 235.678 234.36 840.107 824.4 837.48

4a 10×5 2550.6519 2496.806 2529.3 107.73 108.03 104.43 62.82 73.2 84.118 257.068 234.362 223.79

5a 10×5 2368.582 2478.792 2511.2 174.801 280.5 221.93 126.849 165.92 147.96 386.09 557.396 421.78

6a 10×5 2312.461 2338.38 2326.8 140.594 154.11 152.47 69.876 61.56 64.685 266.43 242.667 207.66

7a 15×8 2446.998 2483.246 2473.6 100.6 124.73 119.58 59.655 73.91 71.882 173.53 149.5 163.98

8a 15×8 2319.009 2416.21 2392.6 100.454 113.51 102.01 48.775 38.146 42.894 179.895 165.25 175.83

9a 15×8 2206.967 2215.49 2201.5 117.54 127.974 115.8 113.0686 104.72 98.86 378.748 331.66 348.2

10a 15×8 2458.58 2478.9424 2469.6 93.285 81.55 84.325 51.95 53.768 56.31 176.418 162.435 176.9

11a 15×8 2182.0226 2257.72 2281.2 141.42 112.32 127.89 100.3 68.0005 84.869 346.93 212.62 201.74

12a 15×8 2164.65 2458.46 2208.4 264.19 292.63 271.26 107.11 94.74 103.17 256.41 217.72 228.17

13a 20×10 3323.468 3375.571 3340.5 219.22 306 300.34 71.80629 67.09 62.303 362.095 374.108 316.08

14a 20×10 3172.51 3211.188 3217.1 376.417 391.62 344.79 526.51 504.348 510.63 817.54 809.316 815.45

15a 20×10 3249.22 3512.75 3349 457.15 485.72 459.1 317.02 305.44 314.48 241.37 218.71 229.93

16a 20×10 3002.78 3643.46 3152.4 413.71 457.18 434.47 277.49 304.27 289.66 224.33 204.24 235.48

17a 20×10 3011.3 3126.245 3122.1 247.29 257.94 251.41 269.2 244.78 251.38 514.75 498.38 503.41

18a 20×10 3261.75 3456.68 3427.2 527.17 612.35 518.76 129.81 108.3 102.68 421.74 413.56 410.74

The best obtained values are marked in italic number
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thatMOPSO outweighs the NSGA-II algorithms in all metrics
in terms of the number of optimum results out of 28 test
problems. It is observed from that Table 4 that the proposed
MOPSO superior to the NSGA-II and MOEA in 19, 18, 21,
and 21 instances out of 28 test problems with respect to MID,
RAS, SNS, and DM performance measures, respectively, for
the objectives of makespan and mean flow time. Table 5 indi-
cates that MOPSO performs superior to NSGA-II and MOEA
in 21, 19, 21, and 17 instances out of 28 test problems inMID,
RAS, SNS, and DM performance measures respectively, for
the objective of makespan and mean tardiness.

In the present investigation, application of MOPSO results
in large number of non-dominated solutions for optimization
of objectives. The Pareto-optimal solutions obtained through
MOPSO have been ranked by the composite scores obtained
through maximum deviation theory (MDT) to choose the best
solution. The decision matrix is normalized using the Eqs. 13
and 14. The objective weights are determined for the normal-
ized values of objectives by applying maximum deviation

method using Eqs. 15–22. The weighted objective values are
estimated by multiplying the normalized objective values and
the objective weights. The best solution is selected depending
upon the composite scores obtained by addition of the all the
weighted objective function values for each alternative. The
objectives with highest composite score are chosen as the best
solution. The solution ranking of the optimal solution set of
problem 5a for makespan and mean flow time has been given
in Table 6.

8 Conclusions

In this paper, benchmark instances from literature for flexible
job shop scheduling problem are solved by an efficient multi-
objective particle swarm optimization to find near-optimal
schedules. The mutation operator generally used in genetic
algorithm is embedded in MOPSO to avoid premature con-
vergence and improve solution diversity. Further, maximum

Table 6 Solution ranking obtained through maximum deviation theory for the problem 5a

Run order Objective function values Normalized objective function values Weighted objective function values Composite
score

Solution
ranking

Makespan
(Cmax)

Mean flow
time ( f )

Makespan
(NCmax)

Mean flow
time (NF)

Makespan
(WNCmax)

WMean flow
time (NF)

1 2300 1983.3 1 0 0.524 0 0.524 23

2 2324 1941.3 0.9155 0.1573 0.4797 0.0749 0.5546 20

3 2337 1880.1 0.8697 0.3865 0.4558 0.184 0.6397 14

4 2360 1865.4 0.7887 0.4416 0.4133 0.2102 0.6235 16

5 2364 1850.2 0.7746 0.4985 0.4059 0.2373 0.6432 11

6 2371 1843.7 0.75 0.5228 0.393 0.2489 0.6419 12

7 2373 1839.1 0.743 0.5401 0.3893 0.2571 0.6464 8

8 2380 1834.5 0.7183 0.5573 0.3764 0.2653 0.6417 13

9 2392 1812.9 0.6761 0.6382 0.3543 0.3038 0.658 4

10 2413 1797.9 0.6021 0.6944 0.3155 0.3305 0.646 9

11 2415 1788.5 0.5951 0.7296 0.3118 0.3473 0.6591 3

12 2418 1787.3 0.5845 0.7341 0.3063 0.3494 0.6557 5

13 2419 1782.1 0.581 0.7536 0.3045 0.3587 0.6631 2

14 2421 1779.9 0.5739 0.7618 0.3008 0.3626 0.6634 1

15 2443 1765.9 0.4965 0.8142 0.2602 0.3876 0.6477 7

16 2451 1756.4 0.4683 0.8498 0.2454 0.4045 0.6499 6

17 2460 1749.7 0.4366 0.8749 0.2288 0.4164 0.6452 10

18 2472 1741.7 0.3944 0.9049 0.2067 0.4307 0.6374 15

19 2519 1729.5 0.2289 0.9506 0.1199 0.4524 0.5724 17

20 2527 1728.2 0.2007 0.9554 0.1052 0.4548 0.5599 18

21 2530 1727 0.1901 0.9599 0.0996 0.4569 0.5565 19

22 2535 1724.2 0.1725 0.9704 0.0904 0.4619 0.5523 21

23 2548 1722.4 0.1268 0.9772 0.0664 0.4651 0.5315 22

24 2555 1721.6 0.1021 0.9801 0.0535 0.4665 0.52 24

25 2584 1716.3 0 1 0 0.476 0.476 25

The best obtained result is marked in italic number
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deviation theory (MDT) is used to determine the weights of
the attributes to develop a composite score to ease the
decision-maker for selecting the best solution from a large
set of Pareto solutions. The composite score for all the non-
dominated solutions is obtained through summing the weight-
ed objective values. The best solution is selected from all the
non-dominated solution considering the highest composite
score to avoid subjectiveness and impreciseness in the
decision-making for the managers. This work offers an effec-
tive guideline to select optimum schedule for achieving the
desired different objective simultaneously. From the compar-
ative analysis, it can be concluded that the MOPSO algorithm
is superior to NSGA-II and MOEA for different performance
measures.
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