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Abstract The formation of machine cells to process subse-
quent part families is not the only goal of the designing of an
efficient cellular manufacturing system (CMS). A competent
layout of the newly acquired cells is also essential to restrict
the total inter-cell material handling cost which is primarily
significant with large production volume. Furthermore, in re-
alistic industrial scenario, the uncertainty of product demand
can influence the layout configuration to be altered from pe-
riod to period. Albeit there are numerous articles exist in the
domain of CMS research considering cell formation prob-
lems, layout issues have not been addressed significantly.
Therefore, the aim of our paper is to portray a reformed math-
ematical model of the inter-cell layout design problem in dy-
namic production situation considering material handling cost
and a modified proximity relationship of manufacturing cells.
The proposed Quadratic Assignment Programming (QAP)
model is combinatorial in nature and is difficult to solve using
traditional exact solution methods. The state-of-the-art soft-
computing techniques are extremely advantageous for such
QAP paradigms. Thus, we developed an improved genetic
algorithm (IGA) and a simulated annealing heuristic (SAH)
to sort out the abovementioned problem. Due to the inadequa-
cy of datasets, we formed small to large size test problems (6×

6×2 to 24×24×10) in logical way to cater the purpose. The
proposed algorithms are successfully employed to attain near-
optimal solutions to the test problems. Computational results
demonstrate the proficiency of the IGA over SAH for all the
test problems in terms of solution quality and computational
time. In addition, we conducted a statistical data analysis to
validate the test results.

Keywords Multi-objective cellular layout . Production
uncertainty .Material handling . Proximity factor . Inter-cell
material flow . Genetic algorithm . Simulated annealing

1 Introduction

Recently, manufacturing and service enterprises are being op-
erated more commendably with reduced throughput time due
to intense competitive market and demand uncertainty for the
end products. Therefore, manufacturing firms are being forced
to invest less capital for the important resources such as raw
materials, assets, and labors to reduce the overall production
costs and shorten the production lead time [1]. Among the
latest manufacturing philosophies, group technology (GT)
has been successfully applied in an way to reduce the through-
put time and material handling cost by dominating the work in
progress and finished goods inventories and improving the
competence to deal with the forecast inaccuracies in uncertain
production conditions [2, 3]. Cellular manufacturing (CM) is a
function of GT and has been evolved as a potential replace-
ment of traditional manufacturing systems. CM could be ex-
emplified as a hybrid system which exploits the advantages of
job shop (variety) and flow shop (high rate of production)
production strategies. The steps of designing an efficient
CMS are (1) to decompose the manufacturing system into
cells by recognizing and exploiting the similarities among
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components and machineries and (2) to design efficient inter-
cell and intra-cell layout in order to ease the material flow on
shop-floor. The first step is identified as the classical cell for-
mation problem (CFP) which forms machine cells to process
the corresponding part families completely in order to avoid
the inter-cell part travels. However, this concept might not be
feasible and could be inexpensive in real production scenario
since the cells are not practically independent to each other
[4]. If some of the operations of a part are to be performed
beyond its granted cell, then that part is recognized as an
“exceptional element,” and the machines performing those
tasks and do not belong to its dedicated cell are distinguished
as “bottleneck” machines. The newly formed cells are be-
lieved to be assigned to optimal locations inside the factory
area to control the inter-cell material flow being caused by the
presence of bottleneck machines. This problem is categorized
as cell layout problems (CLP) [5], identified as the second step
of an efficient CMS design. A competent layout in CMS not
only improves its performance but also minimizes nearly 40–
50 % of the total production cost [6]. However, layout design
in CMS has not gain much attention of researchers in recent
past since most of the CMS researchers are somehow working
on the cell formation issues [7]. The layout problem in CMS is
classified as the classical Quadratic Assignment Programming
(QAP) problem and is believed to be NP-complete in nature
[8]. To realize the essence of CLP, we classified the literature
of layout problems as follows:

& Non-cellular layout problems
& Cellular layout problems

1.1 Non-cellular layout problems

This subsection demonstrates the distinct issues of static and
dynamic layout problems. The static layout problems (SLP)
are also identified as single-period layout problems. An SLP
could be realized either using qualitative or a quantitative
methodologies. These techniques are often used singly or
jointly. Fortenberry and Cox [9], Urban [10], and
Harmonosky and Tothero [11] previously discussed the need
of combined objectives in terms of closeness rating as quali-
tative factor and material handling cost as quantitative factor
for SLP.

In varying demand scenario, uncertainty is supposed to be
adopted in the layout model formulation to obtain efficient
layout for each period over the entire planning horizon. It
simply means a layout constructed in a planning period might
not be efficient for the next period. Therefore, a dynamic ver-
sion of the layout problem is required which is an extension of
the SLP [12–15]. The dynamic layout problem (DLP) is more
complex since the stochastic demand of end products would
complicate the forecast decision of any manufacturing firm.

The average lifetime of a layout is approximately 3 years for a
particular period. Lacksonen and Enscore demonstrated a
DLP considering the material flow cost and department rear-
rangement cost over multiple planning periods and employed
a cutting plane method to solve one of the largest problems
(30×30×5) of DLP literature efficiently [16]. Kaku and
Mazzola proposed a proficient tabu search technique that ex-
ploits aspiration criteria, dynamic tabu list strategies, and other
strategies for search intensifications and diversifications to
solve the DLP [17]. They proposed the following DLP model:
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0; Otherwise
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ap ¼ 1; if any change is made at the beginning of period p;
0; Otherwise
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where

distnjl distance between two locations j and l (j, l=1, 2,
3…, N)

mfikp the amount of material flow from cell i to k in
period p (i, k=1, 2, 3, …, N; p=1, 2,3, …, T,
mfikp=mfkip, i≠k)

mfrikp the inter-cell trips between cell i and k in period p
(mfrikp=mfikp+mfkip) (for i, k=1, 2, 3,…, N; p=1, 2,
3,…, T)

hijp the cost of assigning cell i to location j in period p
vrip variable reconfiguration cost of moving cell i at the

beginning of period p
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frp fixed reconfiguration cost related with making any
alterations in layout at the beginning of period p

cijp the decision variable
bip the decision variable

Urban employed the concept of incomplete dynamic pro-
gramming to the DLP to find the optimal solution to the prob-
lem with fixed rearrangement costs with extremely reduced
CPU time [18]. Sahin et al. stated that the solution to the DLP
has twofold meaning; the key goals are to minimize the ma-
terial flow cost of each planning period and the rearrangement
cost of moving facilities from period to period [19]. In general,
a DLP of n-cells and p-periods can produce (n!)p solutions,
which means it is required to investigate 6.3587×1086 layouts
for a 12×12×10 problem to find a near-optimal solution. It is
a huge computational task to be performed even for a modern
computer. Due to this reason, the classical optimization
methods or exact algorithms are not competent in obtaining
good solutions for such problems. A trend has been identified
of using heuristic approaches that can efficiently solve such
problems and attain near-optimal solutions at the expense of a
moderate computational effort [15, 19, 20].

1.2 Cellular layout problems

Logendran first proposed a mathematical model that con-
sidered the sequence of operations in evaluating the
inter-cell and intra-cell moves and the impact of the cell
layout to illustrate the inter-cell material flow [21]. Alfa
et al. suggested a concurrent sub-optimal solution of the
machine grouping and layout problem in CMS using a
simulated annealing (SA) approach [22]. Sarker and Yu
reported a twofold procedure for duplicating bottleneck
machines in CMS and solved a cell layout problem
which minimizes the total inter-cell material flow [23].
A flow-network-oriented inter-cell layout design model is
defined by Tang and Abdel-Malek in three key steps: (1)
K shortest path method to reduce various flows of a
system into a master flow network; (2) a flow pattern
which designates the system’s aisle structure; (3) cell
allocation around the flow pattern and the aisle structure
within a limited area floor plan [24]. Lee adopted the
intra-cell and inter-cell layout design problems in his
model using three-phase interactive method following
the decomposition strategy to reduce the large problem
into smaller sub-problems with minute details [25].
Salum introduced some similarity measures to construct
an intra-cell layout by placing machines with higher sim-
ilarity value next to each other to minimize the total
material handling time in the system [26]. Wang and
Sarker stated a lower bound on the inter-cell layout prob-
lem (QAP) and prescribed a 3-pair comparison heuristic
and “bubble search” technique-based layout design

algorithms in order to minimize the inter-cell material
flow incurred due to bottleneck machines [7]. Authors
adopted the following QAP model:
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Chan et al. proposed Main algorithm to solve intra-
cell layout problems in static and dynamic conditions by
considering part-handling factor, machine rearrangement
cost, and machine closeness factor [27]. Solimanpur
et al. developed an ant colony algorithm to solve the
QAP model proposed in reference [7] and compared their
results with other techniques such as H63, HC63-66,
CRAFT, and bubble search with improved solutions
[28]. Wu et al. [29] successfully implemented a new
genetic algorithm (GA) to solve the cell design and
group layout problems concurrently incorporating some
important production factors, such as operational se-
quences, part demand, transfer batch, machine capacities,
and layout types. Reference [30] proposed a GA-based
algorithm to solve cell layout-based QAP along with a
cell formation model considering the linear layout shape.
Kulkarni and Shankar [5] employed a GA to the inter-
cell layout problem stated in references [7, 28] and val-
idated the performance of their algorithm with well-
known layout design techniques.

Tavakkoli-Moghaddam et al. [31] presented a new
mathematical model to solve a layout problem with vary-
ing demand to minimize the inter-cell and intra-cell layout
costs simultaneously. Mahdavi and Mahadevan developed
an algorithm that concurrently obtains manufacturing cells
and the intra-cell layout successfully [32]. Ahi et al. ap-
plied a TOPSIS-based initial solution-generating method
for order preference by similarity to the ideal solution that
leads to determination of cell formation, intra-cell, and
inter-cell layouts. Authors have shown further improve-
ments to the proposed method [33]. Ariafar and Ismail
proposed a new QAP model for inter-cell and intra-cell
layouts and solved using an SA algorithm with optimal
solution [34]. Ma and Zhang demonstrated that the dy-
namic layout framework based on reconfigurable CMS
aiming at the enterprise problems is based on alternative
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process routes and multiple machine types available for
the operations considering cell formation and inter-cell
layout jointly [35]. Jolai et al. employed a binary PSO-
based new heuristic approach to solve a QAP model for
inter-cell and intra-cell layout problems considering un-
certain demand of parts and batch sizes using a variable
neighborhood search [36].

Leno et al. recently discussed the multi-objective mod-
el for cellular layout design problems. It minimizes the
total material handling cost in the first place and subse-
quently maximizes the distance-weighted closeness factor
of cells and solved that model using a GA with near-
optimal solutions [37]. Arkat et al. [38] employed two
techniques based on GA to solve an integrated model of
cell formation, cell layout, and cell scheduling. The meth-
od is capable of achieving near-optimal solutions. Similar
issues are addressed by Kia et al. by developing a novel
nonlinear programming model and solved using an SA
algorithm and compared successfully with the solutions
of Lingo software [39].

We have summarized the outcomes of this brief literature
review in Table 1.

The following facts can be stated henceforth:

a) Most of the articles considered a combined form of layout
and cell formation problems which may perhaps compli-
cate the model unnecessarily while the cell layout prob-
lem could be addressed independently in more efficient
way.

b) Few researchers have proposed the QAP model as a com-
bined form of inter-cell and intra-cell layout problems.
However, the inter-cell and intra-cell layout subject mat-
ters might be discussed individually due to the conse-
quence of critical and intrinsic factors related to CMS,
such as product mix, demand variation, lot sizing, ma-
chine similarity, cell adjacency, and machine utilization.

c) Most of the researchers considered single-period layout
model which is not very realistic in practical scenario
due to the product mix and varying demand of end prod-
ucts. Static model does not consider re-layout cost which
is an essential cost component in realistic production
scenario.

d) Single- and multi-period layout problems are not distinct-
ly and prominently discussed in the CMS literature as it is
done in the domain of generalized layout problems.

To address these issues, an adapted multi-objective mathe-
matical model is demonstrated in this article which formulates
the inter-cell layout problem efficiently. Adjacency and sepa-
ration factors are resolved in this QAP model in terms of
“relative proximity factor.” Since this model is proposed for
the multi-period planning horizon, therefore reconfiguration
cost of layout from period to period is also incorporated. The

cell formation solution, cell-to-cell and location-to-location
distances, material flow among cells, variable and fixed recon-
figuration costs, and assignment costs of cells to locations are
the inputs to the model. Due to the combinatorial nature of the
model, a simulated annealing heuristic (SAH) technique and
an improved genetic algorithm (IGA) are developed to obtain
the near-optimal solutions for this problem. The rest of the
article is structured in the following manner. In Section 2,
we introduce the formulation of the problem as a QAP model;
in Section 3, we illustrate the proposed SAH and IGA algo-
rithms. The simulation study and results are conferred in Sec-
tion 4. Lastly, in Section 5, we conclude our research and
show the proper direction of the possible future extension of
this study.

2 Problem formulation

The layout problem in CMS is a Quadratic Assignment Prob-
lem (QAP) which restrains each cell to be assigned to only one
location and each location to be selected for only one cell. The
multi-period cellular layout problem (MPCLP) can be stated
as an expansion of single-period cellular layout problem
(SPCLP). To define the generality of MPCLP, the best layout
can be selected for each period and then to decide whether to
change it in next period which further incurs the reconfigura-
tion or re-layout cost. If reconfiguration cost is trivial, the
problem would become the sequence of SPCLPs. However,
in experience, reconfiguration incurs the overall costs. There-
fore, the layout for each period must influence the layout for
subsequent period because the overall cost is computed over
the entire planning horizon.

The suppositions of the proposed model are as follows:

& Manufacturing cells are already developed and cell forma-
tion solutions are available.

& The size of each cell is equal, and the shape and space of
the floor area are not limited.

& The distance between two locations is the measurement
from one center to another.

& The material flow from one cell to another is measured
beforehand.

In the domain of CMS, past literature rarely presents any
multi-objective cellular layout model which practically formu-
lates quantitative and qualitative objectives excepting refer-
ence [37] which proposed a multi-objective model for SPCLP
recently. However, multi-objective MPCLP has not yet been
proposed in CMS research.

We introduce a multi-objective MPCLP model consid-
ering both the qualitative (relative proximity) and quan-
titative (material flow) objectives. Due to the dynamic
nature of product demand, different manufacturing firms
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consider several different aspects related to the process
of production. Shared utilities of different cells could be
incorporated along with the susceptible environmental
factors. We adopted three simple approaches as stated
in reference [11]:

& Quantify the qualitative goals in order to analyze the effect
mathematically

& In order to institute equal impacts, normalize all the factors
in the layout design

& Assign load factor to the qualitative objective to demon-
strate its relative magnitude with respect to the material
flow in the final layout design

We defined a novel relationship among cells which is qual-
itative in nature and it combines two important qualitative
relationships, adjacency-based relationship (commonly used
in layout design literature [9, 11, 40]) and distance- or
separation-based qualitative relationship (generally consid-
ered in order to place some cells completely separated from

Table 1 Summary of the literature review done on cellular layout problems

References Nature of the
layout problem

Scope of the
layout
problem
considered

Objectives considered (either minimization
type (total cost) or maximization type
(profit/closeness/similarity/machine utilization))

Static Dynamic Inter-cell Intra-cell

Logendran 1991 [21] × × × Total inter-cell and intra-cell moves and utilization
of workstations

Sarker and Yu 1994 [23] × × Inter-cell material flow and bottleneck machine
that need to be duplicated

Tang and Abdel-Malek 1996 [24] × × Cell-to-cell material flow considering a flow
pattern within strict floor plan

Lee 1998 [25] × × × Total inter-cell and intra-cell material handling cost

Salum 2000 [26] × × Total manufacturing lead time (MLT) reduction
and intra-cell flow

Wang and Sarker 2002 [7] × × Total inter-cell material flow

Alfa et al. 1992 [22] × × × Total flow of material (combined form of cell
formation and layout design)

Chan et al. 2004 [27] × × × Material handling cost and rearrangement cost

Solimanpur et al. 2004 [28] × × Total inter-cell material flow

Wu et al. 2006 [29] × × × Total flow of material (combined form of cell
formation and layout design)

Chan et al. 2006 [30] × × Total inter-cell material flow (combined form of
cell formation and layout design)

Kulkarni and Shankar 2007 [5] × × Total inter-cell material flow

Tavakkoli-Moghaddam et al. 2007 [31] × × × Total flow of material

Mahdavi and Mahadevan 2008 [32] × × Total intra-cell material flow (combined form of
cell formation and layout design)

Ahi et al. 2009 [33] × × × Total flow of material (combined form of cell
formation and layout design)

Ariafar and Ismail 2009 [34] × × × Total inter-cell and intra-cell material handling cost

Ma and Zhang 2010 [35] × × × Total flow of material (combined form of cell
formation and layout design)

Jolai et al. 2011 [36] × × × Total inter-cell and intra-cell material handling cost

Arkat et al. 2011 [38] × × × Total flow of material (combined form of cell
formation and layout design considering cell
scheduling decisions)

Leno et al. 2011 [37] × × Total flow of material, total distance-weighted
closeness rating and penalty to force the solutions
to satisfy floor boundary condition

Kia et al. 2012 [39] × × Total intra-cell material flow (combined form of cell
formation and layout design considering cell
scheduling decisions)
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some others due to environmental disputes, such as noise,
vibration, safety, pollution, and other risk related to fire or
detonation). The combined form of these two issues is termed
as relative proximity factor. This relationship could be defined
as follows:

proxikp ¼ ajdcikp þ sepikp

This fact could be realized using some suitable example.
For that matter, two example test problems are considered in
the Table 2. Since these relationships are qualitative in nature,
Table 2 reflects qualitative values of the relationships. These
different qualitative relationships are illustrated using numer-
ical scoring systems.

For example, the adjacency relationships can be
demonstrated by the following numerical values: A=4,

E=3, I=2, O=1, U=0 and X=−1 obtained from ref-
erence [40].

Further, the separation relationships can be articulated
using the following numerical values: α=9, β=7, γ=5, δ=
3, ε=1, ζ=−1. The physical meaning of the separation rela-
tionships of Table 2 is as follows:

α=furthest separation, β=strong separation, γ=moderate
separation, δ=weak separation, ε=weakest separation, ζ=
separation not desirable.

The numerical values of these two qualitative factors can
be combined as stated above (e.g., adjc12p+sep12p=E+ζ=3+
(-1)=2=prox12p) and the “relative proximity factor”matrix is
obtained in Table 3.

The weighted QAP formulation of MPCLP proposed in
this research is the combined form of two objectives as
(Z1+C×Z2) as suggested by Urban [10]:
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Fig. 2 Restructure of offsprings

Fig. 1 Crossover operation for (6×6×5) test problem

Table 3 Relative proximity factor matrix of the cells (6 cells×6
locations problem)

C1 C2 C3 C4 C5 C6

C1 – 2 4 7 5 5

C2 – 6 1 9 7

C3 – 4 7 8

C4 – 9 3

C5 – 9

C6 –

Table 2 An adjacency and separation relationship matrices of the cells
(6×6 dataset)

ADJ C1 C2 C3 C4 C5 C6 SEP C1 C2 C3 C4 C5 C6

C1 – E O U A I C1 – ζ α β ε δ

C2 – E U A U C2 – δ ε γ β

C3 – X U X C3 – γ β α

C4 – U U C4 – α δ

C5 – A C5 – γ

C6 – C6 –
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where

bijlp the decision variable
adjcikp adjacency rating between cells i and k for the

period p
sepikp separation rating between cells i and k for the

period p
proxikp relative proximity factor between cells i and k for

the period p
Sik the relationship value between cells i and k
Tik the normalized relationship value between cells i

and k
Nmfrikp normalized value of mfrikp
Nproxikp normalized value of proxikp

As soon as all the relationship factors are quantified, a
method of normalization of data is applied using the following
formula adopted from reference [11]:

Tik ¼ SikX N

i¼1

X N

k¼1
Sik

ð23Þ

This formula is used to obtain the matrices defined by N-
mfrikp and Nproxikp.

Equation (14) is the multi-objective QAP formulation
which is a minimization type function. Equations (15) and
(16) are the assignment constraints, ensuring that each loca-
tion contains only one cell and each cell is assigned to only
one location in period p. The remaining constraints are the
relationship of decision variables cijp, bijlp, and ap. In the ob-
jective function “w” is the load factor of the qualitative part
Z2, which is adopted from reference [10]. In his article, Urban
suggested to select the value of w as the largest value of the

material flow matrix [mfrikp]N×N(p) in order to transform the
qualitative term to correspond with the quantitative volumes.
However, Urban did not utilize the normalization of the quan-
titative or qualitative term as it is done in other contemporary
articles [11, 40]. Due to the adoption of that phenomenon, both
the qualitative and quantitative objectives are transformed into
the same scale. Thus, the value of the constant w is fixed in the
range 0≤w≤1. If w takes the value 0, it means that the cost
function transformed purely into material handling cost and if it
takes value 1, then both material flow and relative proximity
factor would share the same importance. However, in the ex-
perimental stage, the QAP model of cost function is tested for
four values of w, which are 0.2, 0.4, 0.6, and 0.8.

3 Research methodologies

Genetic algorithm (GA) is an extensive, parallel, stochastic
search, and optimisation technique, grounded on the perceptions
of natural selection [41] and population genetics [42]. Holland
[43] first proposed GA, and Goldberg [44] further made this
algorithm accustomed among researchers. GA is implemented
iteratively on a set of encoded chromosomes, called a popula-
tion, with three basic genetic operators: selection, crossover, and
mutation. Each chromosome is represented by a sequence,
which could be binary or real coded. GA utilizes only the ob-
jective function information and probabilistic transition rules for
genetic operations. A comprehensive theory of GA can be
learned from the book compiled by Gen and Cheng [45].

SA is one of the oldest species among metaheuristics. The
SA algorithm simulates the physical annealing process, where
particles of a solid arrange themselves into a thermal equilibri-
um. An introduction to SA can be found in the book by Aarts
and Korst [46]. The algorithm uses a predefined neighborhood
structure of a set of feasible solutions. A control parameter

Fig. 3 Mutation operation for a chromosome of (6×6×5) test problem
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which is called “temperature” in analogy to the physical anneal-
ing process governs the search behavior. Each of the tempera-
ture pieces of the algorithm computes neighbor solutions to the
current solution. If the new solution has a better objective

function value than the old one, the new solution is “accepted”;
else if the generated solution has a worse objective function
value than the previous one, then it is only accepted with a
certain probability depending on (i) the difference of the

Apply sigma trunc thod to 
select the good sol n strings for 

ng pool

SizeOf(Ma g
Pool) < PopSize ?

Replicate solu on strings with 
higher fitness val ng 

pool

Yes

Apply single-point 
crossover on selected 

parent strings

No

Apply adjustment heuri c 
to reconfigure the newly 

generated offsprings

Apply mu on with 
Pm probability and 
swap two random 

ons in sol
strings

Apply 
Mu on

Add new 
offspring in 

newPop

SizeOf(NEW
pOP) = 

PopSize ?

No

Start with al pop

alize PopSize, MaxGen, Pr, Pc, 
Pm, Pv, K, T, GlobalFitness, 

GlobalBestSol

Evaluate each of the 
chromosomes of popu on using 

objec ve func on and store in 
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GlobalFitness= Min(FitnessVals)
&

GlobalBestSol=CurrentSol

Min(FitnessVals)
<GlobalFitness?
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No

COUNT= 
maxGen ?

Yes

No

Stop with 
GlobalBestSol and 

GlobalFitness

Yes

Fig. 4 IGA flowchart

244 Int J Adv Manuf Technol (2016) 86:237–257



objective function values in old and new solutions and (ii) the
temperature parameter.

An elaborated discussion of the GA and SAmethodologies
developed for MPCLP is contributed accordingly in the fol-
lowing subsections.

3.1 Improved genetic algorithm

IGA starts with an initial population of randomly selected
feasible solutions which are encoded on a finite length de-
pending upon the number of cells in the layout. IGA is real
coded and depends on the nature of the layout solution.

3.1.1 Initial population and encoding scheme

The initial population of solutions is generated randomly fol-
lowing some rules:

a) Every cell is placed in one location; thus, there would not
be a repeat of string element. Therefore, encoding of a
layout for a period can be presented as follows:

5 4 1 3 6 2

It is based on a 6 cells, 6 locations problem. It implies that
cells 5, 4, 1, 3, 6, 2 are assigned to locations 1 2, 3, 4, 5, and 6,
respectively.

b) Since the problem considered in this study is dy-
namic in nature, every period of the planning hori-
zon would utilize different layout. Therefore, the
initial solution string for a five periods problem
would be as follows:

It is also known as chromosome, which prominently shows
five layout configurations for consecutive five periods. This
arrangement is considered as a solution string of size 30 for a
(6×6×5) problem. Once the initial population is created, each
chromosome is then converted into a 6×5 array as follows:

5 4 1 3 6 2

2 4 6 1 3 5

1 5 4 2 6 3

3 6 4 1 5 2

4 5 1 3 6 2

3.1.2 Fitness function

The fitness function essentially evaluates a solution string by
computing a numerical score. The MPCLP objective function
(Eq. (15)) is used for this purpose. Since the MPCLP function
is minimization type, therefore, the low score of a solution
string is desirable in this context.

3.1.3 Selection method

Fitness-proportionate selection scheme frequently forces
the algorithm to “exploit” the good areas at the cost of
investigating the other parts of the solution space. At
the later stage, when all the solution strings of the pop-
ulation are relatively similar (trivial variation in fitness),
selection becomes insignificant, and the evolution stops

with premature convergence [47]. To avoid such occur-
rence, the “sigma truncation” method is adopted as a
selection method [44]. It eventually maintains a robust
selection pressure throughout the direction of the execu-
tion. Unprocessed fitness values are first transformed
into its expected value, which is a function of its fit-
ness, the mean value, and standard deviation of popula-
tion. The formula used in this work is as follows:

E i; tð Þ ¼ 1þ f ið Þ− f μ tð Þ
Cσ � f σ tð Þ if f σ tð Þ≠0

1 if f σ tð Þ≠0

8<
: ð24Þ

E(i, t) is the expected value of individual i at time t, f(i)
is the fitness of i, fμ(t) is the mean fitness of the pop-
ulation at time t, fσ(t) is the standard deviation of the
population fitnesses at time t, and Cσ is the sigma trun-
cating coefficient. A higher value of Cσ can reduce the
fitness pressure of the population; thus, it is set to 3
throughout the experimental stage. This phenomenon
would help the better solution to stand out more in
the later stage of execution when the population is like-
ly to converge and standard deviation is comparatively
low. Therefore, the evolution continues.

3.1.4 Implementation of reproduction operator

Three genetic operations are employed in IGA imple-
mentation. These are reproduction, crossover, and
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mutation. The reproduction operation triggers best fit
chromosomes from the current population and put them
into a list called “elite list” or “mating pool” to be used
for next operations in the evolution. If the current pop-
ulation contains n chromosomes and the reproduction
rate is defined by Pr, then n×Pr best chromosomes are
required to be reproduced and to be put in elite list.
Thereafter, (n−n×Pr) chromosomes are replicated from
the list of “elite” chromosomes and added to the mating
pool.

3.1.5 Implementation of crossover operator

The crossover operator exchanges genetic features be-
tween two parent chromosomes selected randomly from
mating pool and then produces offsprings or child chro-
mosomes. If the mating pool contains n chromosomes
and the crossover rate is Pc, then n×Pc chromosomes
randomly chosen for crossover. The crossover method
applied in this IGA is based on single-point operation.
An example of the crossover operation is depicted in Fig. 1.

No

count = count + 1

f (Si) = fbest Sbest = Si, Scur = Si

Yes

Count1 = count1 + 1
No

Compute δ = f (Si) - f (Scur).
Obtain a random variable r

in the range of U (0, 1)

1 / (1 + eδ/T) > rScur = Si, count1= 0

Yes

No

Sbest = Si, Scur = Sif (Si) < fbest

Yes
generate corresponding

neighbourhood solution Si

count < M ?

Obtain an initial solution S0

randomly
START Evaluate S0 and Calculate

corresponding fitness value
f0; f0 = f (S0)

Set fbest= f0, Set
Sbest = S0= Scur

Initialize
parameters: Ti,
Tfinal, α, M, iter
= 0, count=0,

count1=0iter = iter + 1

Yes

reduce the
temperature

using Ti = α×Ti-1

function

Ti = Tfinal ?
No

Yes

STOP

No

Generate a new inter-cell layout
configuration by performing

exchange-move (randomly selecting
two cells and swap their positions)

Fig. 5 SAH flowchart
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The crossover point is chosen randomly by generating a
random integer number r between 0 and m (m is the
number of cells in the layout) and exchanging the rth to
mth segment of each of the parents. As shown in
Fig. 1, r=4; thus, 4th to 6th genes are transferred be-
tween parents and two offsprings are generated.

At this moment, each of the offsprings will have five
different layouts of five consecutive periods in which
cell numbers are repeated which is not desirable. In
order to avoid such situation, a small heuristic

procedure is introduced to restructure the offsprings.
The pseudocode is furnished as follows:

Step 1. Repeat
Step 2. For j=1 to m
Step 3. For k=j+1 to m
Step 4. If offspring1(j)==offspring1(k)
Step 5. Then do
Step 6. offspring1(j)=parent1(k)
Step 7. If offspring2(j)==offspring2(k)
Step 8. offspring2(j)=parent2(k)
Step 9. Until
Step 10. offspring1(j)!=offspring1(k)

Table 6 Results obtained for 12 cells×12 locations problems

Periods Weight IGA SAH

T w Fitness CPU second Fitness CPU second

2 0.2 3.29436 152.9942 3.38480 110.5350

0.4 4.26464 152.3416 4.35158 110.0463

0.6 5.24337 153.0419 5.28431 111.1911

0.8 6.10355 154.3124 6.23516 114.3423

3 0.2 3.36291 237.5744 3.46637 245.4402

0.4 4.41385 247.4859 4.43611 237.5707

0.6 5.35011 243.5326 5.47250 234.9655

0.8 6.30749 238.8453 6.43854 236.4380

5 0.2 3.49779 564.6683 3.54141 667.1761

0.4 4.48570 573.6178 4.57992 635.4647

0.6 5.45233 559.2974 5.58971 664.0384

0.8 6.46747 606.4231 6.58335 637.5292

10 0.2 3.59233 2070.3701 3.67424 2666.4460

0.4 4.61552 2202.8450 4.68706 2511.8531

0.6 5.65387 2186.5427 5.71008 2500.9000

0.8 6.60422 2154.1022 6.70108 2611.2724

Italicize values are the best obtained results

Table 5 Results obtained for 6 cells×6 locations problems

Periods Weight IGA SAH

T w Fitness CPU second fitness CPU second

2 0.2 2.57315 36.4384 2.60203 17.8385

0.4 3.33552 34.1968 3.37097 17.9187

0.6 4.01722 29.5701 4.13833 17.5086

0.8 4.72704 27.3751 4.8222 17.6332

3 0.2 2.64455 41.1777 2.70485 29.1721

0.4 3.43554 41.3803 3.50658 29.0646

0.6 4.20547 40.5249 4.30211 27.5990

0.8 4.92037 39.7005 5.04936 27.4454

5 0.2 2.70240 85.7489 2.71187 75.2546

0.4 3.47944 86.0531 3.62772 76.3102

0.6 4.27922 86.1153 4.38041 77.1900

0.8 4.96083 85.2429 5.06534 74.7217

10 0.2 2.83139 308.1726 2.92312 298.6552

0.4 3.64459 314.5878 3.76358 310.1590

0.6 4.43540 311.5950 4.50004 298.8098

0.8 5.15573 313.2379 5.30412 298.0385

Italicize values are the best obtained results

Table 4 Parameter values for the
IGA and SAH Problem IGA SAH

No. of cells No. of periods PopSize MaxGen Pr Pc Pm T0 α M

6 2 30 500 0.6 0.65 0.01 10 0.95 300

3 30 500 0.6 0.65 0.01 10 0.95 300

5 30 500 0.6 0.65 0.01 10 0.9 250

10 30 500 0.6 0.65 0.01 10 0.85 250

12 2 25 500 0.6 0.75 0.05 10 0.95 300

3 25 500 0.6 0.75 0.05 10 0.95 300

5 30 300 0.6 0.75 0.05 10 0.9 250

10 30 300 0.6 0.75 0.05 10 0.85 250

24 2 20 350 0.6 0.8 0.1 10 0.95 250

3 20 350 0.6 0.8 0.1 10 0.95 250

5 25 300 0.6 0.8 0.1 10 0.9 200

10 25 300 0.6 0.8 0.1 10 0.85 200
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This procedure would eventually retain the exchanged genet-
ic structure of the offsprings and facilitate in avoiding that unde-
sirable situation. The resulting offsprings are portrayed in Fig. 2.

3.1.6 Implementation of mutation operator

The aim of mutation is to increase variability in chromosome
of the population and to direct the population into an unex-
plored area of the search space. It often directs the execution to
escape from local optima. If the population contains n

chromosomes,m is the number of genes in each chromosome,
and the rate of mutation is Pm, then n×m×Pm chromosomes
are randomly chosen for mutation. It generates new offsprings
as demonstrated in Fig. 3.

It generates two random integers, r1 and r2 between 0 and
m. Then swap the r1th and r2th genes as shown in Fig. 3. The
steps of the mutation operation are presented as follows:

Step 1. Generate a random integer r1 lies in the range of 0 to m
Step 2. Generate a random integer r2 lies in the range of 0 tom
Step 3. Assign r1th gene of the chromosome to a temporary

variable Temp
Step 4. Assign r2th gene of the chromosome to the r1th

gene’s position
Step 5. Assign value assigned in Temp to the original posi-

tion of r2th gene

3.1.7 Stopping condition

The stopping condition governs the execution of the IGA
algorithm. It implies that all the operators are believed to be
executed repeatedly until a stopping condition is encountered.
The execution of IGA is eventually terminated once it reaches
the maximum number of generations count. The flowchart of
IGA is depicted in Fig. 4.

3.2 Simulated annealing heuristic

According to Kirkpatrick et al. [48], a SAH is a probabilistic
local search heuristic algorithm. This technique, developed for
discrete optimization, starts with an initial feasible solution to
the problem and performs various walks in the search space
according to the predefined annealing schedule.

Table 8 Fitness variations for 2 periods’ problems by IGA and SAH

Problem IGA SAH

No. of cells w Best fitness Mean fitness Worst fitness Best fitness Mean fitness Worst fitness

6 0.2 2.57315 2.57315 2.57315 2.60203 2.60203 2.60203

0.4 3.33552 3.33766 3.33980 3.37097 3.37994 3.38891

0.6 4.01722 4.02924 4.04127 4.13833 4.15036 4.16239

0.8 4.72704 4.74793 4.76883 4.82220 4.86910 4.91600

12 0.2 3.29436 3.29436 3.29436 3.38480 3.38480 3.38480

0.4 4.26464 4.26464 4.26464 4.35158 4.35579 4.36000

0.6 5.24337 5.24724 5.25112 5.28431 5.29801 5.31170

0.8 6.10355 6.10702 6.11050 6.23516 6.25808 6.28100

24 0.2 7.64312 7.64378 7.64445 7.66661 7.67742 7.68823

0.4 9.78375 9.79352 9.80330 9.79841 9.96075 10.12310

0.6 11.84873 11.85995 11.87118 11.89860 12.05150 12.20450

0.8 13.97141 13.98071 13.99000 14.00630 14.24720 14.48820

Table 7 Results obtained for 24 cells×24 locations problems

Periods Weight IGA SAH

T w Fitness CPU second Fitness CPU second

2 0.2 7.64312 705.0122 7.66661 997.8511

0.4 9.78375 707.8895 9.79841 991.5367

0.6 11.84873 704.6982 11.8986 978.6104

0.8 13.97141 704.0253 14.0063 972.3382

3 0.2 7.70680 1083.7143 7.69732 1253.9391

0.4 9.84152 1022.4629 9.86685 1276.4802

0.6 12.01550 1087.2031 12.03220 1278.9211

0.8 14.16888 1071.7117 14.20060 1248.8362

5 0.2 7.75302 3007.5651 7.75465 4033.7234

0.4 9.90691 3023.1142 9.92009 4082.8671

0.6 12.0838 3033.1395 12.11380 4014.2551

0.8 14.2163 3082.5576 14.25990 4022.4087

10 0.2 7.80185 12,822.8631 7.80041 19,319.2349

0.4 9.98855 12,790.4304 10.01110 19,630.3872

0.6 12.13860 12,357.4678 12.19823 19,692.7093

0.8 14.3554 13,072.5669 14.40348 20,053.2231

Italicize values are the best obtained results
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3.2.1 Initial feasible solution

At the very first step, an initial solution is generated randomly in
the feasible region of the solution space which is the first point to
begin with the search. In this article, the SAH algorithm is used
to optimize the MPCLP problem. Its initial solution generates
randomly by assigning each manufacturing cell to some location
in every period by following the assignment constraints.

3.2.2 Generating a neighborhood solution

A neighborhood solution is generated by a swap operation
performed on the solution string. First SAH generates two
random integers, r1 and r2 between 0 and m. Then swap the
r1th and r2th elements as demonstrated in the mutation oper-
ation of IGA (Section 3.1.6).

3.2.3 Initial temperature and annealing schedule

An initial temperature T0 and an annealing (cooling) schedule α
are required to influence the sequence of walks in the search
space. Ordinarily, the initial temperature is prefixed to some
higher value which accepts all the solutions virtually. Cooling
schedule is defined by α, which is the rate at which the temper-
ature is reduced to the freezing temperature in order to minimize
probability of acceptance of inferior quality solutions. Souilah
reported several cooling functions which could be used as tem-
perature reduction functions [49]. In present research, tempera-
ture is reduced following a geometric function:

T ¼ α� T 0 ð25Þ

where α varies with the size of the problem considered.

Table 10 Fitness variations for 5 periods’ problems by IGA and SAH

Problem IGA SAH

No. of cells w Best fitness Mean fitness Worst fitness Best fitness Mean fitness Worst fitness

6 0.2 2.70240 2.70240 2.70240 2.71187 2.71187 2.71187

0.4 3.47944 3.47972 3.48000 3.62772 3.62791 3.62810

0.6 4.27922 4.28537 4.29153 4.38041 4.38676 4.39312

0.8 4.96083 5.02855 5.11039 5.06534 5.15456 5.22475

12 0.2 3.49779 3.49779 3.49779 3.54141 3.54141 3.54141

0.4 4.48570 4.49965 4.51360 4.57992 4.58812 4.59632

0.6 5.45233 5.46966 5.48700 5.58971 5.61090 5.63209

0.8 6.46747 6.48051 6.49354 6.58335 6.63674 6.69013

24 0.2 7.75302 7.75302 7.75302 7.75465 7.75676 7.75887

0.4 9.90691 9.92035 9.93380 9.92009 9.92472 9.92936

0.6 12.08380 12.12096 12.15812 12.11380 12.15217 12.19054

0.8 14.21630 14.24275 14.26920 14.25990 14.28845 14.31700

Table 9 Fitness variations for 3 periods’ problems by IGA and SAH

Problem IGA SAH

No. of cells w Best fitness Mean fitness Worst fitness Best fitness Mean fitness Worst fitness

6 0.2 2.64455 2.64455 2.64455 2.70485 2.70485 2.70485

0.4 3.43554 3.43622 3.43691 3.50658 3.50674 3.50690

0.6 4.20547 4.20945 4.21344 4.30211 4.34071 4.37932

0.8 4.92037 4.92163 4.92290 5.04936 5.08968 5.13000

12 0.2 3.36291 3.36291 3.36291 3.46637 3.46637 3.46637

0.4 4.41385 4.41602 4.41820 4.43611 4.47750 4.51890

0.6 5.35011 5.35986 5.36962 5.47250 5.49175 5.51100

0.8 6.30749 6.32424 6.34100 6.43854 6.46362 6.48870

24 0.2 7.70680 7.70690 7.70700 7.69732 7.70461 7.71190

0.4 9.84152 9.86018 9.87885 9.86685 9.88133 9.89582

0.6 12.01550 12.22360 12.4317 12.0322 12.17175 12.31131

0.8 14.16888 14.27199 14.3751 14.2006 14.24765 14.29470
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3.2.4 Length of Markov Chain

Markov chain length (M) signifies the maximum number of
tries over which the annealing procedure attains the thermal
equilibrium state for a piece of temperature. The value ofM is
set between 200 and 300 after performing a set of preliminary
tests, depending upon the problem size.

3.2.5 Acceptance probability

To decide the tolerance level of accepting a worse solution, in a
temperature piece T, this acceptance probability plays an impor-
tant role. If f is the value of current energy state of the annealing
process, a new layout arrangement or “neighbor” is selected at
random, which gives a new energy level fnew. If fnew≤f, it accepts
the new arrangement and fnew becomes the current energy level
and new arrangement becomes the current best solution. Other-
wise, the assignment is only accepted randomlywith probability:

p ¼ 1

1þ e
f − f newð Þ
k�T

h i ð26Þ

It is also known as modified Boltzmann’s acceptance
probability (k=Boltzmann’s constant). Thus, if fnew is close to
f, the arrangement is more likely to be accepted. If the tempera-
ture is high, the exponent will be close to zero, and so the prob-
ability will be close to 1. As the temperature approaches zero, the
exponent approaches -∞, and the probability approaches zero.

3.2.6 Stopping condition

The SA algorithm can be terminated, when the current tem-
perature reaches to freezing point (very small temperature
which is close to zero) or if the neighbor solution is not being
improved after a long period.

The flowchart of SA algorithm is presented in Fig. 5.

4 Computational results

This section contains a structured discussion based on the per-
formance of each of the proposed methodologies, IGA and
SAH. The aim is also to portray a comparative study between
IGA and SAH in terms of solution quality and computational
time. In order to verify the QAP model of MPCLP and state the
effectiveness of both the proposed algorithms, test problems are
required. Even though there are many articles available in the

Table 12 Experimental setup of statistical testing of IGA and SAH

IGA SAH Difference (d)

4.96083 5.06534 −0.10488
4.98919 5.08551 −0.09632
4.98941 5.09112 −0.10171
4.99933 5.10922 −0.10989
5.00843 5.11382 −0.10539
5.01143 5.1248 −0.11337
5.01959 5.1288 −0.10921
5.02143 5.13516 −0.11373
5.025 5.14423 −0.11923
5.02712 5.14956 −0.12244
5.02879 5.15648 −0.12769
5.02961 5.1803 −0.15069
5.03247 5.18382 −0.15135
5.04306 5.18598 −0.14292
5.04543 5.18921 −0.14378
5.04853 5.19357 −0.14504
5.05533 5.19587 −0.14054
5.0649 5.20843 −0.14353
5.07424 5.21308 −0.13884
5.08602 5.22475 −0.13873

Mean difference (μd) −0.125964
Standard deviation (σ2) 0.018234383

Table 11 Fitness variations for 10 periods’ problems by IGA and SAH

Problem IGA SAH

No. of cells w Best fitness Mean fitness Worst fitness Best fitness Mean fitness Worst fitness

6 0.2 2.83139 2.83139 2.83139 2.92312 2.92312 2.92312

0.4 3.64459 3.64459 3.64459 3.76358 3.76399 3.76441

0.6 4.43540 4.43875 4.44210 4.50004 4.50100 4.50196

0.8 5.15573 5.16346 5.17119 5.30412 5.33311 5.36210

12 0.2 3.59233 3.59672 3.60112 3.67424 3.67456 3.67488

0.4 4.61552 4.61717 4.61883 4.68706 4.68853 4.69000

0.6 5.65387 5.65743 5.66100 5.71008 5.75111 5.79213

0.8 6.60422 6.61279 6.62137 6.70108 6.90656 7.11204

24 0.2 7.80185 7.80188 7.80191 7.80041 7.80084 7.80127

0.4 9.98855 9.98893 9.98932 10.0111 10.09606 10.18103

0.6 12.13860 12.14138 12.14416 12.19823 12.20136 12.20450

0.8 14.35540 14.35741 14.35942 14.40348 14.44584 14.48820
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area of dynamic facility layout problems with small to large
datasets, those data would not fit in the proposedMPCLPmodel
of us. That is because we considered a new phenomenon called
“relative proximity factor.” Therefore, test problems are sup-
posed to be simulated logically. To cater the requirement,
datasets are generated in the range of 6×6×2 to 24×24×10,
i.e., 6 cells with 2, 3, 5, and 10 periods problems, 12 cells with
2, 3, 5, and 10 periods problems, and 24 cells with 2, 3, 5, and 10
periods problems, specifically, 12 test problems. Material flow
cost and cell reconfiguration costs are generated by means of
uniform distribution following Balakrishnan and Cheng’s proce-
dure [50]. The cell-to-cell material flow is modified relatively to
restrict the aggregate flow within a predefined level throughout
the planning horizon for any problem. This approach further

restricts the domination of one period over another. Cell recon-
figuration costs were also tuned in such a way that the mean
reconfiguration cost is not more than 10 % of the mean material
flow cost. One example dataset of size 6×6×5 is shown in the
Appendices 1 and 2. Proposed IGA and SAH algorithms are
coded in Matlab 7.6 using an Intel PC with Quad CPU
(2.83 GHz) and 4 GB of RAM. For all the test problems, com-
putational complexities of the algorithms intensify exponentially
with the number of planning periods. Therefore, a good design is
indeed important while dealing with large test problems. The
evaluation criteria of IGA and SAH are based on total material
flow cost, total reconfiguration cost, and total numerical value of

Table 14 Two-sample F-test for variances of IGA and SAH (α =0.05)

IGA SAH

Mean 5.0279885 5.153953

Variance 0.000934133 0.002143

Observations 20 20

df 19 19

F 0.44

P(F≤f) One-tail=0.039 Two-tail=0.078

Fcritical One-tail=2.17 Two-tail=2.53

Italicize values are the best obtained results

Fig. 6 a Normal probability plot
for IGA. b Normal probability
plot for SAH

Table 13 Normality test results of data for IGA and SAH (Anderson-
Darling method)

Parameters Values for IGA Values for SAH

A-squared 0.146 0.325

p value 0.960 0.502

95 % critical value 0.787 0.787

99 % critical value 1.092 1.092
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relative proximity factor. To determine the desired values of the
parameters of IGA and SAH, extensive experiments are done
with the test problems (at least 20 executions for each of the test
instances). Parameters of IGA are the population size (PopSize),
number of maximum generations (MaxGen), probability of re-
production (Pr), probability of crossover (Pc), and probability of
mutation (Pm) and parameters of SAH are the initial temperature
(T0), cooling rate (α), and length ofMarkov chain (M), which are
to be fixed to obtain good results. Details of the values of the
parameters are reported in Table 4. For the mid to large size
problems, the value of the parameters PopSize, MaxGen, α,
and M are fixed moderately low in order to minimize the com-
putational efforts and it is done after extensive analysis with
different settings of parameters on all the datasets. The decision
of keeping low CPU time is a crucial trade-off in the context of
the QAP since the metaheuristic algorithms have a tendency to
get trapped in local optima with reduced values of parameters.

Tables 5, 6, and 7 demonstrate the results obtained by pro-
posed IGA and SAH techniques. Both the methodologies are

compared in terms of objective values achieved and computa-
tional time utilized. Since the objective of this research is to
attain near-optimal solutions within reasonable computational
efforts, both of these issues are given equal importance to show
the efficiency of the algorithms. Due to the inadequacy of such
mathematical model in CMS literature, we were unable to as-
sess our results with any of the past results obtained so far,
which is the downside of our research. In order to fill the gap,
we performed various analyses based on the performance of
proposed IGA and SAH. A total of 48 test instances are execut-
ed for all the 12 test problems with four different values of load
factor w. Out of these, IGA achieved the best results for 46 test
instances in terms of solution quality and 28 test instances in
terms of CPU time which further states a 95.83 and 58.33 %
improvements, respectively. For the small size problems (6×6×
2, 6×6×3, 6×6×2, and 12×12×2), SAH appeared to be quite
efficient in terms of CPU time; for the mid to large size prob-
lems (12×12×3 to 12×12×10 and 24×24×2 to 24×24×10),
the IGA technique outperforms SAH in terms of CPU time.
Conversely, SAH is capable of obtaining solutions which are
very close to the solutions obtained by IGA in terms of quality.
The value of load factor w further determines the value of the
total cost of the solutions. The objective value increases propor-
tionally with the value of w.

Due to the probabilistic nature, these two techniques attain
different solutions in a complete execution. Thus, we run each
of the algorithms 20 times for every test problem for every
value of w and the best out of those is selected as global best
solution. Deviations in fitness values for all the test problems
are depicted in Tables 8, 9, 10, and 11.

To prove the competence of IGA over SAH, an elaborated
statistical analysis is performed on a sample test problem of size
6×6×5 with a prefixed value of w=0.8. The experimental setup
is given in Table 12where each of the two techniques is executed
for 20 times and the objective values (data) obtained are record-
ed. First, we tested the normality of data using Anderson-Darling

Fig. 7 Convergence analysis of IGA and SAH for 24 cells, 10 periods problem

Table 15 Two-sample t-test assuming equal variance and equal sample
size of IGA and SAH (α=0.05)

IGA SAH

Mean 5.027989 5.153953

Variance 0.000934 0.002143

Observations 20 20

Pooled variance 0.001538

Hypothesized mean difference 0

df 38

t-statistic −10.156
P(T≤t) (one-tail) 0.000

Tcritical (one-tail) 1.686

P(T≤t) (two-tail) 0.000

Tcritical (two-tail) 2.024
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normality test. The result is shown in Table 13. The null hypoth-
esis used is H0, if the data is normal. It implies the rejection of
the null hypothesis when p value ≤α or A-squared>critical val-
ue. We accept the null hypothesis due to the following:

& Dots fit the trend line on the normal probability plot
(Fig. 6a, b).

& For IGA, p value=0.960>0.05 and A-squared=0.146<
0.787, and <1.092; therefore, we accept the null hypothesis.

& For SAH, p value=0.502>0.05 and A-squared=0.325<
0.787 and <1.092; therefore, we accept the null hypothesis.

Therefore, we could be at least 95 % confident that the data
are normal.

Since the two sets of objective values are not paired or
dependent in any case, we need to verify whether the vari-
ances are equal or not. Thus, F-test is performed and the re-
sults are depicted in Table 14.

The experimental result of the F-test can be illustrated as
follows:

If the test statistic<critical value (F<Fcritical), accept the null
hypothesis; in other words, if p value>α, accept the null hypoth-
esis. Table 13 depicts that F<Fcritical (0.44<2.17) and p value
(two-tail)>α (0.078>0.05); thus, we accept the null hypothesis
that the variances are equal. Nowwe conduct the t-test assuming
equal variances. The result of t-test is reported in Table 15.

We can interpret the two-sample t-test results as follows:
If the test statistic<critical value (t<tcritical), accept the null

hypothesis or in other words, if p value>α, accept the null hy-
pothesis. Since the null hypothesis is that the mean difference=0,
this is a two-sided test. Therefore, we use the two-tail values for
the analysis. Since the t-statistic<tcritical (−10.156<1.686) and
(−10.156<2.024) and both the p values<α (0<0.05), we reject
the null hypothesis that the means are not the same. Therefore,
we found data inconsistency in the experiments which further
states the performance differences of two techniques, IGA and
SAH. More specifically, it can be stated that IGA (mean=
5.027989) is an improved method than SAH (mean=
5.153953) while obtaining solution for the test problem of size
6×6×5 at a 95 % confidence level. If we perform this statistical
analysis on all the test problems, similar outcomes can be found.

Both the proposed methods are extremely improved when
compared with the latest publishedmethodologies. Computation-
al experiments of such comparison are illustrated in Appendix 2.

4.1 Convergence analysis of IGA and SAH

Figure 7 shows the example of convergence analysis of both
the algorithms, which are almost equivalent for all the prob-
lem datasets. All the test problems with 10 planning periods
are selected to demonstrate the convergence curve during it-
erations of the proposed IGA and SAH techniques. The IGA
obtains best layout configurations which are better than SAH

solutions. The average fitness values achieved by IGA are also
improved in terms of quality. Moreover, the fitness curves
demonstrate the competence of IGA to escape from local op-
timal solutions since it constantly improves its solution until
the end of its generation counts. The proposed algorithms
contribute the same pattern of convergence for all the tested
problems; therefore, the convergence property is established.

5 Conclusions

We have presented a state-of-the-art mathematical program-
ming model of inter-cell layout design in the area of CMS.We
have adopted two criteria in the said model: (a) an adjacency-
based relative proximity factor, which is essential in determin-
ing the combined effect of closeness and separation factors
between two cells and (b) the dynamic behavior of the cell
layout design, which is practical when product mix is consid-
ered and cell reconfiguration cost is taken into consideration.
The multi-objective dynamic layout problem has been recent-
ly developed for generalized facility layout problem [51, 52].
However, it has never been practised in the history of CMS
research to the best of our knowledge. Therefore, the test
datasets are not available in the past literature for the said
problems. To cater that purpose, 12 test problems of size 6×
6×2 to 24×24×10 are simulated using the method stated in
[50]. Due to the NP-hard nature of these problems, two latest
metaheuristic algorithms, namely, IGA and SAH, are devel-
oped in order to obtain the near-optimal solutions. Results
obtained by both the techniques are viable in terms of solution
quality and CPU time. Figure 5 shows that IGA is capable of
obtaining solutions, consuming lesser CPU time exclusively
for mid to large size problems. Out of 48 solution instances,
IGA obtained 95.83 % improved results. The test results are
validated using Anderson-Darling’s normality test to depict
that the solution data are normally distributed (Fig. 7a, b).
Further, the statistical tests (f-test and t-test) are carried out
to prove the competence of the proposed IGA over SAH.
Therefore, we authorize the feasibility of the stated mathemat-
ical model and proposed algorithms which can be efficiently
used in the realistic production situations to obtain efficient
layouts over multiple planning horizons. The possible exten-
sion of this research would be to incorporate intra-cell layout
concept by considering part demands, batch sizes, machining
sequences, and machine similarities in the stated model for-
mulation to develop a more generalized and realistic QAP
paradigm for a complete layout design problem in CMS.
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Appendix 1

An example of the normalized matrices of the 6×6×5 test
problem and its solution using IGA is depicted hereunder.
The value of load factor w is considered as 0.8.

Material flow cost:

Period 1:

C1 C2 C3 C4 C5 C6

C1 0 0.011494 0.011494 0.011494 0.017241 0.011494

C2 0.011494 0 0 0.005747 0.005747 0.005747
C3 0.011494 0 0 0.005747 0.011494 0.005747

C4 0.011494 0.005747 0.005747 0 0.011494 0.005747

C5 0.017241 0.005747 0.011494 0.011494 0 0.005747
C6 0.011494 0.005747 0.005747 0.005747 0.005747 0

Period 2:

C1 C2 C3 C4 C5 C6
C1 0 0 0 0 0.005747 0
C2 0 0 0 0 0.005747 0
C3 0 0 0 0.011494 0.005747 0
C4 0 0 0.011494 0 0.005747 0
C5 0.005747 0.005747 0.005747 0.005747 0 0.005747
C6 0 0 0 0 0.005747 0

Period 3:

C1 C2 C3 C4 C5 C6
C1 0 0.005747 0.005747 0.005747 0 0.011494
C2 0.005747 0 0.005747 0.011494 0.005747 0.011494
C3 0.005747 0.005747 0 0.011494 0 0.005747
C4 0.005747 0.011494 0.011494 0 0.005747 0.017241
C5 0 0.005747 0 0.005747 0 0.011494
C6 0.011494 0.011494 0.005747 0.017241 0.011494 0

Period 4:

C1 C2 C3 C4 C5 C6
C1 0 0 0.005747 0 0.011494 0.005747
C2 0 0 0.005747 0.011494 0.017241 0.005747
C3 0.005747 0.005747 0 0.005747 0.011494 0
C4 0 0.011494 0.005747 0 0.011494 0
C5 0.011494 0.017241 0.011494 0.011494 0 0.011494
C6 0.005747 0.005747 0 0 0.011494 0

Period 5:

C1 C2 C3 C4 C5 C6
C1 0 0.017241 0.011494 0.011494 0.011494 0.005747
C2 0.017241 0 0.005747 0.005747 0.005747 0.005747
C3 0.011494 0.005747 0 0.005747 0.005747 0
C4 0.011494 0.005747 0.005747 0 0.011494 0.005747
C5 0.011494 0.005747 0.005747 0.011494 0 0.005747
C6 0.005747 0.005747 0 0.005747 0.005747 0

Relative proximity factor: (considered identical for all
the periods)

Period 1:

C1 C2 C3 C4 C5 C6

C1 0 0.006667 0 0.01 0.01 0.003333

C2 0.006667 0 0 0.003333 0.013333 0.01

C3 0 0 0 0.006667 0.006667 0.006667

C4 0.01 0.003333 0.006667 0 0.006667 0.003333

C5 0.01 0.013333 0.006667 0.006667 0 0.013333

C6 0.003333 0.01 0.006667 0.003333 0.013333 0

Period 2:

C1 C2 C3 C4 C5 C6

C1 0 0.006667 0 0.01 0.01 0.003333

C2 0.006667 0 0 0.003333 0.013333 0.01

C3 0 0 0 0.006667 0.006667 0.006667

C4 0.01 0.003333 0.006667 0 0.006667 0.003333

C5 0.01 0.013333 0.006667 0.006667 0 0.013333

C6 0.003333 0.01 0.006667 0.003333 0.013333 0

Period 3:

C1 C2 C3 C4 C5 C6

C1 0 0.006667 0 0.01 0.01 0.003333

C2 0.006667 0 0 0.003333 0.013333 0.01

C3 0 0 0 0.006667 0.006667 0.006667

C4 0.01 0.003333 0.006667 0 0.006667 0.003333

C5 0.01 0.013333 0.006667 0.006667 0 0.013333

C6 0.003333 0.01 0.006667 0.003333 0.013333 0

Period 4:

C1 C2 C3 C4 C5 C6

C1 0 0.006667 0 0.01 0.01 0.003333

C2 0.006667 0 0 0.003333 0.013333 0.01

C3 0 0 0 0.006667 0.006667 0.006667

C4 0.01 0.003333 0.006667 0 0.006667 0.003333

C5 0.01 0.013333 0.006667 0.006667 0 0.013333

C6 0.003333 0.01 0.006667 0.003333 0.013333 0

Period 5:

C1 C2 C3 C4 C5 C6

C1 0 0.006667 0 0.01 0.01 0.003333

C2 0.006667 0 0 0.003333 0.013333 0.01

C3 0 0 0 0.006667 0.006667 0.006667

C4 0.01 0.003333 0.006667 0 0.006667 0.003333

C5 0.01 0.013333 0.006667 0.006667 0 0.013333

C6 0.003333 0.01 0.006667 0.003333 0.013333 0
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Cell-to-location assignment cost:

Period 1:

L1 L2 L3 L4 L5 L6

C1 0.002217 0.008869 0 0.004435 0.003326 0.005543

C2 0.008869 0.008869 0.009978 0.006652 0.003326 0.011086

C3 0.003326 0.009978 0.004435 0.001109 0.005543 0.008869

C4 0.004435 0.001109 0 0.002217 0.003326 0.011086

C5 0.001109 0.005543 0.008869 0.001109 0.009978 0.002217

C6 0.009978 0.006652 0.001109 0.003326 0.008869 0.005543

Period 2:

L1 L2 L3 L4 L5 L6

C1 0.009978 0 0.004435 0 0.006652 0.004435

C2 0.011086 0.011086 0.004435 0.005543 0.006652 0.011086

C3 0 0.003326 0.001109 0.007761 0.001109 0

C4 0.004435 0.006652 0.004435 0.002217 0 0.003326

C5 0.006652 0.011086 0.001109 0.009978 0.002217 0.005543

C6 0.007761 0.002217 0.006652 0.011086 0.009978 0

Period 3:

L1 L2 L3 L4 L5 L6

C1 0.004435 0.004435 0.003326 0.002217 0.006652 0

C2 0 0 0.009978 0.004435 0 0.001109

C3 0.002217 0.009978 0.004435 0.001109 0.002217 0.007761

C4 0.001109 0.011086 0.001109 0.001109 0.003326 0.008869

C5 0.002217 0.005543 0.008869 0.011086 0.009978 0.007761

C6 0.002217 0.005543 0.004435 0.011086 0 0.004435

Period 4:

L1 L2 L3 L4 L5 L6

C1 0.008869 0.006652 0.007761 0.005543 0.001109 0.011086

C2 0.007761 0.005543 0.006652 0 0.009978 0.011086

C3 0.006652 0.007761 0 0.002217 0.007761 0.011086

C4 0.007761 0.002217 0.006652 0.006652 0.004435 0.008869

C5 0.004435 0.009978 0.003326 0.008869 0.007761 0.007761

C6 0.003326 0.009978 0 0.011086 0.002217 0.006652

Period 5:

L1 L2 L3 L4 L5 L6

C1 0.008869 0.006652 0.007761 0.005543 0.001109 0.011086

C2 0.007761 0.005543 0.006652 0 0.009978 0.011086

C3 0.006652 0.007761 0 0.002217 0.007761 0.011086

C4 0.007761 0.002217 0.006652 0.006652 0.004435 0.008869

C5 0.004435 0.009978 0.003326 0.008869 0.007761 0.007761

C6 0.003326 0.009978 0 0.011086 0.002217 0.006652

Fixed reconfiguration cost:

P1 P2 P3 P4 P5

0 0.25 0.25 0.25 0.25

Variable reconfiguration cost:

P1 P2 P3 P4 P5

C1 0 0.039894 0.034574 0.050532 0.055851

C2 0 0.029255 0.047872 0.031915 0.042553

C3 0 0.055851 0.045213 0.034574 0.031915

C4 0 0.026596 0.050532 0.037234 0.042553

C5 0 0.034574 0.055851 0.047872 0.031915

C6 0 0.037234 0.042553 0.039894 0.053191

Near-optimal solutions obtained:

Period Physical layout arrangements Optimal cost
1

6 3 2

5 1 4

4.96083

2

2 1 6

5 3 4

3

1 3 5

4 6 2

4

3 6 4

5 1 2

5

1 3 4

5 2 6
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Appendix 2

In order to prove the competence of the proposed IGA and
SAH over the latest published metaheuristic techniques such
as other GA or SA variants, a computational experiment is
performed over few datasets and it is shown that both the
methods proposed in this article are extremely proficient and
outperformed the latest SA [53] and GA [54] techniques. The
results are demonstrated in Table 16.

All the test problems (Nug5–Nug30) considered for this
experiment are available in QAPLIB-A Quadratic Assignment
Problem Library (http://www.seas.upenn.edu/qaplib/). The
global optimal solutions are also available in that stated
library. Table 16 clearly states that IGA outperforms latest
GA proposed in [54] and attains 50 % better results, while
SAH is also extremely capable of achieving 25 % better re-
sults which are optimal according to the QAPLIB. Thus, it is
proved that the proposed methods are improved and better.
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