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Abstract This paper considers a fuzzy single batch-
processing machine (SBPM) scheduling problem and aims
to make it closer to a real-world application through a fuzzy
set theory. For this purpose, jobs’ due dates are set to be fuzzy
numbers and the membership function of a fuzzy due date
assigned to each job represents the degree of satisfaction that
a decision maker has with the completion time of that job. The
objective is to maximize the total degree of satisfaction or
equivalently to minimize the total degree of dissatisfaction
over given jobs. Then, the fuzzy mathematical programming
model is presented. To solve the model, we propose the im-
perialist competitive algorithm (ICA) and modify the assimi-
lation policy (i.e., colonies moving) and imperialistic compe-
tition in order to overcome its immature convergence and
improve its performances. Moreover, due to the significant
role of parameters on the quality of random search algorithms,
a robust calibration is applied on the parameters using the
Taguchi optimization technique. To evaluate the proposed
ICA, several random test problems are generated and its per-
formance is compared to the traditional ICA, simulated an-
nealing (SA), particle swarm optimization (PSO), genetic al-
gorithm (GA), ant colony optimization (ACO), and earliest
due date (EDD). The obtained computational results demon-
strate the superiority and robustness of the modified ICA.

Keywords Single batch-processingmachine . Fuzzy due
date . Imperialist competitive algorithm . Genetic algorithm .

Taguchi experimental design

1 Introduction

Batching or grouping of jobs in many manufacturing indus-
tries is a common policy. The main advantage is to reduce
setups and/or facilitation of material handling. Batching oc-
curs in two different versions: serial batching and parallel
batching. On the serial batchingmachine, the length of a batch
equals the sum of the processing times of its jobs. On a parallel
batching machine, all the jobs in a batch are processed simul-
taneously and then released together from the machine, so the
length of a batch is the largest processing time of its jobs. In
the literature, parallel batching scheduling is known as batch-
processing machine (BPM) scheduling.

The BPM scheduling problem is important because the
scheduling of batching operations has a significant economic
impact. It is mainly motivated by an industrial application,
namely, the burn-in operation found in the final testing phase
in semiconductor manufacturing [53, 54]. Moreover, BPMs
are encountered in various environments such as shoe
manufacturing industry, aircraft industry, furniture
manufacturing industry, ion plating industry, iron and steel
industry, steel casting industry, glass container industry, and
the like. A perfect explanation of the basic product flow in
BPM and semiconductor manufacturing can be seen in Uzsoy
et al. [53] and Knutson et al. [24]. The BPM can process a
batch of jobs as long as the sum of all the job sizes in the batch
does not violate the capacity of the machine. The processing
time of a batch is equal to the longest processing time of all the
jobs in that batch. The processing time and the size of each job
are known. Once a batch is processed, it cannot be interrupted
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and no jobs can be removed from the machine until the pro-
cess is completed.

The rest of our work is organized as follows. The next
section presents literature on the problem under study and a
brief review of fuzzy theory for scheduling problems. In
Sect. 3, we describe the problem in detail and present the
fuzzy mathematical model. Section 4 presents the proposed
modified imperialist competitive algorithm (ICA). The nu-
merical examples, the performance analysis using the design
of experiments (DOE), and computational results are worked
out in Sect. 5. Finally, the conclusions are given.

2 Literature review

In the recent years, batching problems have attracted many
researchers both in academia and in industry; however, con-
trary to classical scheduling problems, little research has been
reported on the optimization for these kinds of scheduling
problems. In this section, we focus on reviewing the most
related studies in their assumptions with ours, especially the
papers investigating single batch-processing machine
(SBPM), solution algorithms, and the case of fuzzy environ-
ment. The literature reviewed shows that the scheduling prob-
lems in BPMs are typically solved through a heuristic, dynam-
ic programming algorithm (DPA), or a branch-and-bound pro-
cedure (B&B). Since the problem is non-deterministic poly-
nomial-time (NP)-hard, solving and obtaining the optimal so-
lutions for medium- to large-sized problems by use of exact
methods require long run time; thus, seeking optimal solutions
is often impractical and it is necessary to use efficient
metaheuristic methods. Hence, metaheuristic methods are of-
ten utilized in the recent related studies in order to solve the
problem in a shorter run time.

2.1 Scheduling single batch-processing machine

Ikura and Gimple [20] were the first batch of researchers who
studied the BPM problem. They proposed an O(n2) algorithm
with unit job sizes, identical job processing times, dynamic
job arrivals, and the objective of minimizing the makespan.
Lee et al. [28] first presented a detailed description for burn-in
operation and developed DPA for minimizing maximum tar-
diness, the number of tardy jobs, and maximum lateness, as-
suming identical job sizes and agreeable release times and due
dates.

Uzsoy [50] proved that minimizing the makespan and total
completion time is strongly NP-hard. He considered the spe-
cial case of a SBPM, in which all the jobs have identical
processing times, and then, the problem is equivalent to a
bin packing problem. Hence, heuristics and B&B methods
for bin packing problems are modified to solve SBPM prob-
lems. Uzsoy [51] extended his previous research where jobs

from different job families cannot be batched together. He
presents several heuristics to address these types of problems
aimed at minimizing maximum lateness and maximum com-
pletion time.

Li and Lee [29] extended the agreeability on release times
and due dates to the case for processing times. They proved that
the problems are strongly NP-hard and also proposed DPA,
which is extended from the algorithm presented in Lee et al.
[28]. Uzsoy and Yang [52] developed a B&B method and pro-
vided several heuristics to minimize the total weighted comple-
tion time. Dupont and Jolai Ghazvini [13] developed heuristics
to minimize the makespan. In another study for the same prob-
lem, the mean flow time criterion is considered by Hochbaum
and Landy (1997) and Jolai Ghazvini and Dupont [23].

Considering dynamic job arrivals, Lee and Uzsoy [27] first
presented polynomial and pseudo polynomial time algorithms
for several special cases and presented various heuristics to
minimize the makespan. Sung and Choung [46] presented
some heuristics and a B&B method, with worst-case error
bounds derived to minimize makespan with different job re-
lease times. Sung et al. [47] presented a DPA for the problem
considered by Sung and Choung [46] with one job family. By
allowing jobs to be split and processed in different batches,
Dupont and Flipo [12] presented some dominance properties
and provided a B&B method to minimize the makespan.

Extending the model investigated by Jolai Ghazvini and
Dupont [23], Chang and Wang [6] provided a three-phase heu-
ristic method in the presence of dynamic job arrival times, and
then, Yao et al. [59] proposed a B&B method on minimizing
the total completion time. Jolai Ghazvini [22] showed that the
problem ofminimizing the number of tardy jobs is NP-hard and
presented a polynomial time DPA for the fixed number of job
families and batch machine capacity. Perez et al. [39],
Mathirajan and Sivakumar [32], Tangudu and Kurz [48], and
Kurz and Mason [26] developed several heuristics, some
greedy heuristics, a B&B method, and another B&B method,
respectively, to minimize the total weighted tardiness under the
situation of incompatible job families. Liu et al. [30] considered
a case with the assumptions of identical job sizes, agreeable due
dates, and processing times and propose a DPA with pseudo
polynomial time for minimizing the weighted number of tardy
jobs and the total tardiness. He et al. [15] presented a polyno-
mial time algorithm tominimize bi-criteria of themakespan and
maximum tardiness simultaneously.

Rafiee Parsa et al. [41] proposed a branch and price
algorithm which combines the column generation tech-
nique with B&B to minimize the makespan. Bellanger
and Oulamara [3] presented some dominance properties
and provided a DPA to minimize the total completion
time. Liu et al. [31] considered hierarchical bi-criteria
scheduling where primary criterion is the makespan.
They proved that the problem where the secondary crite-
rion is the weighted number of late jobs is NP-hard and
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the problem where the secondary criterion is the total
completion time can be solved in polynomial time.
Sabouni and Jolai [44] considered the problem of mini-
mizing a linear combination of the objectives of the
makespan and the maximum lateness in which jobs are
ordered by two customers. Optimal methods are proposed
for the case of incompatible customers, and the batch
capacity is unbounded, and for the case of compatible
customers, the batch capacity is bounded and the process-
ing times are identical for the customer with the maxi-
mum lateness objective, respectively.

2.2 Metaheuristic algorithms

For large problem instances, the B&Bmethod and other exact
procedures are computationally burdensome. Recently,
metaheuristics have been employing to solve the problem,
because of their good performance and short run time.

Considering dynamic job arrivals, Wang and Uzsoy [57]
extended the case of Li and Lee [29] and combined a DPA
with a random key genetic algorithm (GA) to minimize the
maximum lateness. Melouk et al. [35] used a simulated an-
nealing (SA) to minimize the makespan and provided a ran-
dom procedure to produce instances of the problem. Koh et al.
[25] proposed some heuristics and a random key
representation-based GA for the problems of minimizing the
makespan and total weighted completion time with incompat-
ible job families. Sevaux and Peres [45], Husseinzadeh
Kashan et al. [18], and Damodaran et al. [11] used a GA and
redesigned the coding and decoding methods.

Mönch et al. [37] presented a GA combined with domi-
nance properties to minimize the earliness–tardiness of the
jobs under the constraint that the maximum tardiness should
be less than or equal to the maximum allowable time value
and the situation of unrestrictive late common due date. Chou
et al. [10] and Wang et al. [58] presented a hybrid GA and a
hybrid forward/backward approach to minimize the
makespan. Husseinzadeh Kashan and Karimi [17] developed
two versions of an ant colony optimization (ACO) framework,
depending on the type of embedded heuristic information un-
der the situation considered in Koh et al. [25].

Chou and Wang [9], Mathirajan et al. [34], and Wang [56]
proposed a hybrid GA, SA, and iterated heuristic for the ob-
jective of the total weighted tardiness, respectively.
Husseinzadeh Kashan et al. [19] considered bi-criteria sched-
uling with non-identical job sizes. For the simultaneous min-
imization of the bi-criteria of the makespan and maximum
tardiness, they proposed two different multiobjective GAs
based on different representation schemes. Chen et al. [7]
showed that minimizing the makespan on a single batching
machine can be regarded as a special clustering problem and
provide a clustering-based algorithm.

2.3 Scheduling problems with fuzzy data

In the classic scheduling problems, it is usually assumed that
the aspects of the problem in hand are certain. Most existing
models neglect the presence of uncertainty within a schedul-
ing environment. In many real-world scheduling problems,
uncertainty and vagueness in due date often do exist that make
the models more complex. This uncertainty might come about
because of production problems (e.g., defect in raw material,
machine malfunctioning) or problems with delivery itself
(e.g., transportation delay, traffic jam). However, in many
practical situations, due dates may be vague and it is too dif-
ficult to decide the due dates accurately. In some cases, due
dates are certain intervals and it may be proper to deal with
due dates as fuzzy values. To describe the uncertainty in the
manufacturing management, fuzzy logic is appropriate [55].
Since Ishii et al. [21] introduced the concept of fuzzy due dates
to scheduling problems, fuzzy due date scheduling problems
have been investigated by many researchers. Although classic
BPM scheduling models are extensively studied in the litera-
ture, there are only three studies on fuzzy-based BPMmodels.

It is generally agreed to accept some deviations from a due
date, and therefore, a fuzzy due date can be encountered in this
research area. The concept of fuzzy due dates to scheduling
problems was introduced by Ishii et al. [21]. Harikrishnan and
Ishii [14] studied the serial batching problem with resource-
dependent processing time and common setup in the presence
of fuzzy due dates. For the fuzzy due dates, a membership
function describing non-decreasing satisfaction degree about
completion time of each job is defined. They presented a
polynomial time for bi-criteria scheduling to minimize the
total weighted resource consumption and maximize the min-
imal satisfaction degree of due dates of jobs.

Yimer and Demirli [60] considered a fuzzy goal program-
ming problem for batch scheduling of jobs on parallel ma-
chines in a two-stage flow shop for minimizing the total
weighted flow time of all jobs to improve customer respon-
siveness. They considered the uncertainty for processing and
setup times by triangular fuzzy sets. They have also applied a
GA for solving large-sized problems. Cheng et al. [8] intro-
duced the fuzzy model of the makespan on an SBPM with
non-identical job sizes. The uncertainty of the jobs and the
machine in the processing is denoted using triangular fuzzy
numbers. The fuzzy model describes the uncertainty in prac-
tice including the adjustment times and the processing times
of the batches. They also proposed an ACO and employed the
metropolis criterion to select the paths of ants. For a further
review on BPM scheduling problems, we refer to Potts and
Kovalyov [40]. Besides, Mathirajan and Sivakumar [33] did a
quite complete survey on scheduling with BPMs.

In the literature, there is no research that considers the ob-
jective of minimizing the total weighted fuzzy earliness–tar-
diness penalties, and a new approach to solving a fuzzy SBPM
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(FSBPM) is proposed. A trapezoidal fuzzy number are con-
sidered for due dates as an extended triangular fuzzy due date
and modeled by fuzzy sets, in which the corresponding mem-
bership functions represent satisfaction degree with respect to
jobs’ completion times. Here, we present a new mathematical
programming model for the first time. Since the problem is
NP-hard for solving the addressed problem, a new modified
imperialist competitive algorithm (MICA) is proposed to ob-
tain good solution results. This algorithm consists of a new
assimilation policy (i.e., colonies moving) and imperialistic
competition procedure to balance between exploration and
exploitation of the original ICA and improve its performances.

3 Fuzzy mathematical model and problem
descriptions

3.1 Deterministic model

In this section, the SBPM problem for minimizing total earli-
ness–tardiness penalties is formulated based on the following
assumptions:

& No batch can be interrupted or stopped prematurely while
it is being processed.

& The buffer between the machines is unlimited.
& Jobs cannot be added to or removed from a batch once

processing has been started.
& The processing times of jobs and a size of a job are known

as deterministic and non-identical.

The above-mentioned assumptions reflect the actual prac-
tice in the manufacturing environment, and also, similar as-
sumptions were considered in most of the existing literature of
the studied problem. The objective of this problem is to min-
imize the total weighted earliness–tardiness penalties. There
are n jobs to be processed, and each job j∈J has a processing
time pj and a corresponding size s j. The total size of all the

jobs in a batch does not exceed machine capacity S. The pro-
cessing time of a batch b is given by the longest job in the

batch (i.e., Pb ¼ max pjj j∈batch b
n o

). The formulation is as

follows:

Notations:

Sets:

J Jobs, j ∈ J
B Batches, b ∈ B

Parameters:

pj Processing time of job j

sj Size of job j
cap Machine capacity
αj Earliness penalty (/unit/h) of job j
βj Tardiness penalty (/unit/h) of job j
dj Due date of job j

Decision variables:

Xjb A binary variable indicates the assignment of job j to
batch b

pb Processing time of batch b
cj Completion time of job j
Cb Completion time of batch b
Ej Earliness of job j
Tj Tardiness of job j

The objective function consists of two sub-functions: ear-
liness and tardiness. At first, the mixed integer linear program
(MILP) model proposed by [34] for total weighted tardiness
sub-function is presented, and then, a mathematical model of
the total weighted earliness–tardiness penalties of jobs is de-
veloped. According to the mentioned sets, parameters, and
decision variables, the mathematical formulation of the total
weighted tardiness penalties of jobs can be written as follows:

Min Z ¼
X
j∈ J

β jT js j ð1Þ

s.t:

X
b∈B

X jb ¼ 1 ∀ j ∈ J ð2Þ
X
j∈ J

s jX jb≤cap ∀ b ∈ B ð3Þ

pb≥pjX jb ∀ j∈ j;∀ b ∈ B ð4Þ

Cb ¼
Xb

i¼1

pi ∀ b ∈ B ð5Þ

c j≥Cb−M 1−X jb

� �
∀ j ∈ J ; ∀ b ∈ B; M is a very large positive number

ð6Þ
T j≥c j−d j ∀ j ∈ J ð7Þ
X jb∈ 0; 1f g ∀ j ∈ j; ∀ b∈ B ð8Þ

Constraint set (2) ensures that each job can be processed in
only one batch. Constraint set (3) also ensures that the ma-
chine capacity is not exceeded when jobs are assigned to a
batch. Constraint set (4) states that the processing time of a
batch is the longest processing time among all the jobs in that
batch. Completion time of each batch is determined in con-
straint set (5). Also, constraint set (6) defines the completion
time of each job. Constraint set (7) defines the tardiness of a
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job as the difference between the due date of a job and its
completion time or 0 if it is negative. Constraint set (8) spec-
ifies the type of decision variable X jb.

Also, to determine the completion time of each batch, con-
straint sets (9) and (10) or constraint sets (11) and (12) can be
used instead of constraint sets (5).

C1≥P1 ð9Þ
Cb≥Pb þ Cb−1 b ¼ 2;…; n ð10Þ
C1 ¼ P1 ð11Þ
Cb ¼ Pb þ Cb−1 b ¼ 2;…; n ð12Þ

Due tominimization of just only tardiness or total weighted
tardiness penalties in the objective function, the model

chooses the minimum Pb in the constraint sets (4) to reach
the longest processing time among all the jobs in that batch.
The smaller the completion time of jobs, the more desirable
the objective function. Similarly, the model finds the mini-
mum c j and T j in the constraint sets (6), (7), (9), and (10).

For the objective function of ∑
j∈ J

β jT j þ α jE j

� �
s j, in addi-

tion to constraint set (7), the constraint sets (13) and (14) are
needed to calculate the earliness and tardiness of jobs.

E j≥d j−c j ∀ j ∈ J ð13Þ
c j þ E j−T j ∀ j ∈ J ð14Þ

Contrary to tardiness, earliness of jobs decreases when the
completion time of jobs increases. So, the above model may

not choose the minimum Pb and c j in the constraint sets (4),
(6), (9), and (10) in some situation. For example, consider a
simple example of four jobs with machine capacity equal to 2.
The other information is given in Table 1. The above model
chooses incorrect completion times equal to 3, 3, 5, and 5,
respectively, to minimize both earliness and tardiness in the
objective function while the correct ones are equal to 2, 2, 4,
and 4.

So, to tackle the dilemma, for the objective function with
total weighted earliness–tardiness penalties of jobs, the non-
linear constraint sets (15) and (16) should be used instead of
linear constraint sets (4) and (6).

pb ¼ max ∀ j : pjX jb

� �
∀ b ∈ B ð15Þ

c j ¼
Xn

b¼1

X jbC
b ∀ j ∈ J ð16Þ

These two constraint sets (13) and (14)make themodelmore
complex making it a mixed integer nonlinear program
(MINLP). Also, the result of LINGO codes of these twomodels
which is presented in appendices 1 and 2 confirms this dilemma
and is presented in Table 2. In order to understand the

computational difficulties, the proposed mathematical model
is implemented in LINGO solver, to study the model’s behavior
when the number of jobs increases. For this purpose, required
computational time is reported in Table 3. From Table 3, it is
observed that the solving time increases very quickly as the
problem size (number of jobs) grows. This can also be observed
from Fig. 1. This means that the time required to solve even a
14-job problem can easily rise to more than 3 h.

3.2 Fuzzy model

We briefly introduce some basic concepts and results about
fuzzy measure theory initiated by Bellman and Zadeh [4].
Below, we give definitions and notations taken from Bezdek
[5].

Definition 3.1 If X is a collection of objects denoted ge-
nerically by x, then a fuzzy set in X is a set of ordered
pairs:

~d ¼ x; ~d xð Þ x∈Xj
n o

; where ~d xð Þ is called the membership

function that associates with each x∈X a number in 0; 1½ �

indicating to what degree x is a number:

Definition 3.2 ~d j ¼ d j;1; d j;2 ; d j;3 ; d j;4

� �
denotes a trap-

ezoidal fuzzy number (TFN) as shown in Fig. 2.

Asmentioned in the literature, the concept of fuzzy due dates
has been used in scheduling problems. Here, this concept is
being firstly utilized in the BPM scheduling problem. In a fuzzy
due date, the membership function assigned to each job repre-
sents the customer satisfaction degree for the delivery or

Table 1 Example parameters

Job 1 2 3 4

Processing time 2 2 2 2

Due date 3 3 5 5

Job size 1 1 1 1

α 1 1 1 1

β 2 2 2 2

Table 2 Result of LINGO codes of the two MILP and MINLP models

Model MILP model MINLP model

Job 1 2 3 4 1 2 3 4

Batch 1 1 2 2 1 1 2 2

Completion time 3 3 5 5 2 2 4 4

Earliness 0 0 0 0 1 1 1 1

Tardiness 0 0 0 0 0 0 0 0
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completion time of that job. The membership function of a
trapezoidal fuzzy due date of a job as a generalized triangular
fuzzy due date is represented below.

μ j C j

� � ¼

0 if c j < d j;1
c j−d j;1

d j;2−d j;1
if d j;1≤c j≤d j;2

1 if d j;2≤c j≤d j;3
d j;4−c j
d j;4−d j;3

if d j;3≤c j≤d j;4

0 if c j > d j;4

8>>>>>>><
>>>>>>>:

ð17Þ

From Fig. 2, we can see that the full satisfaction (i.e., μ j

C j

� � ¼ 1 ) is attained if d j;2≤c j≤d j;3, and the satisfaction
grade is positive if d j;1≤c j≤d j;2 or d j;3≤c j≤d j;4 in the mem-
bership function (1). If d j;2 ¼ d j;3, the fuzzy trapezoidal due
date is called triangular fuzzy due date and can be denoted by

triplet ~d j ¼ d j;1; d j;2 ; d j;3

� �
. The membership function of a

triangular fuzzy number is as follows.

μ j C j

� � ¼

0 if c j < d j;1
c j−d j;1

d j;2−d j;1
if d j;1≤c j≤d j;2

d j;3−c j
d j;3−d j;2

if d j;2≤c j≤d j;3

0 if c j > d j;3

8>>>>>><
>>>>>>:

ð18Þ

In a particular situation (e.g., just-in-time production
system), the full satisfaction is not attained if a completion
time is too early or tardy. According to the mentioned
fuzzy due date, the studied problem can be formulated as
a maximization problem of the total degree of satisfaction
over given jobs or, equivalently, a minimization problem of

the total degree of dissatisfaction. The fuzzy mathematical
formulation of the total degree of satisfaction, considering
a trapezoidal fuzzy due date, is as follows.

Model 1: Max Z

¼
X
j∈ J

s j
max 0; c j−d j;1

� �
c j−d j;1

� �
max 0; d j;2−c j

� �
d j;2−c j

� �
c j−d j;1

� �
d j;2−d j;1

� ��

þ 1−
max 0; d j;2−c j

� �
d j;2−c j

� �� �
1−

max 0; c j−d j;3

� �
c j−d j;3

� �� �

þ max 0; c j−d j;3

� �
c j−d j;3

� �
max 0; d j;4−c j

� �
d j;4−c j

� �
d j;4−c j
� �
d j;4−d j;3

� �� �

ð19Þ

As mentioned above, equivalent to the model 1, the fuzzy
mathematical formulation of the total degree of dissatisfaction
is as follows.

Model 2: Min Z ¼
X
j∈ J

s j
max 0; d j;1−c j

� �
d j;1−c j

� �

þ
X
j∈ J

s j 1−
max 0; c j−d j;1

� �
c j−d j;1

� �
max 0; d j;2−c j

� �
d j;2−c j

� �
c j−d j;1

� �
d j;2−d j;1

� �� �

þ
X
j∈ J

s j 1−
max 0; c j−d j;3

� �
c j−d j;3

� �
max 0; d j;4−c j

� �
d j;4−c j

� �
d j;4−c j
� �
d j;4−d j;3

� �� �

þ
X
j∈ J

s j
max 0; c j−d j;4

� �
c j−d j;4

� �

¼
X
j∈ J

s j
max 0; d j;1−c j

� �
d j;1−c j

� �

þ
X
j∈ J

s j
max 0; c j−d j;1

� �
c j−d j;1

� �
max 0; d j;2−c j

� �
d j;2−c j

� �
d j;2−c j
� �
d j;2−d j;1

� �� �

þ
X
j∈ J

s j
max 0; c j−d j;3

� �
c j−d j;3

� �
max 0; d j;4−c j

� �
d j;4−c j

� �
c j−d j;3

� �
d j;4−d j;3

� �� �

þ
X
j∈ J

s j
max 0; c j−d j;4

� �
c j−d j;4

� �

ð20Þ

Since each customer has a different degree of importance
as a decision maker, different earliness tardiness weights or

Table 3 Computational complexity

No. of jobs 4 5 6 7 8 9 10 11 12 13 14

Time (s) <1 <1 <1 <1 1 1 8 185 1148 1908 >3 h
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Fig. 1 Computational complexity
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Fig. 2 Trapezoidal membership function
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penalties are considered which is the same as the extreme
majority of related papers. Therefore, here, we extend the
previous model (i.e., Eq. 11) and reformulate it with earliness
tardiness penalties shown below.

Model 3: Min Z ¼
X
j∈ J

α js j
max 0; d j;1−c j

� �
d j;1−c j

� �

þ
X
j∈ J

α js j
max 0; c j−d j;1

� �
c j−d j;1

� �
max 0; d j;2−c j

� �
d j;2−c j

� �
d j;2−c j
� �
d j;2−d j;1

� �� �

þ
X
j∈ J

β js j
max 0; c j−d j;3

� �
c j−d j;1

� �
max 0; d j;4−c j

� �
d j;4−c j

� �
c j−d j;3

� �
d j;4−d j;3

� �� �

þ
X
j∈ J

β js j
max 0; c j−d j;4

� �
c j−d j;4

� �

ð21Þ

4 Imperialist competitive algorithm

The ICA is a novel socio-politically algorithm based on
imperialistic competition [1]. The ICA has been intro-
duced for dealing with different optimization problems.
This evolutionary optimization strategy has shown great
performance in both convergence rate and better global
optima achievement [1, 2, 42, 43].

The ICA starts with an initial population of solution named
country, like other evolutionary algorithms. Some of the best
countries in the population are chosen to be the “imperialists,”
and the rest is the “colonies” of these imperialists. All the
colonies of initial population are distributed among the impe-
rialists based on their power. A set of one imperialist and its
colonies is called an “empire.” Therefore, in an empire, there
are one imperialist and several colonies, in which colonies
start moving toward their relevant imperialist countries. The
total power of an empire depends on both the power of the
imperialist country and the power of its colonies. So, the total
power of an empire is calculated by adding the percentage of
the mean power of colonies to their imperialists.

The imperialistic competition begins among all the em-
pires, and every empire that is not strong enough to compete
and cannot increase its power (or at least prevent decreasing it)
will be eliminated. The imperialistic competition will lead
slightly to an increase in the power of powerful empires and
a decrease in the power of weaker ones. Weak empires will
lose their power, and finally, they will collapse. The move-
ment of colonies toward their relevant imperialists through the
competition among empires and also the collapse mechanism
will hopefully cause all the countries to converge to a state in
which there is just one empire in the world and all the other
countries are colonies of that empire. In this ideal new world,
colonies have the same position and power as the imperialist.

4.1 Imperialist competitive algorithm approach to solve
the single batch-processing machine (

The ICA starts with an initial population, in which each indi-
vidual in the population is called country and refers to a can-
didate solution to a problem. The countries are divided into
imperialist states and colonies. Moving colonies toward their
relevant imperialist refers the assimilation policy. Imperialistic
competition as the main part of the algorithm, accompanied
with moving colonies toward their relevant imperialist, causes
the colonies to converge to the global minimum of the cost
function. The original steps of ICA, firstly proposed by
Atashpaz-Gargari and Lucas [1], are as follows.

Begin ICA

1. Initialize the empires.
2. Move the colonies toward their relevant imperialist

(i.e., assimilating).
3. If there is a colony in an empire which has lower cost

than that of imperialist, exchange the positions of that
colony and the imperialist.

4. Compute the total cost of all empires (related to the
power of both imperialist and its colonies).

5. Pick the weakest colony from the weakest empire and
give it to the empire that has the most likelihood to
possess it (i.e., imperialistic competition).

6. Eliminate the empire that has no colonies.
7. If the stopping criteria met, stop the algorithm; if not,

go to step 2.
End ICA

In this paper, we utilize the basic idea and steps of the
above-mentioned ICA for the problem. Besides, we pro-
pose and use some new ideas detailed in the following
steps.

4.2 Generating initial empires

Generally, the main purpose of optimization is to find an op-
timal solution; each solution in this algorithm is shown as a
country. A candidate solution is represented as an array. The
term country in the ICA stands for a chromosome in the GA,
particle in particle swarm optimization (PSO), antibody in
artificial immune algorithm (AIA), and the like.

As mentioned earlier in the literature, the random key (RK)
method is used for solving BPM scheduling problems. To
generate a sequence by this method, random real numbers
between zero and one are generated for each job. By ascend-
ing sorting of the value corresponding to each job, the job
sequence is obtained, and then, the first–first (FF) heuristic
is applied to group the jobs into batches.
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After having a permutation and forming the batches, we
can use it to compute the objective function value of this
solution. Each job has a random real number between 0 and
1, and these numbers show the relative order of the jobs. In
fact, the problem variables in the algorithms are limited be-
tween 0 and 1. For example, consider a problem with ten jobs.
The encoding of this sequence through the RKs is shown in
Fig. 3. The sequence at position 1 is 2, which means that we
schedule job 2 in the beginning position and job 8 at last.

Optimization of an algorithm starts with generating initial
population (i.e., countries). Here, let us define N as the popu-
lation size that is equal to Nimp (i.e., number of the most pow-
erful countries selected to be as imperialists) and Ncol (i.e., the
remaining population that will be the colonies belonging to
the imperialists). Thus, we have two types of countries (i.e.,
imperialist and colony) and we can restate that N=Nimp+Ncol.

The cost of each country is evaluated by the cost function f
and can be shown by Ci as follows:

Ci ¼ f countryið Þ

In this paper, the cost function is to calculate the objective
function of the given problem. In other words, the cost of each
country as a solution is equal to its objective function. To
divide the colonies among imperialists, the normalized cost
and the normalized power of each imperialist are shown by
NCi and NPi and defined below for the nth imperialist, respec-
tively:

NCn ¼ max Cif g−Cn

N Pn ¼ NCnX Nimp

i¼1
NCi

The more the cost of an imperialist, the lower the normal-
ized cost and its normalized power will be. The initial number
of colonies of each imperialist depends on imperialist’s nor-
malized power, and it is defined by the following:

NColn ¼ round NPn � Ncolf g

NColn is the initial number of colonies of the ith empire. To
form each empire, NColn of the colonies is randomly selected
and given to each imperialist. Therefore, the most powerful
empire has the greatest number of colonies. The nth imperial-
ist and its colonies will form the nth empire. Figure 4 shows
the initial population of each empire. As depicted, the bigger
an empire is, the greater number of colonies it has. In this

figure, imperialist 1 has formed the most powerful empire
and has the greatest number of colonies.

4.3 Moving the colonies of an empire
toward the imperialist (assimilating)

In the original ICA proposed by Atashpaz-Gargari and Lucas
[1], the assimilation policy is happened by moving colonies
toward their relevant imperialist. They stated that “imperialist
countries improve their countries,” and because of this, the
assimilation policy will occur. This fact has been modeled
by moving all the colonies toward the imperialist. Through
this movement, some parts of a colony’s structure will be
similar to the empire’s structure. This similarity is the concept
of intensification or local search in metaheuristics and inten-
sifies searching on the imperialist’s neighbor. In fact, some
regions of the solution space may be unexplored during the
search process. Therefore, the assimilation policy has an im-
portant role in convergence rate as well as the probability of
being trapped in local optimum. The trade-off between these
two concepts in the ICA has not been shown and is not clear.
In the other words, in long term running of the algorithm,
trade-off between diversification and intensification leads to
reach the global optimum and the rate of these two concepts
should be controllable to understand the behavior of the
algorithm.

Jobs  1 2 3 4 5 6 7 8 9 10
Before RKs 0.23 0.18 0.38 0.87 0.53 0.76 0.46 0.93 0.36 0.84

Jobs sequence 2 1 9 3 7 5 6 10 4 8
After RKs 0.18 0.23 0.36 0.38 0.46 0.53 0.76 0.84 0.87 0.93

Fig. 3 Representation encoding
for a candidate solution

Fig. 4 Generating the initial empires; the more colonies an imperialist
possesses, the bigger its relevant mark
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Here, we propose an idea to make sure that the system will
not be trapped in local optimum and is controllable by chang-
ing or tuning some parameters. We want to use an idea in this
step that is most probably taking place in the real world. In the
real world, any change or improvement in a colony, not only
depends on or toward to the relevant imperialist, but also
depends on other imperialists or even other colonies in that
empire, may affect the changes on the colony over the time. In
other words, the relevant imperialist is not the only country
which changes its colony in the name of improvement. Each
colony changes over the time, and this change may be the
result of having relationship with other colonies in the same
empire or having strategies to reach the main characteristics of
other empires. In this way, in order to explore more regions, a
diversification strategy alongside intensification is applied
such that colonies are also allowed to move in other empires
and their self-neighbors. Another aspect of this real idea tells
us that “distance” is the main factor which affects the changes
in a colony. The term distance may stand for the similarity rate
of two countries, and often, the lower distance between two
countries leads to a greater similarity rate. Simply put, the less
the distance of a colony with other colonies in the same em-
pire, or the less distance between a colony with other imperi-
alist countries, the more relationship they have, and it leads to
have greater impact.

So, we utilize this real thought in the assimilating step of
the ICA. As mentioned earlier, empire i has NColi countries.
Each country in an empire moves to the relevant empire, the
countries in the same empire, and also other imperialist coun-
tries, according to the mentioned idea regarding the term dis-
tance or similarity. Let us start our explanation with a basic
example and then extend it to the given problem.

Assume that we have just two solutions or countries and
name them as the colony (i.e., country 1) and its relevant
imperialist (i.e., country 2). The colony moves to the relevant
imperialist over the time. The more power the imperialist has,
the more changes or movement will be occurring from the
colony toward the imperialist. We add two more countries as
another imperialist (i.e., country 3) and another colony (i.e.,
country 4) in the same empire of the first colony. Now, the first
colony deals with changes or movement that is resulted from
the impacts of three countries. We can show these impacts and
the movement by the following notation:

x1
* ¼ α1 � x1 þ α2 � x2 þ α3 � x3 þ α4 � x4

where xi is the ith country in our example, x1
* is the country 1

after movement, α1 is the rate of maintaining the own charac-
teristic of x1, and αi(i=2,3,4) stands for the rate of movement
into other three countries. In addition, 0≤αi≤1 and∑ αi=1 for
all of i.

The point is that a colony may be affected from more than
three countries in a real world. So, if we consider the real

world with more than two imperialists with some colonies in
each empire, we can restate the movement by the following
expression:

xcol
* ¼ α1 � xcol þ α2 � ximp1 þ α3

� ximp2 þ ximp3 þ…þ ximpN
� �.

impN– 1ð Þ
� �

þ α4

� xcol2 þ xcol3 þ…þ xcolMð Þ
.

colM– 1ð Þ
� �

where xcol is the colony number 1 out of the colonies in the
empire number 1 out of N empires, which moves toward other
country, ximp1 is the relevant imperialist of xcol in empire 1,
ximp2+ximp3+…+ximpN are the other imperialists in the world,
and xcol2+xcol3+…+xcolM are the other colonies in the empire 1.

As explained earlier, in this world, imperialists and the
colonies in the same empire of a colony can affect the colony
according to their powers and distances (i.e., similarity rates).
Here, we are to employ these terms in the proposedmovement
step. The power in the minimization problem relates on the
reverse objective function (OF) shown by wi, and the distance
of two countries can be calculated with the summation of
absolute differences in the relevant characteristics of the two
countries depicted by di.

In order to explain the term distance, an example is ex-
plained here. Suppose that we have two solutions (i.e., coun-
tries) and the length of the digits in each solution is equal to 5.
Here, we show how the distance is calculated. x1 moves to-
ward x2, and then, d2 is evaluated as follows:

x1 0.26 0.54 0.61 0.37 0.19

x2 0.89 0.72 0.09 0.44 0.32

d2 ¼ 0:26−0:89j j þ 0:54−0:72j j þ 0:61−0:09j j þ 0:37−0:44j j þ 0:19−0:32j j

¼ 0:63þ 0:18þ 0:52þ 0:07þ 0:13 ¼ 1:53

The impact of an imperialist in attracting a colony can be
depicted by γi, and the impact of a colony in attracting another
colony in the same empire is shown by ηi. They are calculated
by the following fraction:

γi ¼ ηi ¼

1

OFi
diX
i

1
OFi

di

¼
wi

diX
i

wi

di

By the above notation, we employ the terms power and
distance. We can declare the movement function according
to the power and distance for a colony by the following ex-
pression:
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xcol
* ¼ α1 � xcol
þα2 � ximp1

þα3 � γimp2 � ximp2 þ γimp3 � ximp3 þ…þ γimpN � ximpN
� �

þ α4 � ηcol2 � xcol2 þ ηcol3 � xcol3 þ…þ ηcolM � xcolMð Þ

Here, we can explain the controllable diversification and
intensification in this algorithm, as mentioned in the first
sentences of this step. α1 shows the rate of heritage in a solu-
tion from its own characteristic. The big α2 will speed up the
local search, because the colony moves directly toward its
relevant imperialist. α3 and α4 let the colony to have chance
in moving toward other mentioned countries or solutions. So,
we can conclude that to further improve, we use an adaptive
controller using four consolable factors that adapts the move-
ment vector and balances both intensification and diversifica-
tion mechanism. From this adaptive assimilation, we can en-
hance the ability of local optimum escaping and fast converg-
ing to global optimum.

Finally, according to other metaheuristics to give a stochas-
tic characteristic to our proposed algorithm, we use random
numbers ri (i=1,2,3,4) in the interval [0, 1] bymultiplying it to
αi as follows:

xcol
* ¼ r1 � α1 � xcol
þr2 � α2 � ximp1

þr3 � α3 � γimp2 � ximp2 þ γimp3 � ximp3 þ…þ γimpN � ximpN
� �

þr4 � α4 � ηcol2 � xcol2 þ ηcol3 � xcol3 þ…þ ηcolM � xcolMð Þ

4.4 Exchanging positions of the imperialist and a colony

Owing to movement toward the other mentioned countries, a
colony may reach a position with lower cost than imperialist.
In such a condition, the position of imperialist and colony is
changed. After that, the algorithm will continue by the impe-
rialist in a new position, and then, colonies start moving to-
ward this position. Figure 5 depicts the position exchange
between a colony and the imperialist. In Figs. 5 and 6, the
best colony of the empire is shown in a darker color. This
colony has a lower cost than that of the imperialist. Figure 6
shows the whole empire after exchanging the position of the
imperialist and that colony.

4.5 Total power of an empire

The total power of each empire is the power of imperialist plus
percentage of its colonies. It is defined by the total cost. TCi is the
total cost of the ith empire. It defines the total power as follows:

TCn ¼ cost imperialistnð Þ þ ξ �min cost colonies of empirenð Þf g

where TCn is the total cost of the empire and ξ is a positive
number considered to be less than 1. A little value for ξ causes

the total power of the empire to be determined by just the impe-
rialist, and increasing it will increase the role of the colonies in
determining the total power of an empire. The above expression
can be restated as follows:

TCn ¼ λ� cost imperialistnð Þ þ 1−λð Þ �min cost colonies of empirenð Þf g

where λ and 1–λ show the impact of each of the two expressions
and they are equal to the following:

λ ¼ 1

1þ ξ
and 1−λ ¼ ξ

1þ ξ

By this notation, we can depict the impact of each of the two
expressions in determining the total cost of an empire clearly.

4.6 Imperialistic competition

As mentioned earlier, all empires attempt to own the other em-
pires’ colonies and manage them. The power of weaker empires
will decrease, and as a result, the power of more powerful ones
will increase in this imperialistic competition. This competition
can be modeled by just picking one of the weakest colonies of
the weakest empires and giving them to the empire that has most
likelihood to possess them. Figure 7 illustrates the modeled im-
perialistic competition. Based on their total power, in this com-
petition, each of the empires has a likelihood of taking posses-
sion of thementioned colonies. In other words, these colonies are
not possessed by the most powerful empires; however, these

Fig. 5 Position exchange between a colony and the imperialist

Fig. 6 Whole empire after exchanging the position of the imperialist and
of the that colony
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empires aremore likely to possess them. To start the competition,
first, the possession probability of each empire should be found
based on its total power.

The normalized total cost is simply obtained by the following:

PTCn ¼ max NCif g−TCn

PPn ¼ NTCnX Nimp

i¼1
NTCi

where TCn and NTCn are the total cost and normalized total cost
of the nth empire, respectively. Imperialist with the least cost has
the most power. Then, the vector PP is formed as follows to
divide the mentioned colonies among empires based on the pos-
session probability of them.

PPn ¼ PP1;PP2;PP3;…;PPNimp

� 	

The vector r, whose elements are uniformly distributed
random numbers, is created with the same size as PP.

rn− r1; r2; r3;…; rNimp

� 	
r1; r2; r3;…; rNimp∼U 0; 1ð Þ

The vector D is formed as follows:

D ¼ PP−r ¼ D1;D2;D3;…;DNimp

� 	

An empire, whose relevant index in D is maximum, takes
possession of mentioned colonies [1].

After assigning the weakest colony in the weakest empire
in the real world, we may see some changes in that colony. We
use this idea in the ICA, and let the colony change after this
assignment. Let this colony (i.e., solution array) inherit some
characteristics from itself, some other from its new relevant

imperialist, and the remaining characteristics from revolution
(i.e., new randomly generated numbers (characteristics)). For
each characteristic in the colony (like gene in a chromosome
in GA), we generate a random number r and follow this in-
struction for each characteristic, as depicted in the Fig. 8:

& If r≤β1, colony inherits the characteristic from itself.
& If β1<r≤β2, the same as the characteristic from the new

relevant imperialist.
& If r>β2, generate new randomly numbers in range [0, 1].

4.7 Eliminating the empire which has no colonies

Powerless empires will collapse in the imperialistic competi-
tion, and their colonies will be distributed among other em-
pires. In modeling collapse mechanism, different factors can
be defined for considering an empire powerless. In this paper,
we assume an empire collapse when it loses all of its colonies.

4.8 Stopping criteria

In this paper, we consider two stopping criteria. The algorithm
continues until no iteration is remaining or just one empire
exists in the world.

The weakest colony: 0.83 0.81 0.25 0.49 0.16 0.61 

The new relevant imperialist: 0.72 0.69 0.51 0.24 0.84 0.19 

Random number ( r): 0.14 0.38 0.91 0.28 0.65 0.49 
1=0.35, 2 7.0=

The changed and moved weakest colony: 0.83 0.69 0.15 0.49 0.84 0.19 

Fig. 8 Changing in the structure of the moved colony in the new empire

Fig. 7 Picking the weakest
colony from the weakest empire
and giving it to the empire that has
the most likelihood to possess it
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5 Computational experiments

5.1 Instances

To compare our algorithm and other solution methods, some
test problems are needed. In this regard, we are going to gen-
erate the required data that can affect the performance of the
algorithms including the number of jobs (n), range of process-
ing time of jobs (pj), size of jobs (sj), range of earliness costs
(αi), tardiness costs (βi), and due date of jobs (dj) [11, 18, 34].

Ten different problem sizes for the number of jobs (i.e., n ∈
{10, 20, 30, 50, 75, 100, 125, 150, 175, 200}) are considered
for the experimental study, which present different levels of
difficulty for alternative solution methods. The processing
times and size of jobs are generated randomly from uniform
distributions between [1, 10] and [1, 20], respectively, and
Cap considered 10 in all instances. Within each combination
of N and P, three different types of job size (S) are employed
from uniform distributions [1, 10], [2, 4], and [4, 8]. Hence, a
number of problem configurations are equal to 10×2×3=60.

Table 5 Factors and levels of proposed algorithms

Factors No. of levels MICA symbols No. of levels ICA symbols

Population size 3 A(1)—n
A(2)—1.5 n
A(3)—2 n

3 A(1)—n
A(2)—1.5 n
A(3)—2 n

Percentage of Nimp 3 B(1)—0.1
B(2)—0.15
B(3)—0.2

3 B(1)—0.1
B(2)—0.15
B(3)—0.2

α1, α2, α3, α4 13 C(1)—0.125, 0.125, 0.25, 0.5
C(2)—0.125, 0.125, 0.5, 0.25
C(3)—0.125, 0.25, 0.125, 0.5
C(4)—0.125, 0.25, 0.5, 0.125
C(5)—0.125, 0.5, 0.125, 0.25
C(6)—0.125, 0.5, 0.25, 0.125
C(7)—0.25, 0.125, 0.125, 0.5
C(8)—0.25, 0.125, 0.5, 0.125
C(9)—0.25, 0.25, 0.25, 0.25
C(10)—0.25, 0.5, 0.125, 0.125
C(11)—0.5, 0.125, 0.125, 0.25
C(12)—0.5, 0.125, 0.25, 0.125
C(13)—0.5, 0.25, 0.125, 0.125

―

λ 3 D(1)—0.25
D(2)—0.5
D(3)—0.75

3 C(1)—0.25
C(2)—0.5
C(3)—0.75

β1, β2 4 E(1)—0.25, 0. 5
E(2)—0.25, 0.75
E(3)—0.33, 0.66
E(4)—0.5, 0.75

3 —

Table 4 Test problem characteristics

Parameters Levels

Number of jobs (N) 10, 20, 30, 50, 75, 100, 125, 150, 175 and 200

Processing time of jobs (P) Uniform distributions [1, 10], [1, 20]

Size of jobs (S) Uniform distributions [1, 10], [2, 4], [4, 8]

Earliness cost (E) [1, 4]

Tardiness cost (T) [5, 8]

Crisp due date of jobs (D) Uniform distributions [round down (1-L)×BP, round up (1+H)×BP]

dj,2 Uniform distributions (0.9×dj, 0.95×dj)

dj,3 Uniform distributions (1.05×dj, 1.1×dj)

dj,1 Uniform distributions (0.4×dj,2, 0.6×dj,2)

dj,4 Uniform distributions (1.4×dj,3, 1.6×dj,3)

2450 Int J Adv Manuf Technol (2016) 85:2439–2458



The earliness cost and tardiness cost are assumed to be
generated from uniform distribution over intervals [1, 4] and
[4, 8], respectively. The crisp due dates in Tavakkoli-
Moghaddam et al. [49] test problems are generated from a
uniform distribution. We use such a procedure with some
modifications to adapt the procedure for our problem as fol-
lows:

P ¼

Xn

j¼1

Pi j

n
ð22Þ

B ¼

Xn

j¼1

s j

0:8� Cap
ð23Þ

BP ¼ B� P ð24Þ

First, the crisp due dates are generated from following
distribution:

U∈ Round down 1−Lð Þ � BP; Round up 1þ Hð Þ � BPð Þ
ð25Þ

where L and H are the lower and upper limits and are set
to be 0.1 and 0.7, respectively. After generating the crisp
due dates, each crisp due date is fuzzified in order to
generate d j;1; d j;2 ; d j;3 ; d j;4 as explained in Table 4.

5.2 Parameter setting

It is known that the different levels of the parameters strongly
affect the quality of the solutions obtained by a random search
algorithm. Most users adjust parameters manually based on
the reference values of the previous literature. Such trial-and-
error method is time-consuming and ineffective, and often, it
cannot locate the optimal combination. In this section, we
investigate the behavior of the MICA and the ICA in different
levels of parameters and find the optimal level of these param-
eters and operators.

The full factorial design of an experiment is a conventional
statistical method used for calibration of parameters and oper-
ators. This method evaluates all the possible combinations of

factors. Although the traditional full factorial method is the
most widely used approach, this technique is not always effi-
cient because its calculations become increasingly complex
when the number of parameters is significantly high.

As it would be explained clearly later, there are three 3-
level factors, one 4-level factors, and one 13-level factors for
the MICA and three 3-level factors for the ICA. Moreover,
there are 60 different test problems, and due to stochastic
nature of the algorithms, ten replications are performed for
each trial to achieve the more reliable results. Hence, the total
number of running the problems for the MICA is 60×33×4×
13×10=842,400 trials. In this condition, to reduce the number
of experiments and to be economic, several experimental de-
sign techniques are proposed.

The Taguchi optimization method is one of them that have
been successfully applied to parameter tuning within recent
years [36]. This method was first developed by Taguchi in
1960s as a system of cost-driven quality engineering that em-
phasizes on the effective application of engineering strategies.
It uses an orthogonal array to organize the experimental re-
sults. To select the appropriate orthogonal array, it is necessary
to compute the total degree of freedom.

In calibration of the MICA parameters, the proper array
should contain a degree of freedom for the total mean, 2 degrees
of freedom for each factor with three levels, 3 degrees of free-
dom for the factor with four levels, and 12 degrees of freedom
for the factor with 13 levels. Thus, the sum of the required
degrees of freedom is 1+2×3+3×1+12×1=22. Therefore,
the appropriate array must have at least 22 rows. The selected
orthogonal array should be able to accommodate the factor-
level combinations in the experiment. Considering this, L64
(4^16 and16^1) is an appropriate array that satisfies these con-
ditions. Since there are three factors with three levels and one
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Fig. 10 Mean RPD plot for each level of the factors in the ICA
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Fig. 9 Mean S/N ratio plot for
each level of the factors in the
MICA
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factor with 13 levels and this scheme offers factors with four
levels and 16 levels, respectively, we should adjust this array to
the problem by means of adjustment techniques [38].

Using the dummy-level technique, we convert a 16-level
column into a 13-level column and a 4-level column into a 3-
level column. To assign the 4-level factor to the 3-level col-
umn and the 16-level factor to the 13-level column from the
orthogonal array L64, some of these levels are required to be
replicated twice. In this paper, the fourth level in a 4-level
factor and three last levels in a 16-level factor are chosen to
be replicated twice. The appropriate orthogonal array for the
MICA is L64, respectively. It is clear that the total number of
running for calibration of parameters of theMICAwill be 60×
64×10=38,400 trials by the Taguchi method. On the contrary,
the number of running in full factorial design equals to 842,
400, which is near to 22 times more.

Since there are three three-level factors for the ICA, the
number of running in a full factorial design is only three times
more and we use a full factorial design for the ICA. In the
Taguchi method, the values of quality characteristics obtained
through the experiments are transformed into a measure called
signal-to-noise (S/N) ratio that is classified into three groups:
the smaller-the-better, the larger-the-better, and nominal-is-
best. Since the type of performance in this paper is the mini-
mization, the corresponding smaller-the-better S/N ratio is as
follows:

S
.
N Ratio ¼ −10 log10 Performance Measureð Þ2

The minimum variance of quality characteristics resulted
from the S/N ratio is the optimal operator combination, which
explains the reason why a parameter design is also called
robust design. The parameters and operators of algorithms
and their levels are depicted in Table 5.

As mentioned before, the experiments on the MICA and the
ICA were based on the L64 orthogonal array and full factorial
experiment, respectively. In order to be fair, the stopping crite-
rion for all algorithms is equal to 6×n milliseconds. This crite-
rion is sensitive to the problem size. Using this stopping criteri-
on, searching time increases according to the rise of number of
jobs. The Taguchi experiments are performed for the MICA.

Because the scale of OFs in each instance is different, they
cannot be used directly. In order to make the comparison easy
and comprehensive, we use the relative percentage deviation
(RPD) as a common and straightforward measure of compar-
ing algorithms for each instance as follows.

RPD ¼ Algsol−Minsol
Minsol

� 100

where Algsol andMinsol are the obtained objective value and the
obtained best solution, respectively, for each replication of in-
stance in a given test problem. Clearly, lower values of the RPD
are preferable. The results of the experiments are transformed
into the RPD.After converting the objective values to the RPDs,

Table 8 Results of EDD on test problems

Problem p1s1 p1s2 p1s3 p2s1 p2s2 p2s3

10j 109.72 62.02 101.38 78.99 74.65 117.39

20j 169.64 100.63 256.41 267.63 108.91 266.83

30j 293.04 180.87 308.66 319.6 186.96 462.12

50j 656.26 332.15 637.84 574.23 300.28 689.17

750j 1042.41 511.56 1024.06 1035.3 391.86 957.07

100j 1196.92 586.7 1333.85 1366 669.29 1475.62

125j 1621.03 771.61 1768.19 1462.93 693.85 1783.52

150j 1945.49 895.32 1996.06 2042.43 939.48 2126.96

175j 2476.1 1121.93 2334.82 2182.19 1063.96 2424.27

200j 2582.91 1308.25 2885.86 2554.33 1274.02 2725.09

Table 7 Best level of parameters for GA, SA, VNS, PSO, and ACO algorithms

Algorithm Parameters and their best level

GA Population size=n, Crossover=two-point, Mutation=big swap, Mutation probability (pm)=0.1
Crossover percentage (pc)=0.8

SA Initial temperature (T0)=700, nmax=300, α=0.92

VNS Neighborhood structure=big swap, inversion, displacement nmax=400

PSO Population size=1.5 n, Vmin=−4, Vmax=+4,
c1=0.5, c2=0. 5,

Decrement factor (α)=0.99, Minimum of inertia weight=0.5
Maximum of inertia weight=0.8

ACO Population size=n, Evaporation rate (ρ)=0.5, Initial pheromone (τ0)=1, α=1, β=3

Table 6 Optimum parameters for the proposed ICA and MICA
algorithms

Factors ICA symbols MICA symbols

Population size 1.5 n 1.5 n

Percentage of Nimp 0.15 0.15

α1, α2, α3, α4 – 0.25, 0.5, 0.125, 0.125

Λ 0.5 0.5

β1, β2 – 0.33, 0.66
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Table 9 Improvements of algorithms in comparison with EDD as worst results (% equal to improvement %)

Problem SA % PSO % GA % ACO % ICA % MICA %

10j p1s1 58.24 38.3 35.83 46.54 61.8 56.55

p1s2 63.13 55.85 55.77 65.93 69.77 73.37

p1s3 51.26 45.41 51.55 48.07 43.06 47.98

P2s1 27.72 27.67 28.27 37.22 32.4 37.68

P2s2 61.80 52.01 55.32 60.13 57.63 62.38

P2s3 51.40 43.4 46.31 41.59 40.2 41.79

20j p1s1 29.48 36 33 46.97 42.55 45.84

p1s2 56.14 57.24 53.39 52.88 57.11 62.42

p1s3 28.82 24.37 13.32 42.59 45.31 46.78

P2s1 41.87 29.76 40.61 36.38 34.72 39.85

P2s2 41.22 43.32 47.31 50.29 53.13 55.76

P2s3 38.15 24.35 28.81 34.19 35.54 35.41

30j p1s1 41.12 26.54 40.27 41.14 55.13 58.56

p1s2 66.39 65.79 69.13 68.06 66.22 63.92

p1s3 24.41 32.07 39.3 38.95 37.71 41.78

P2s1 30.63 29.77 42.05 50.77 48.03 50.63

P2s2 47.24 42.94 53.07 55.34 52.76 57.73

P2s3 38.52 40.02 52.12 48.2 45.23 46.36

50j p1s1 25.64 27.8 27.84 27.59 27.53 30.86

p1s2 30.78 31.11 26.51 27.85 57.44 51.87

p1s3 26.41 32.79 42.27 40.88 41.66 44.18

P2s1 45.33 45.2 40.74 39.69 40.1 38.26

P2s2 31.16 40.6 36.28 40.26 47.33 47.44

P2s3 28.28 31.18 35.56 38.3 31.33 36.84

75j p1s1 13.79 17.73 16.47 19.44 29.38 35.84

p1s2 12.88 10.73 21 30.5 32.53 41.76

p1s3 26.96 27.29 28.62 25.66 29.17 36.55

P2s1 20.94 26.52 23.08 31.15 28.8 34

P2s2 31.93 35.09 36.95 35.81 39.96 46.67

P2s3 23.4 25.33 26.86 27.23 38.14 38.94

100j p1s1 12.74 8.66 9.85 24.33 29.81 32.75

p1s2 17.49 23.48 36.44 27.64 36.86 38.31

p1s3 28.82 27.69 31.39 34.98 30.58 32.29

P2s1 12.89 19.21 16 15.3 28.85 33.66

P2s2 25.19 27.72 32.29 31.04 35.02 38.94

P2s3 5.03 14.59 12.09 27.64 31.62 33.09

125j p1s1 17.59 20.27 18.95 29.07 27.01 29.87

p1s2 20.63 22.29 30.61 37.24 35.94 34.97

p1s3 −4.84 7.85 17.66 25.28 34 33.41

P2s1 13.72 19.61 21.78 34.15 32.3 35.53

P2s2 23.74 30.44 35.84 37.35 35.96 39.29

P2s3 10.96 25.61 28.54 30.18 33.47 33.76

150j p1s1 6.88 15.32 18.34 31.23 27.11 30.28

p1s2 12.6 18.34 21.21 21.68 27.81 32.8

p1s3 13.62 16.93 20.57 28 29.36 33.16

P2s1 15.61 20.15 22.57 31.71 30.29 31.46

P2s2 20.31 26.27 27.48 33.34 31.29 36.04

P2s3 12.09 22.87 26.31 36.49 29.17 31.56

175j p1s1 7.81 9.54 23.32 18.79 26.74 27.06
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the results are individually transformed into S/N ratios, and the
ratios of trials are averaged in each level as shown in Fig. 9.

The full factorial experiments are performed for the ICA.
The average of results is calculated and depicted in Fig. 10.
The optimum levels of parameters and operators used in all
algorithms are shown in Tables 6 and 7.

5.3 Experimental results

In this section, we present and compare the results of ICA and
MICAwith the SA, PSO, GA, and ACO algorithms as effec-
tive algorithms in BPM scheduling literature and with the
EDD dispatching rule as a well-known heuristic related to
due date. As mentioned above, we have 60 problem instances;
each one includes ten performed replications to achieve the
more reliable results. All instances are solved by all algo-
rithms. Table 8 demonstrates the EDD results on test prob-
lems, in which the first column and first row represent the data
set characteristics and the remaining columns show the results
of the EDD on instances.

Since EDD showed the worst results in comparison to other
metaheuristics, we calculated the improvement’s percentage
(i.e., improvement %) of each algorithm in comparison to
EDD with a formula as follows:

Improvement % ¼ EDDsol−Algsol
EDDsol

� 100

Table 9 shows the improvements’ percentage of each algo-
rithm comparing to the EDD results in each instance. This
table demonstrates the robust performance of the ICA and
the MICA. Among algorithms, SA has smaller improvement.
Other algorithms have better improvements, but in compari-
son to ACO, their improvements are small. Among SA, PSO,
and GA, GA has better improvement and then PSO.

The averages of the RPD results are calculated for test prob-
lems (i.e., 60 data points per average for each algorithm) and are
shown in Table 10. In this table, each row represents the average
of results obtained for six test problems considered in each size
of the large problem with ten replications for each algorithm.

Table 10 Average relative percentage deviation (RPD ) for the algorithms

Problem SA PSO GA ACO ICA MICA

10j 10.97 33.34 29.73 16.99 12.53 6.81

20j 19.37 24.63 24.92 10.23 7.94 1.67

30j 29.14 34.6 12.85 10.69 9.4 4.86

50j 24.86 18.57 19.07 17.35 5.06 4.73

75j 28.64 25.22 22.13 17.64 9.87 0

100j 28.11 23.13 18.57 13.08 4.88 0.69

125j 32.77 21.44 14.29 4.17 2.84 0.75

150j 30.2 20.41 16.26 4.73 6.67 1.58

175j 28.07 21.76 11.09 11.48 2.09 0

200j 26.76 19.02 12.91 8.26 4.68 0.08

RPD
25.889 24.212 18.182 11.462 6.596 2.117

Table 9 (continued)

Problem SA % PSO % GA % ACO % ICA % MICA %

p1s2 7.36 16.7 30.94 28.85 34.47 35.85

p1s3 16.45 17.97 24.58 17.92 26.27 27.84

P2s1 2.35 5.33 11.92 21.16 24.98 27.24

P2s2 16.17 21.17 21.56 22.74 30.51 31.15

P2s3 10.09 15.39 18.37 19.75 25.87 28.6

200j p1s1 11.37 19.25 18.67 26.39 27.51 28.13

p1s2 20.76 31.17 32.38 31.9 32.24 34.81

p1s3 11.12 16.84 21.45 24.08 33.49 33.14

P2s1 9.97 4.46 16.2 20.56 19.74 24.85

P2s2 17.35 22.65 28.39 31.65 31.46 36.72

P2s3 8.54 15.38 18.16 20.24 24.83 30.56
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According to the results, the average RPD obtained by
the proposed MICA is 2.117, while for SA, PSO, GA,
ACO, and ICA are 25.889, 24.212, 18.182, 11.462, and
6.596, respectively. The MICA and, after that, the ICA
can find a better solution comparing to other algorithms
for all the instances. Although SA, PSO, and GA have
good results in comparison to EDD, the results of ACO
are superior. Moreover, although the performance of the
EDD rule is inferior in comparison to other algorithms, it
produces tolerable solutions as a heuristic method.

To analyze the interaction between quality of the algo-
rithms and different problem sizes, the average RPDs ob-
tained by each algorithm are shown in Fig. 11. As it can be
seen, the MICA and the ICA keep their robust performance
in all the problem sizes. In the first problem size, SA has
good results and better performance in comparison to even
ICA, but with increasing size, gradually, other algorithms
outperform it. In the first two sizes of problems, GA has
not good results, but with increasing size, its RPD de-
creases and, in ninth size, outperforms ACO. In some
sizes, ACO and ICA have been nearly competitive, but
ACO has a superior performance in 125j and 150j. It is
worth noting that because of studying a new and different
problem from the previous works in this paper, a novel
plan is utilized to generate the instances for the defined

problem. So, here we cannot comprise the obtained results
with other methods used in the literature.

Based on the results, we conclude that the proposed MICA
and ICA can be used to effectively solve the BPM problems.
Moreover, as it can be seen in the results, the performance of
the MICA shows that modifying the colonies moving and
imperialistic competition improves the performance of the
ICA remarkably. In other words, embedding our suggestions
and modifications in the ICA obviates mentioned drawbacks
and makes balance between exploration and exploitation.

To verify the statistical validity of the results, we carry
out the analysis of variance (ANOVA) technique to accu-
rately analyze the results. The related results demonstrate
that there is a clear statistically significant difference be-
tween performances of the algorithms. The mean plot and
LSD intervals at the 95 % confidence level for all the
algorithms are shown in Fig. 12. As it is shown, our
proposed MICA provides statistically better results than
ICA and others. SA and PSO both provide the statistically
similar performance.

6 Conclusions and future research directions

In this paper, we modeled the SBPM scheduling problem
considering a real-world application through fuzzy due
dates to minimize the total weighted earliness and tardi-
ness. At first, we converted the OF of the model to the
total satisfaction or dissatisfaction degree, and then, a
novel fuzzy mathematical model was developed. We also
proposed a modified version of the ICA, named MICA,
by introducing a new assimilation policy (moving of col-
onies) and imperialistic competition to balance between
exploration and exploitation. Meanwhile, a new plan
was presented to generate test data in a fuzzy environ-
ment. Then, in order to adjust the parameters and opera-
tors of the proposed algorithms, the relevant parameters
are tuned. The computational results show that the pro-
posed MICA is capable of obtaining better solutions com-
pared to the ICA, SA, PSO, GA, and ACO in all problem
sizes. Furthermore, the performance of the EDD, as a
well-known dispatching rule related to the due date, was
studied in SBPM scheduling problems.

Based on the results, we conclude that the proposing the
new idea, by making balance between exploration and exploi-
tation, can improve the performance of the ICA. So, we sug-
gest to use the novel presented idea in ICA, named MICA, in
the optimization areas. Besides, it can be extended to the case
of scheduling with fuzzy processing times or other fuzzy pa-
rameters. In addition, considering multiple batch-processing
machines (e.g., parallel machine, flow shop, open shop, and
job shop) is encouraged.
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Appendix 1 LINGO code of MILP model to solve
the example.

model:
sets:
job/1..4/:p,s,c,d,e,t,alpha,beta;
batch/1..4/:pbatch,cbatch;
link1(job,batch):x;
endsets
data:
p=2 2 2 2;
s=1 1 1 1;
d=3 3 5 5;
alpha=1 1 1 1;
beta=2 2 2 2;
M=10000;
cap=2;
enddata
min = @sum(job(j):(alpha(j)*e(j) +

beta(j)*t(j))*s(j));
@for(job(j):@sum(batch(b):x(j,b))=1);
@for(batch(b):@sum(job(j):s(j)*x(j,b))

<=cap);
@for(batch(b):@for(job(j):pbatch(b)>=-

p(j)*x(j,b)));
@for(batch(b):@sum(batch(i)|i#le#b:pb-

atch(i))=cbatch(b));
@for(batch(b):@for(job(j):c(j)>=cbatc-

h(b)-M*(1-x(j,b))));
@for(job(j):t(j)>=c(j)-d(j));
@for(job(j):e(j)>=d(j)-c(j));
@for(job(j):c(j)+e(j)-t(j)=d(j));
@for(batch(b):@for(job(j):@bin(x(j,

b))));
end

Appendix 2 LINGO code of MINLP model to solve
the example.

model:
sets:
job/1..4/:p,s,c,d,e,t,alpha,beta;
batch/1..4/:pbatch,cbatch;
link1(job,batch):x;
endsets
data:
p=2 2 2 2;
s=1 1 1 1;
d=3 3 5 5;
alpha=1 1 1 1;
beta=2 2 2 2;
M=10000;

cap=2;
enddata
min = @sum(job(j):(alpha(j)*e(j) +

beta(j)*t(j))*s(j));
@for(job(j):@sum(batch(b):x(j,b))=1);
@for(batch(b):@sum(job(j):s(j)*x(j,b))

<=cap);
@for(batch(b):pbatch(b)=@max(job(j):-

p(j)*x(j,b)));
@for(batch(b):@sum(batch(i)|i#le#b:pb-

atch(i))=cbatch(b));
@for(job(j):@sum(batch(b):cbatch(b)*-

x(j,b))=c(j));
@for(job(j):t(j)>=c(j)-d(j));
@for(job(j):e(j)>=d(j)-c(j));
@for(job(j):c(j)+e(j)-t(j)=d(j));
@for(batch(b):@for(job(j):@bin(x(j,

b))));
end
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