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Abstract This paper proposes a new method for fault detec-
tion using a reduced kernel principal component analysis
(RKPCA). The proposed RKPCAmethod consists on approx-
imating the retained principal components given by the KPCA
method by a set of observation vectors which point to the
directions of the largest variances with the retained principal
components. The proposedmethod has been tested on a chem-
ical reactor and the results were satisfactory.
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Nomenclature
T2 Hotelling statistic
SPE Squared prediction error
m Number of variables
x(k)∈Rm Observation vector
xi(k) ith variable of the measurement vector x(k)
X∈RN×m Data matrix
∑∈Rm×m Correlation matrix
ℓ Number of principal components
P Eigenvector matrix
T Score matrix
X̂ Projection of X to Rℓ

E Error matrix

x̂ kð Þ Projection of x(k) to Rℓ

e(k) Error vector
δα
2 Threshold of SPE
χℓ,α
2 Threshold of T2

pi ith eigenvector of P
λi ith eigenvalue of K
ϕ Transformation function
K Kernel matrix

1 Introduction

The demands for product quality and operation safety in the
process industry have spurred the recent development of many
fault diagnosis methods. Recently, with the development of
measurement and data storage equipment, it is strongly re-
quired to use multivariate statistical method for extracting
useful information from a large amount of process data. Mul-
tivariate statistical projection methods such as principal com-
ponent analysis (PCA) have been widely applied for monitor-
ing linear system [1, 2]. However, for some complicated cases
in industrial chemical and biological processes with particular
nonlinear characteristics, PCA performs poorly due to its as-
sumption that the process data are linear. To overcome the
nonlinear shortcoming of the traditional MSPC method, sev-
eral nonlinear extensions of PCAwere reported. Kernel PCA
(KPCA) is a novel nonlinear PCA technique which is devel-
oped in recent years [3, 4]. It can efficiently compute principal
components (PCs) in high-dimensional feature spaces by
means of integral operators and nonlinear kernel functions.
Despite recently reported KPCA-based monitoring applica-
tions, the following problems arise: first, the identification of
a KPCA monitoring model requires the storage of the sym-
metric kernel matrix (computation time may increase with the
number of samples); second, the fault isolation is a muchmore
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difficult problem in nonlinear PCA than in linear PCA [5] and
the monitoringmodel is fixed whichmay produce false alarms
if the process is naturally time-varying.

This paper deals with the problem of need storage and
computation time. In this paper, we propose a new reduced
kernel principal component analysis (RKPCA) in which
we consider only the set of observations that approximate
the retained principal components. The RKPCA method
has been tested on a chemical reactor and the results were
successful.

The paper is organized as follows. In section 2, the KPCA
technique is reminded. The proposed reduced KPCA method
for process monitoring is detailed in section 3. Section 4 pre-
sents the KPCAmethod for fault detection. Section 5 validates
the proposed algorithm on the CSTR benchmark. Finally,
section 6 concludes the paper.

2 Kernel principal components analysis

KPCA is a nonlinear version of PCA method, when the initial
data are projected in a new space, with a nonlinear mapping ϕ.
PCA is then computed in this feature space F, as done with
linear model.

Let X ¼ x1 x2 … xN½ �T ; the training set scaled to
zero mean and unit variance. Let xi∈Rm,i=1,…,N to be the
data vector at time i>1. By nonlinear mapping ϕ, a measured
input is projected into an hyper-dimensional feature space F as

ϕ : xi∈Rm↦ϕ xið Þ ¼ ϕi∈F ð1Þ

Note that the feature space F have an arbitrarily large, pos-
sibly infinite dimensionality equal to h. The covariance matrix
in the feature space F can be constructed by

Cϕ ¼ 1

N

XN
i¼1

ϕ xið Þϕ xið ÞT ¼ 1

N
χTχ∈Rh�h ð2Þ

withχ ¼ ϕ1 ϕ2 … ϕN½ �Txi is the training data arranged
in the feature space. To find the principal components, one has
to solve the eigenvalue problem in the feature space such that:

λ jμ j ¼ Cϕμ j ∀ j ¼ 1; …; h ð3Þ

where λj≥0 is an eigenvalue and μj is a vector of eigen load-
ings. Schölkopf in [3] has suggested the following way to find
this eigenvalue decomposition and he denote that: all solu-
tions μj with λj≠0 lie in the span of {ϕ(x1),ϕ(x2),…,ϕ(xN)}.
Therefore, there must exist coefficient γi

j,i=1,…,N such ev-
ery eigenvector μj of Cϕ can be linearly expanded by

μ j ¼
XN
i¼1

γ j
iϕi ð4Þ

Equation (3) is equivalent to

λ j ϕ xið Þ;μ j

D E
¼ ϕ xið Þ;Cϕμ j

D E
for j ¼ 1; …; h ð5Þ

Combining Eqs. (2) and (4) in (5), we obtain for j=1,…,h

λ j

XN
q¼1

γ j
q
ϕ xið Þ;ϕ xq

� �� � ¼ ϕ xið Þ; 1
N

XN
k¼1

ϕ xkð Þϕ xkð ÞT
XN
q¼1

γ j
qϕ xq
� �* +

ð6Þ

λ j

XN
q¼1

γ j
q
ϕ xið Þ;ϕ xq

� �� � ¼ ϕ xið Þ; 1
N

XN
k¼1

XN
q¼1

γ j
qϕ xkð Þ ϕ xkð Þϕ xq

� �� �* +

ð7Þ

λ j

XN
q¼1

γ j
q
ϕ xið Þ;ϕ xq

� �� � ¼ 1

N

XN
k¼1

XN
q¼1

γ j
q ϕ xið Þϕ xkð Þ ϕ xkð Þϕ xq

� �� �� �
ð8Þ

An important property of the feature space is that the dot
product of the form 〈ϕ(xi),ϕ(xj)〉 can be calculated by virtue of
kernel tricks as a function of the corresponding vectors xi and
xj, this is,

ϕ xið Þ;ϕ x j
� �� � ¼ k xi; x j

� � ¼ Ki j ð9Þ

Then, the inner product of 〈ϕ(xi),ϕ(xj)〉 of Eq. (8) is
changed by the kernel function k(xi,xj). Then, Eq. (8) can be
expressed as

λ j

XN
q¼1

γ j
qKqk ¼ 1

N

XN
k¼1

XN
q¼1

γ j
qKikKkq ∀k ¼ 1;…; N ð10Þ

Now, let us define a vector γ j=[γ1
j,γ2

j,…,γN
j]T∈RN, so we

have

λ jKγ
j ¼ 1

N
K2γ j ð11Þ

To find solutions of Eq. (11), we solve the eigenvalue
problem

Nλ jγ
j ¼ Kγ j ∀ j ¼ 1; …; N ð12Þ

In the following, for simplicity, we will denote λj as the
eigenvalues ofK, i.e., the solutionsNλj in Eq. (12).We rewrite
Eq. (12) in the following matrix form:

ΛV ¼ KV ð13Þ

with Λ ¼ diag λ1 ;…; λNð Þ is the diagonal matrix of the
corresponding eigenvalues and V ¼ γ1 ;…; γN

� �
is the

matrix containing the eigenvectors of the kernel matrix K. In
order to insure the normality of μ1,μ2,…,μN. In Eq. (3), the
corresponding vectors γ1,γ2,…,γN should be scaled such that
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μk ;μkh i ¼ 1 for all k ¼ 1; …; N ð14Þ

Using Eq. (4), this lead to

1 ¼
XN
i¼1

γki ϕ xið Þ;
XN
j¼1

γkjϕ x j
� �* +

¼
XN
i¼1

XN
j¼1

γki γ
k
j ϕ xið Þ;ϕ x j

� �� �
ð15Þ

1 ¼
XN
i¼1

XN
j¼1

γki γ
k
jKi j ¼ γk ;Kγk

� �
¼ λk γk ; γk

� � ð16Þ

Thus, the associated orthogonal eigenvectors γ1,γ2,…,γN

can be expressed as

γk ; γk
� � ¼ 1

λk
for all k ¼ 1; …; N ð17Þ

which shows that μ1,μ2,…,μN are given by

μi ¼
XN
j¼1

γijffiffiffiffi
λi

p ϕ j ¼ λi
−1=2χTγi ð18Þ

The matrix with the ℓ first leading eigenvectors are the
KPCA principal loadings in the feature space, denoted as

P̂ f ¼ μ1 μ2 … μℓ½ �. From Eq. 18, P̂ f is related to the
loadings in the measurement space as

P̂ f ¼
1ffiffiffiffiffi
λ1

p χTγ1 …
1ffiffiffiffiffiffi
λℓ

p χTγℓ
	 


¼ χT P̂Λ̂
−1
2

ð19Þ

Where P̂ ¼ γ1 … γℓ
� �

and Λ̂ ¼ diag λ1 … λℓð Þ
are the ℓ principal eigenvectors and eigenvalues of K, respec-
tively, corresponding to the largest eigenvalues in descending
order.

For a given measurement x and its mapped vector ϕ=ϕ(x),
the model scores are calculated as

t̂ ¼ P̂
T

f ϕ ¼ Λ̂
−1
2
P̂
T
χϕ

¼ Λ̂
−1
2
P̂
T
k xð Þ

ð20Þ

where

k xð Þ ¼ χϕ ¼ ϕ1 ϕ2 … ϕN½ �Tϕ
¼ ϕT

1ϕ ϕT
2ϕ … ϕT

Nϕ
� �T

¼ k x1; xð Þ k x2; xð Þ … k xN ; xð Þ½ �T
ð21Þ

Before applying KPCA, mean centering and variance scal-
ing in high-dimensional space should be performed. Mean
centering can be done by substituting the kernel matrixKwith

~K ¼ K−INK−KIN þ INKIN ð22Þ

where IN ¼ 1
N

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

2
4

3
5∈RN�N . Also, the variance

scaling of kernel matrix can be done by the following
equation.

Kscl ¼
~K

trace ~K
� �

=N
ð23Þ

If we apply eigenvalue decomposition to Kscl.

ΛV ¼ KsclV ð24Þ

We can obtain the orthogonal eigenvectors γ1,γ2,…,γℓ

corresponding to ℓ largest eigenvalues λ1≥λ2≥⋯≥λℓ.

3 Reduced kernel principal components analysis

We select a reduced number of observations xb
(j)∈{xi}i=1,…,N

among the N measurement variables of the information
matrix. The retained observations can be used as a new data
matrix. The proposed reduced KPCA method (RKPCA) ap-
proaches each vector {μj}j=1,…, ℓ by a transformed input data
ϕ(xb

j )∈{ϕ(x(i))}i=1,…,N having a high projection value in the
direction of μj [6]. For each principal component {μj}j=1,…, ℓ,
the proposed RKPCA method selects among the set of
{ϕ(x(i))}i=1,…,N the closest vectors, ϕ(xb

(j)) to μj To achieve that
we project all the {ϕ(x(i))}i=1,…,N on the principal component
μj and we retain the observations ϕ(xb

j )∈{ϕ(x(i))}i=1,…,N that
satisfied

ϕ x jð Þ
b

� �
j
¼ Max

i¼1;…;N
~ϕ x ið Þ
� �

j

ϕ x jð Þ
b

� �
i≠ j

< ζ

8>><
>>: ð25Þ

where ~ϕ x ið Þ� �
j
is the jth component projection of ϕ(x(i)) on

μj and ζ is a given threshold.
The RKPCA algorithm is summarized by the seven

following steps:

1. Given an initial standardized block of training data,
construct the kernel matrix K and scale it.

2. Determine the nonzero eigenvalues {λj}j=1,…,N and the
eigenvectors {γj}j=1,…,N of Gram matrix K.

3. Determine the number ℓ of principal component PCs and
organize the {γj}j=1,…,ℓ on the decreasing order with
respect to the corresponding eigenvalues.

4. For the ℓ retained principal components, choose the
{(xb

j )}j=1,…,ℓ that satisfy (25).
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5. Construct the reduced kernel matrix.
6. Estimate the reduced KPCA model (the eigenvalues and

vectors of the reduced kernel matrix).
7. Determine the control limits of the SPE chart.

4 RKPCA for fault detection

The KPCA-based monitoring method is similar to that using
PCA in that the Spe statistic in the feature space can be
interpreted in the same way. The Spe index is defined as the
norm of the residual vector in the feature space [7, 8]. Let~t be

the residual components and ~P f the corresponding loading
matrix

~t ¼ ~P f f ϕ ¼ μℓ þ1 μℓ þ2 …½ �Tϕ ð26Þ

The Spe index is calculated as the squared norm of the
residual components

Spe ¼ ~t
T
~t ¼ ϕT ~P f ~P

T

f ϕ ð27Þ

Since we do not know the dimension of the feature
space, it is not possible to know the number of residual
components there. Thus, we cannot calculate explicitly

the loading matrix ~P f . However, we can calculate the

product ~P f ~P
T
f as the projection orthogonal to the principal

component space, which is

Ĉ f ¼ ~Pf ~P
T

f ¼ IN−P̂ f P̂
T

f ð28Þ

and leads to

Spe ¼ ϕT IN−P̂ f P̂
T

f


 �
ϕ ¼ ϕTϕ−ϕT P̂ f P̂

T

f ϕ ð29Þ

From Eqs. 9 and 19, the Spe is calculated as a function of
input vectors as

Spe ¼ k x; xð Þ−ϕTχT P̂Λ̂
−1
P̂
T
χϕ

¼ k x; xð Þ−k xð ÞT P̂Λ̂
−1
P̂
T
k xð Þ

¼ k x; xð Þ−k xð ÞT Ĉ k xð Þ

ð30Þ

where Ĉ ¼ P̂Λ̂
−1
P̂
T
, assuming that the prediction errors are

normally distributed, the confidence limits for the Spe are
calculated from the χ2 distribution and are given by [9]:

Spelim; a∼gχ2
h;a; g ¼ v

2m
; h ¼ 2m2

v
ð31Þ

withm and v are the estimated mean and variance, respective-
ly, of the Spe from the training data.

TheHotelling’sT2 index is calculated in the feature space as

T2 ¼ t̂
T
Λ̂
−1
t̂. The T2 is calculated using kernel functions as [10]

T2 ¼ k xð ÞT P̂Λ−2P̂
T
k xð Þ ¼ k xð ÞTDk xð Þ ð32Þ

where D ¼ P̂Λ−2P̂
T
. The 100(1−α)% control limit for the T2

is calculated using the F distribution such as

T2
lim;α ¼ p N2−1

� �
N N−pð Þ Fp;N−p;α ð33Þ

where N is the number of observation in the model, p the
number of principal components, and α the significance level.

5 Simulation results

To evaluate the performances of the proposed RKPCA fault
detection method, a simulation on a chemical reactor CSTR is
presented.

5.1 The chemical reactor description

The process is a continuous stirred tank reactor (CSTR) which
is a nonlinear system used to conduct chemical reactions
[11, 12] so that two reactants 1 and 2, with concentration
Cb1 and Cb2 and feed w1 and w2, respectively, are mixed to
provide a final product with feed w0 and concentration Cb. A
diagram of this reactor is given in Fig. 1.

The physical equations describing the process are

dh tð Þ
dt

¼ w1 tð Þ þ w2 tð Þ−0:2
ffiffiffiffiffiffiffiffi
h tð Þ

p
dCb tð Þ
dt

¼ Cb1 tð Þ−Cb tð Þð Þ w1 tð Þ
h tð Þ þ Cb2 tð Þ−Cb tð Þð Þ w2 tð Þ

h tð Þ −
k1⋅Cb tð Þ

1þ k2⋅Cb tð Þð Þ2

ð34Þ
where h(t ) is the level of the mixture in the reactor and k1 and
k2 are consuming reactant rates. The temperature in the reactor
is assumed constant and equal to the ambient temperature.

2w : volumetric 

flow rates 2 

h

0w   feed of product 

bC  : Concentration product 

1w volumetric  

flow rates1 

2bC  : Concentration  of  reactant 2 
1bC : Concentration of 

reactant 1 

Fig. 1 Chemical reactor diagram
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5.2 Results

To build the RKPCA model, we use the radial basis function
(RBF) kernel defined as

k x; x0ð Þ ¼ exp −
x−x0k k2
2σ2

 !
ð35Þ

with σ=8. Therefore, we have used 50 observations to build
the reduced KPCA model and 750 new observations in the
validation phase. The number of significant PCs is selected
using CPV method, such that the variance explained is ap-
proximately 95 % of the total variance. The number of
retained principal component is equal to ℓ=3.

A fault affecting the variable w1 is simulated between sam-
ples 600 and 700 with the magnitude of 60 % of the range of
variation of w1. Control limits are calculated at the confidence
level of 95 and 99 %, respectively.

The evaluated performances are as follows[13]:

& The false alarm rate (FAR) which expresses the ratio of the
violated samples (those which exceed the detection thresh-
olds) to the faultless data.

FAR ¼ violated samples

faultless data
% ð36Þ

& The missed detection rate (MDR) which is given by the
ratio of the faulty data that does not exceed the detection
thresholds to all the faulty data.

MDR ¼ missed detection

faulty data
% ð37Þ

& The good detection rate (GDR) which expresses the ratio
violated samples to the faulty data and not violated

samples to faultless data.

GDR ¼ violated samples

faultydata
þ not violated samples

faultlessdata


 �
%

ð38Þ

The detection results of the reduced kernel principal com-
ponent (RKPCA) method using the fault detection indices Spe
and T2 are shown, respectively, in Figs. 2 and 3.

According to the Fig. 2, the index Spe has detected the fault
in both thresholds (95 and 99 %) witch confirm the good
efficiency of the proposed RKPCA method. But using the
T2, the fault is not detected in both thresholds (Fig. 3).

The performances of the proposed RKPCA method are
summarized in the Table 1. According to Table 1, we remark
that the proposed RKPCA method for fault detection using
SPE index has good results in terms of FAR, MDR, and
GDR and especially in the case of the threshold 99 %.

6 Conclusions

In this paper, a new kernel method for nonlinear system fault
detection is proposed. The proposed technique is entitled re-
duced kernel principal component analysis (RKPCA). The
principle of the proposed method consists on approximating

Table 1 Performances of reduced KPCA for fault detection

FAR MDR GDR

95 % 99 % 95 % 99 % 95 % 99 %

Spe 1.69 0.15 43 63 86 90

T2 12 11 5 7 28 34

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8
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1.2

1.4

1.6

T
2

T2

95%
99%

Fig. 3 T2 with a fault on the variable w1
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Fig. 2 Spe with a fault on the variable w1
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the retained principal components determined by the KPCA
method by a set of observation vectors which point to the
directions of the largest variances with the selected principal
components. In order to evaluate the performances of the
RKPCA method, it is applied to detect a fault on a CSTR
benchmark and the results were satisfactory. The proposed
RKPCA technique for fault detection may be very helpful to
design a real time monitoring strategy of nonlinear systems.
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