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Abstract Control charts based on regression models are appro-
priate for monitoring in which the quality characteristics of prod-
ucts vary depending on the behavior of predecessor variables. Its
use enables monitoring the correlation structure between input
variables and the response variable through residuals from the
fitted model according to historical process data. However, such
strategy is restricted to data from input variables which are not
significantly correlated. Otherwise, colinear variables that hold
substantial information on the variability of the response variable
might be absent in the regression model adjustment. This paper
proposes a strategy for monitoring count data combining Poisson
regression and principal component analysis. In such strategy,
colinear variables are turned into uncorrelated variables by prin-
cipal component analysis and a Poisson regression is performed
on principal component scores. A deviance residual control chart
from the fitted model is then used to evaluate the process. The
performance of that new approach is illustrated through a case
study in a plastic plywood process with real and simulated data.

Keywords Statistical processes control - Residual control
charts - PCA - Poisson regression - Count data

1 Introduction

The statistical process control (SPC) encompasses a set of
techniques to analyze and evaluate the quality of industrial
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processes, and the control charts are used as its main tool.
The traditional Shewhart control chart for monitoring means,
ranges, fraction of nonconforming, and number of nonconfor-
mities (count data) assumes that successive samples taken
from the process are independent and identically distributed
(iid). However, in some processes, the mean varies as a func-
tion of one or more predecessor variables like in the multistage
process for example, where a quality characteristic at the cur-
rent step is affected by one or some of the quality characteris-
tics at the previous steps.

The application of control charts for monitoring the normal
response variable depending on predecessor variables was ini-
tially proposed by Mandel [1], and it was called regression
control chart. Later investigation can be found in Zhang [2],
Hawkins [3], Haworth [4], Wade and Woodall [5], Shu et al.
[6], and Asadzadeh et al. [7], among others. The main idea is
using the Shewhart control chart for monitoring the residuals
from the adjusted model (since they are iid), built from the
historical in-control data. Further, there are types of processes
that generate non-normal response data such as Poisson dis-
tributed count data. Such scenario requires the development of
control charts derived from a broad class of regression models
called generalized linear models (GLMs). Skinner et al. [8, 9]
proposed a control chart using Poisson regression to monitor
count data (Poisson GLM). The approach works with the de-
viance residuals from the Poisson model derived from a like-
lihood ratio test. Additional study involving modeling of con-
tinuous non-normal response variables (using gamma distri-
bution) is found in Jearkpaporn et al. [10, 11].

It is important to make clear the differences between the
model-based control application we have cited in above works
(and we are dealing in this work) and that in an emerging
research area called profile monitoring. In a profile context,
a response variable is monitored as a function of fixed values
of input variables, set according to some experimental design
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Fig. 1 The overall view of <
proposed approach
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of interest in the process. Even the input variables have no
the same values from sample to sample (i.e., different
ranges of values from sample to sample), they are con-
fined in some way in the same subinterval in each sample.
In phase I, the coefficients of the fitted regression model
are then estimated from a number of reference in-control
samples of size n, forming a reference profile. In a mon-
itoring phase (phase II), for each new sample with n
values of response variable at the same values of input
variables, the estimated coefficients of that sample profile
will be compared with the coefficients from the reference
profile. The profile monitoring was initially described by
Kang and Albin [12], Kim et al. [13], and Mahmoud and
Woodall [14] and later investigated by Mahmoud et al.
[15], Noorossana et al. [16], Ayoubi et al. [17], and Amiri
et al. [18], among others. The issues covered by these
authors include simple and multiple (more than one input
variable) linear profiles, multivariate linear profile (more
than one response variable), and nonlinear profiles.

Fig. 2 View of the manufactured
plywood
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However, indeed, it is not the case here. Our proposed
approach is like a multistage process, as we have discussed
in the above paragraphs. In such process, in one stage, the
response variable varies according to random predecessor var-
iables from previous stage. So, we can model the correlation
between them using a regression model fitted from prelimi-
nary samples of size 1, each one having one value for the
response and one value for each input variable. Future sam-
ples of size 1 each are then monitored through the residual
control chart, so that there is no profile monitoring here. There
is a wide range of process (even with only one stage) in which
a random variable response varies according to a set of ran-
dom input variables like batch process (see fundamental work
from Nomikos and MacGregor [19]), and the process will be
shown in this work.

Since there are a few works dealing with that kind of sce-
nario after the works cited above from the literature [8—11],
much research remains to be carried out, including (i) non-
normal response data approaches, (ii) models to deal with
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Table 1  Sample data from variables selected for modeling
Variable Mean Std.dev. Min  Max  Unit
Input  x; Shrinkage 9.63 1.22 6.5 14 %
X, Assembly time 14.99 1.15 12 18 min
x3 Wood density  0.5366 0.0156  0.5021 0.5780 g/cm’
x4 Drying temper 124.43 14.68 85 165 °C
Output y Imperfections 14.28 44.00 0 404 -

many colinear input variables that store important information
about the variability of response variables, and (iii) ap-
proaches to help the diagnosis to the unusual variation to
response data.

In this paper, we present a modification of Poisson model-
based control chart proposed by Skinner et al. [8] to monitor
count data with multicolinearity between input variables. The
new strategy that combines Poisson regression and principal
component analysis (PCA) will be called Poisson principal
component regression (PPCR). In such strategy, colinear var-
iables are turned into uncorrelated variables by PCA and a
Poisson regression is performed on PC scores. A deviance
residual control chart from a fitted PPCR model was then used
to evaluate the process. That approach preserves in a fitted
regression model the colinear input variables which hold sub-
stantial information on the variability of the response variable.
Otherwise, i.e., using the Poisson regression directly to the
input variables, these could be absent in the final regression
model adjustment. That is in fact the main results of the data
analysis performed using the approach proposed in this paper.
Another advantage over the Skinner et al. [8] approach is that
the stored eigenvalues from PCA held in input variables keep
important information about their correlations with a response
variable that aid in the diagnosis of significant changes in the
variability of the count data; i.e., it allows evaluating the effect
of each input variable on the response variable. The
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performance of that new approach is illustrated through a case
study in a plastic plywood process.

This paper is organized as follows: Section 2 presents a
brief description about GLM, Poisson regression, Poisson
model-based  chart (from Skinner et al. [8]), and PCA. Sec-
tion 3 presents the proposed monitoring strategy. In Section 4,
a case study in a plastic plywood process with real and simu-
lated data is presented. Section 5 presents the conclusions.

2 Background
2.1 Generalized linear models

Generalized linear models (GLMs) represent a class of regres-
sion models appropriate to investigate the effect of input var-
iables over non-normal response variables (see detailed de-
scription in McCullagh and Nelder [20]). The GLM model
is based on probability distributions with unknown location
parameter (6) that belongs to the exponential family. The most
important distributions in this family are normal, binomial,
Poisson, gamma, and exponential. The exponential family
probability density function is usually described as Eq. (1)

£(530,0) = exp|a(9)” (10-b(0)) + c(r,9)] (1)

where y is the response variable, a(-), b(:), and c(-) are the
unknown functions, 6 is the location parameter, and ¢>0 is
the dispersion parameter.

GLMs are structured by three components: (i) random
component, which defines the probability distribution of the
response variable y; (ii) systematic component 7, which is the
linear predictor that defines the structure of the input variables;
and (iii) link function, which describes the functional relation-
ship between the systematic component and the expected
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Fig. 3 Empirical distribution of input and output sample data
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Table 2 Correlation matrix

among variables

y

X1

X2

X3

Xq

y 1 0.8145 (0.000) 0.4223 (0.000) 0.6411 (0.000) 0.3922 (0.000)
x1 0.8145(0.000) 1 0.7826 (0.000) 0.0003 (0.9972) 0.0485 (0.6314)
X, 04223(0.000)  0.7826 (0.000) 1 ~0.0281 (0.7809)  —0.0409 (0.6859)
x;  0.6411(0.000)  0.0003(0.9972)  —0.0281 (0.7809) 1 0.8357 (0.000)
xs  03922(0.000)  0.0485(0.6314)  —0.0409 (0.6859)  0.8357 (0.000) 1
Significant when p<0.05

value for the random component (i.e., the mean of response . 2 2 1Y V2

. P ( . P r = sign (y—)\) {2 {ylog (y/)\) -y + )\} } (4)
variable y). The systematic component comprising the regres-

sion model (7) is the linear combination of input variables, and
it may be written by a g(+) function, called link function, which
describes the functional relationship between the ;2 mean and
the linear predictor (1), as in Eq. (2)

gp) =n=PBo+ Bixi + ... + Bexe (2)

where [, are the unknown coefficients and x; are the input
variables.

2.2 Poisson regression model

Consider the Poisson distributed variable y which mean .
in witch y is a function of vector of input variables
X = (x1, Xp,..., X;) with unknown coefficients 3y, 51, (3>,
..., Bi. From the Poisson probability function f{y)=\"
exp(-\)(»!) "', using Eq. (1), we can set 6 = In (\), c(,
@) =—In(y), b(0)=exp(y), and a(¢p)=1. By adopting the
logarithmic link function, we define the GLM described
in Eq. (2) as follows:

y~Poisson [exp (ﬁo + Z le By xkﬂ . (3)

So, A=E(y/x) is obtained through the inverse link function
(g "(\)=exp[A]). The coefficients 3, and (3 are estimated
using the maximum likelihood method.

The degree of fit of the GLM model to the data is per-
formed through the analysis of the deviance residuals obtained
by the likelihood ratio statistic, described as

Table 3  Estimated coefficients of the adjusted models

where ) is the estimated conditional mean of y, calculated by
means of the adjusted model. Myers et al. [21] showed that the
residuals 7 are independent and asymptotically normal with
zero mean and unit variance.

2.3 Poisson model-based control chart

Consider N as observation vectors X, representing measures of
K input variables in a process under statistical control. Each x
observation is followed by an observation of the y count re-
sponse variable. The Poisson regression model (Eq. (3)) is
adjusted from historical data x and y, thus leading to the resid-
uals 7 (Eq. (4)). Given r + N (0, 1), Skinner et al. [8] proposed
the use of Shewhart control limits for the residuals given by

CL, = E(r,) £ wy/Var(r,)= £ w (5)

where the constant w defines the amplitude between control
limits based on the false alarm probability c.

New observations x and y are compared with the reference
model obtained in Eq. (3), the  scores is calculated (Eq. (4))
and plotted on the 7 chart. The values outside the CL, show a
significant change in the correlation structure between input
variables and the response variable. Skinner et al. [8] showed
that the 7 chart is useful to monitor changes in the mean of
response variable, including independent shift in a response
mean, shifts caused by a change in a 3, or one of the 3,

Poisson regression PPCR

Original x Estimated [, Std. error Sig. VIF PC score Estimated Std. error Sig. VIF
Const. 1.454 0.050 0.000 - Const. 1.454 0.050 0.000 -

X 0.279 0.673 0.678 642.97 z) 0.515 0.024 0.000 1.234
X2 0.702 0.657 0.285 615.24 z 0.854 0.018 0.000 1.162
X3 0.343 0.312 0.271 143.17 z3 0.069 0.092 0.456 1.119
X4 0.676 0.354 0.056 154.17 Z4 —0.385 1.048 0.713 1.060
AIC 410.07

Significant when p<0.05
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Table 4 Summary of PCA results

Eigenvectors (u;) Eigenvalues () Cumulative %
(=0.155, —0.198, 0.683, 0.684) 1.457 49.53

(0.687, 0.681, 0.170, 0.184) 1.441 97.98

(0.296, —0.306, —0.650, 0.628) 0.292 99.98
(=0.644, 0.634, —0.283, 0.320) 0.030 100.00

coefficients, and shifts caused by change in a mean of at least
one input variable.

2.4 Principal component analysis

The principal component analysis (PCA) is a multivari-
ate statistical technique that seeks to summarize infor-
mation about the linear correlation structure in a set of
variables under analysis (see Jackson [22] and Jackson
and Mudholkar [23] for a wide description of principal
components, in a field of SPC).

Consider the matrix X with a dimension of NxK
composed of N row vectors x, representing the measures
of K variables. The linear correlation structure of data
from X is contained within the sampling covariance
correlation S matrix, with a dimension of KxK. The
PCA diagonalizes S in order to obtain new variables
(called principal components (PCs)) which represent
the projection of data from X in the new orthogonal
directions of the variables’ variability. Such projections
are given by the obtained K eigenpairs (p;,u;) from S,
where u;, with a dimension of Kx1 for i=1,..., K, is
the eigenvector which leads to the linear combination of
the K variables by means of the ith PC and ¢; is the
eigenvalue representing its variability. The ith PC score
referring to observation x is given by

Z; = XW; (6)

where i=1,..., K. Since PCs are not correlated, each one
of them describes a unique structure of data variability.

LLRRARR RN RN R RN AR AR R RN AR AR RRRRRRRR AR RRRRRE
1 47 1115 19 23 27 31 35 39 43 47 51 85 §

Samples

3 Proposed monitoring strategy

This section describes the monitoring strategy that integrates
Poisson regression model and PCA in order to monitor the
count response variable based on colinear input variables.
The strategy consists of performing the PCA in correlated
input variables and then applying the Poisson regression to
estimate the link between uncorrelated PCs and the count
response variable. The detailed procedure will be discussed
in the subsequent sections.

3.1 Combining Poisson regression and PCA

In some kinds of industrial processes, there are colinear input
variables that hold relevant information about the response
variable. In such case, two or more of these input variables
will be excluded from the adjusted regression model,
impairing the control charts’ sensitivity in detecting atypical
behaviors in the response variable. In some cases, all the input
variables might not be significant and, therefore, they are not
taken into account during response variable monitoring. The
principal component regression (PCR) is a classical technique
to deal with multicolinear input variables through PCA (see
Rencher [24] for a wide description of PCR). In PCR, colinear
input variables are turned into uncorrelated variables by PCA
(as described in Eq. (6)) and a normal regression is performed
on PC scores instead of original input variables. Recent stud-
ies integrating normal regression model (i.e., normal distribu-
tion response) and PCA can be found in Rajab et al. [25] and
Sayadi et al. [26], among others. However, there is a lack of
work that presented applications of PCR to deal with count
data (i.e., Poisson distributed response) in a field of SPC.

Following the goal of this work to monitor count data in the
function of colinear input variables, we perform a PCR com-
bining PCA described in Section 2.4 and Poisson GLM model
presented in Section 2.2. The new strategy will be called
Poisson principal component regression (PPCR). From the
historical data, we adjusted a PPCR model by rewriting
Eq. (3) as follows:

56 7 8 9 10 12 14 16 18 20 22 24 26 28 30

Samples

Fig. 4 Phase I with 100 historical samples for the in-control process and phase II with 30 new samples (first 20 of the in-control process and last 10

samples under bad conditions of the process)
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K
y ~Poisson {exp (fyo + Z [_lvl-(Xlli)ﬂ
or (7)
K
Y ~ Poisson [exp <’yo + Z [I’Y,Zi):|

where u; represents the eigenvector corresponding to the ith
biggest eigenvalue ¢, and z; represents the score due to the ith
PC. The coefficients =y, and ~;s are estimated using the maxi-
mum likelihood method as well as the classical Poisson GLM.

When input variables show a linear correlation (as in the
case of variables showing multicolinearity in regression model
adjustments), a number V' (<K) of PCs hold a substantial part
of the variability structure within the input data; that is, in the
SPC context, they hold relevant information about the link
between input variables and the main sources of the process
variability. The literature offers a wide number of criteria in
order to determine the number 7 of PCs (see Jolliffe [27]).
However, according to our approach, PCs will be selected
through the Wald statistical test [28], a usual criterion for
selecting input variables in regression models. The idea is
selecting a number of PCs that hold relevant information
about the correlation structure in the input data that affect
the variability of the response count data. So, we started with
all K PCs to perform PPCR described in Eq. (7).

3.2 PPCR-based control chart

The implementation of the proposed strategy was divided
into two stages: (i) modeling of historical observations
(phase I) and (ii) monitoring of new observations (phase
II). In the first stage, based on historical data of the process
under statistical control, the PPCR model is fitted and the
control limits of r chart are calculated. In the second stage,
the process is monitored through future samples by plotting
their » scores on a r chart. The approach is detailed in the
following paragraphs, and an overall view is shown in the
flowchart in Fig. 1.

1. Modeling historical observations.

(a) Collecting N observations (x,y) referred to K input
variables and the count response variable for the in-
control process.

(b) Applying PCA in observations x and obtaining K
scores z; (Eq. (6)).

(¢c) Adjusting the PPCR from observations (z,y), with
z=(zy,...,zx) (Eq. (7)).

(d) Obtaining the deviance residuals from the PPCR
model (Eq. (4)).

(e) Setting w value and obtaining the control limits CL,.
of the 7 chart (Eq. (5)).

2. Monitoring new observations.

@ Springer

Table 5 Types and sizes

of the imposed changes Type Change Size
1 Mean of y 1o, 20, 30
1T Mean of x; lo, 20, 30
11 Mean of x3 lo, 20, 30

(a) Collecting new observations (X,).

(b) Obtaining V' (<K) scores z;, where V'is the number of
significant input PC scores in the PPCR model
(Eq. (6)).

(c) Obtaining deviance residuals from the new observa-
tion (z,y), with z=(zy,...,zy), in the PPCR model
(Eq. (4)).

(d) Monitoring deviance residuals through the r chart.

4 Application illustration
4.1 Real case study

In this section, the implementation of the proposed strategy
monitoring is illustrated by a study applied to a medium-sized
timber industry which manufactures laminated plastic ply-
wood. The study consisted in evaluating the effect of input
variables over the number of defects found in produced ply-
woods. The quality of the plywood is related to some vari-
ables, as detailed by Dermirkir et al. [29], Fang et al. [30], and
Azaman et al. [31]. We are considering the number of defects
per laminated plastic plywood area (v) and the following input
variables: volumetric shrinkage (x;), assembly time (x,), wood
density (x3), and drying temperature (x4). So, for each sample
unity representing a big wooden plate with constant size (see
Fig. 2), we have data of the number of imperfections accom-
panied by the input data of the four process variables
described.

Table 6 ARL (standard error) of » chart and ¢ chart

Size Type r chart ¢ chart

- - 353.32 (2.70) 252.61 (2.97)

lo I 7.52 (0.08) 23.25(0.31)
I 5.61 (0.09) 45.45(0.73)
I 6.92 (0.08) 40.39 (0.47)

20 I 421 (0.05) 16.28 (0.18)
I 4.49 (0.04) 35.71 (0.53)
111 3.15 (0.04) 27.02 (0.33)

3o I 1.35(0.01) 4.38 (0.07)
I 3.37(0.03) 25.64 (0.39)
I 2.97 (0.02) 15.23 (0.14)
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4.2 Modeling historical observations (phase I)

Table 1 shows the summary of input and response variables from
reference historical data resulting from 100 observations (x,y)
(data in Appendix). We can see in Fig. 3 that the input variables
are close to the normal distribution, whereas response variables
show that the distribution sharply deviates from a normal shape.

Table 2 shows the sampling correlation matrix. It is possi-
ble to notice that all process variables are significantly corre-
lated with the response variable and the input variables x-
1 and x, and x3 and x, are significantly correlated to each
other. Thus, we are facing a case with evidence that the count
variable changes according to the colinear input variables.

Table 3 (on the left) shows the results from the Poisson
regression performed in the x; variables (standardized to re-
move a scale effect). We noticed that none of them was signif-
icant on explaining the response variable y, according to the
Wald test. The variance inflation factor (VIF) confirmed the
presence of multicolinearity among the input variables (VIF
>5). According to the proposed strategy in this study, we
circumvented the multicolinearity problem using the PCA in
a historical data pre-processing stage. The PCA turned the 100
vectors of observations x from the input variables into scores z;.
Table 3 (on the right) shows that in the fitted PPCR model, both
the PCs z; and z, were significant on explaining the response
variable y. We also observe that the VIF has a reduced value
(VIF <5), showing that the regression model with the non-
colinear PCs captures the correlation structure between the in-
put variables x; and the response variable y. Importantly, the
significance of the first two PCs in the regression model is also
expected, since they bring much of the variance-covariance
structure of the original input variables (see Table 4).

In the next step, we obtained the deviance residuals that will
be used in the construction of the Shewhart » control chart from
the fitted regression model. The control limits are obtained using
w=3 for false alarm probability «=0.0027 (area of 99.73 %,
since the r scores have asymptotic normal distribution).

4.3 Monitoring new observations (phase II)

To show the performance of the Shewhart » control chart de-
signed in last section, we used other 30 historical process data,
in which 20 of them are obtained from an in-control process
and the last 10 resulted in a number of defects per laminated
plastic plywood area very far from the expected outcomes.
The analysis of these bad samples indicates that it was caused
by unusual values of the input variables combined with the
low quality of raw materials. Figure 4 (chart on the left) shows
the samples from the 100 data used in a phase I analysis. We
can see that all the samples are well classified by the 7 chart,
since they were indeed obtained from the in-control process.
Figure 4 (chart on the right) shows the new 30 samples in a »
control chart. Again, we can notice that all the samples were

well classified, since the first 20 are inside the limits and the
last 10 are beyond the limits.

4.4 Simulated phase II study

In order to evaluate the efficiency of our proposed strategy, we
will expand the process illustrated above with simulated data
including different types of disturbance imposed on the re-
sponse count data. Let us keep the fitted PPCR model in the
phase I analysis from the 100 historical real data (shown in
Table 3, on the right) and the resulting control limits to the 7
chart (Fig. 4, both charts). In a phase II simulated study, we
assume that the theoretical link between in-control data y and
x;, follows a Poisson GLM given by Eq. (3), using coefficients
with values based on those in Table 3 (on the left) giving the
same weight to each input variable on the response, so that
Bo=1.5 and 3, =0.5, for k=1,2,3,4, representing the standard
relation between the input and output of the process. We are
using the results from the Poisson regression adjusted from the
sample reference data (even though none of them was signif-
icant due a multicolinearity) to estimate in a coherent way the
true relation between y and x;. Additionally, we can observe in
Fig. 2 that each input variable has the empirical distribution
close to normal density. In this way, we assume that each
future in-control sample vector x = (x1,x2,x3,%x4) ~N (ft, p)
has four-variate normal distribution with a vector of means [t
estimated from the data in Table 1 and with a correlation
estimated from the sample correlation matrix p, shown in
Table 2. So, for each simulated data x, the count response data
y are randomly generated using a Poisson distribution with the
conditional mean A=exp(1.5 +Z;’§: 10.5 xz).

To evaluate the power of the proposed method to monitor
future observations in phase II, different disturbances were sim-
ulated in the data (x,y), including three types of changes with
three sizes each (totaling nine uncontrolled scenarios), as per
Table 5. This shifts include (I) independent shift in a response
mean, (II) shifts caused by a change in a mean of x;, and (III)
shifts caused by change in a mean of x3. Simulations and cal-
culations necessary for obtaining the » chart were conducted
using the open source software R" [32]. In each scenario, there
were 5000 replications of samples of size 1000 each.

Table 6 shows, in terms of average run length (ARL) (until a
change is detected), the performance of 7 chart to the in-control
process and to the presence of changes described in Table 5. In
the first line, we can notice that ARL,, (until a false alarm is
detected) is close to the nominal value of 370, with w=3. Addi-
tionally, in the last column, we notice the performance of the ¢
chart used to monitor the count data y regardless of the input
variables, since, in this case study, none of them were significant
in the Skinner et al. [8] approach in which Poisson regression
were performed in the original input variables. So, there is no
Skinner 7 chart in this case to compare with our PPCR-based r
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chart. For that reason, we use as a benchmark the ¢ chart mod-
ified with adjustments for overdispersion and asymmetry in order
to equalize ARL,,.

As expected, we observed the good performance of PPCR-
based r chart, regarding ¢ chart, in detecting the three types of
different uncontrolled scenarios. Additionally, at each change,
it is noticed that » chart shows the ARL values which rapidly
decrease as the change gets more intense. It demonstrates the
effectiveness of using a PPCR to monitor colinear data.

It is important to highlight that, in addition to allowing the
monitoring of count variable y based on the relevant colinear
input variables x;, the pre-processing of data by PCA stores
the correlation structure between the process variables within
the eigenvectors u;, We observed in Table 4 that the first ei-
genvalue is dominated by a strong correlation simulated be-
tween the variables x; and x, (shrinkage and assembly time)
whereas the second eigenvalue is dominated by a strong cor-
relation imposed on the variables x5 and x4 (wood density and
temperature), according to the correlation structure observed
in the data. Such information will be useful for diagnosing the
disturbances detected by the » chart, by assisting in the iden-
tification of the input variables that most influenced the non-
predicted change in the response variable.

5 Conclusions

The current paper presented a new strategy combining Poisson
GLM regression and principal component analysis (abbreviated
here as PPCR) in order to monitor a class of manufacturing
processes in which the count response variable varies as a func-
tion of predecessor colinear input variables. The modified 7 chart
from Skinner et al. [8] using PPCR allows monitoring the count
variables, thereby preserving the relevant information about their
correlation with colinear input variables. The good performance
of that new approach was illustrated through a case study in a
plastic plywood process with real and simulated data.

Also, with PPCR as a theoretical basis for the proposed r
chart, the diagnosis analysis to the out-of-control points may
be done. The stored eigenvalues from PCA held in input var-
iables keep important information about their correlations
with a response variable that aid in the diagnosis of significant
changes in the variability of the count data.

Finally, as an additional contribution in a SPC field, we pre-
sented a new control approach. The PPCR-based r chart is easy to
handle, which widens its applicability. Further, the proposed tech-
nique can be of a large application, since many manufacturing
process have the same structure as of the process illustrated here.
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Appendix

Table 7 Reference samples of data used in plastic plywood case study

Samples y X1 X X3 X4

1 18 12.39 17.43 0.52 117.62
2 1 8.49 14.15 0.52 106.45
3 41 9.83 15.13 0.57 149.61
4 53 12.39 17.90 0.54 123.93
5 3 8.58 14.03 0.53 117.65
6 24 10.66 16.17 0.55 131.58
7 26 11.18 16.55 0.54 125.56
8 0 8.47 13.75 0.53 122.64
9 4 9.78 15.03 0.54 127.06
10 4 10.85 16.12 0.52 112.38
11 8 11.11 16.31 0.53 121.27
12 0 9.18 14.88 0.53 111.07
13 12 9.77 15.00 0.55 139.21
14 30 10.09 15.47 0.56 144.64
15 2 7.77 13.30 0.54 126.40
16 5 9.74 15.19 0.54 123.61
17 15 10.03 15.46 0.55 135.28
18 28 11.16 16.44 0.55 136.21
19 1 891 14.02 0.52 122.04
20 0 8.58 14.04 0.53 112.62
21 6 10.06 15.38 0.54 126.16
22 1 8.70 14.07 0.53 121.27
23 0 7.51 13.36 0.54 121.79
24 9 10.39 15.85 0.54 125.98
25 4 10.99 16.22 0.52 108.85
26 17 10.27 15.52 0.55 136.05
27 1 10.02 15.64 0.51 97.45
28 6 10.66 15.82 0.54 129.94
29 13 10.42 15.48 0.55 137.11
30 3 8.16 13.79 0.55 131.98
31 7.78 13.36 0.56 139.81
32 33 10.53 15.83 0.56 144.74
33 2 7.89 13.21 0.55 137.69
34 16 10.69 16.18 0.54 127.07
35 18 10.18 15.50 0.55 135.66
36 1 7.90 13.48 0.52 108.93
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Table 7 (continued) Table 7 (continued)
Samples y X1 X X3 X4 Samples y X1 X X3 X4
37 6 10.23 15.34 0.54 128.90 86 1 8.56 13.71 0.52 118.57
38 1 10.06 15.36 0.52 111.13 87 6 8.65 14.29 0.55 131.59
39 1 8.56 14.16 0.53 117.90 88 9 9.79 15.21 0.55 130.42
40 5 7.74 13.45 0.55 131.50 89 2 8.03 13.40 0.55 135.13
41 8 10.06 15.38 0.54 125.97 90 0 9.04 14.34 0.51 100.18
42 9 10.90 16.23 0.53 120.29 91 0 9.89 15.34 0.50 94.26
43 2 10.03 14.95 0.51 110.89 92 3 10.50 15.88 0.53 116.07
44 4 11.06 16.50 0.52 106.44 93 115 12.19 16.93 0.55 148.56
45 26 10.52 15.76 0.56 144.57 94 4 10.23 15.72 0.53 119.18
46 404 12.28 17.53 0.57 155.71 95 15 10.31 15.79 0.54 127.62
47 7 10.22 15.78 0.53 112.65 96 6 7.87 13.34 0.57 149.34
48 2 7.47 12.62 0.52 119.97 97 10 9.32 14.19 0.54 138.50
49 0 9.32 14.73 0.52 109.57 98 1 8.35 13.66 0.53 123.23
50 2 8.59 1391 0.53 124.46 99 1 8.52 14.06 0.53 112.88
51 87 12.08 17.17 0.55 140.29 100 2 10.40 15.59 0.52 114.12
52 6 11.11 16.27 0.52 114.15
53 4 7.97 13.40 0.55 140.90
54 1 8.85 14.11 0.53 118.37
55 4 9.49 14.62 0.54 132.04
56 2 9.41 15.06 0.52 101.86
57 10 8.98 14.32 0.55 14184  References
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