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Abstract Process planning and scheduling are two crucial
components in a manufacturing system. The integration of
the two functions has an important significance on improving
the performance of the manufacturing system. However, inte-
grated process planning and scheduling is an intractable non-
deterministic polynomial-time (NP)-hard problem, and the
multiple objectives requirement widely exists in real-world
production situations. In this paper, a multi-objective mathe-
matical model of integrated process planning and scheduling
is set up with three different objectives: the overall finishing
time (makespan), the maximum machine workload (MMW),
and the total workload of machines (TWM). Amulti-objective
memetic algorithm (MOMA) is proposed to solve this prob-
lem. In MOMA, all the possible schedules are improved by a
problem-specific multi-objective local search method, which
combines a variable neighborhood search (VNS) procedure
and an effective objective-specific intensification searchmeth-
od. Moreover, we adopt the TOPSIS method to select a satis-
factory schedule scheme from the optimal Pareto front. The
proposed MOMA is tested on typical benchmark instances
and the experimental results are compared with those obtained

by the well-known NSGA-II. Computational results show that
MOMA is a promising and very effective method for the
multi-objective IPPS problem.

Keywords Integrated process planning and scheduling
(IPPS) .Multi-objective optimization .Multi-objective
memetic algorithm . Variable neighborhood search .
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1 Introduction and motivation

Process planning and scheduling are two key components in a
manufacturing system [1–4]. Process planning translates the
design data into the best method to manufacture a part [2, 3,
5–8]. It determines the optimal process plan (operations and
their sequence within the precedence relationship constraints)
and other parameters [9, 10], and bridges the gap between
product designing and manufacturing [11]. In general, a
job can have more than one possible process plans.
Scheduling attempts to assign manufacturing resources op-
timally to produce qualified parts with certain criteria. In a
schedule, all the operations should follow a certain prece-
dence relationship specified by the process plan. Obvious-
ly, the two functions are interrelated but not overlapped:
process planning gives the technological constraints for the
scheduling process. Although there is a close relationship
between process planning and scheduling, these two func-
tions are usually performed sequentially [12–16]: the input
of scheduling is the output of process planning. Limita-
tions of this sequential paradigm have been identified and
well discussed in [13, 17, 18]. However, the critical failing
of the sequential paradigm appears: a predetermined pro-
cess plan may not be the best one for the scheduling.

* Chaoyong Zhang
zcyhust@hust.edu.cn

1 School of Mechanical Science and Engineering, Huazhong
University of Science & Technology, Wuhan 430074, China

2 The State Key Laboratory of Digital Manufacturing Equipment &
Technology, Huazhong University of Science & Technology, 1037
Luoyu Road, Wuhan, China

3 School of Mechanical Engineering, Guizhou University,
Guiyang 550025, China

4 Transportation College, Northeast Forestry University,
Harbin 150040, China

Int J Adv Manuf Technol (2016) 85:1513–1528
DOI 10.1007/s00170-015-8037-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-015-8037-7&domain=pdf


The investigation in this area starts from deep researches
and applications of the mono-objective integrated process
planning and scheduling (IPPS) problem with makespan cri-
terion. These solution methodologies for the mono-objective
IPPS problem can be classified into two categories: mathemat-
ical programming approaches and approximation approaches,
such as meta-heuristic algorithms and artificial intelligence
methods. Özgüven et al. proposed mixed integer linear pro-
gramming (MILP) models [19]. However, their MILP models
are suitable for small-scale instances only. For a complex in-
stance, one cannot put up with the excessive CPU time. The
other excellent MILP model was presented in [20]. The au-
thors of that paper transformed the nonlinear model into a
MILP model. However, their model is also suitable for small
scale instances only. As with other non-deterministic polyno-
mial-time (NP)-hard problems, meta-heuristic based algo-
rithms have garnered tremendous attentions and have been
adopted widely for the mono-objective IPPS problem due to
their impressive features, such as short computational time,
without problem self-related information, and strong versatil-
ity. Kim et al. are among the pioneers who study the IPPS
problem in depth. In particular, they devised a set of represen-
tative benchmark instances (Kim’s benchmark) which are fur-
ther solved by their developed symbiotic evolutionary algo-
rithm (SEA) considering the makespan objective [14]. In their
paper, they also reported that the suggested symbiotic evolu-
tionary algorithm (SEA) is better than the cooperative co-
evolutionary genetic algorithm (CCGA). Later, Shao et al.
suggested a modified GA-based approach for solving small-
scale IPPS instances [21]; in their model, process planning
and scheduling functions were carried out simultaneously.
Lian et al. adopted a novel meta-heuristic algorithm, the im-
perialist competitive algorithm (ICA), to settle this problem
[13] although their results were not quite promising for Kim’s
benchmark. Li et al. developed an effective GA based hybrid
algorithm [12] for the IPPS problem; a tabu search (TS) with
an effective neighborhood structure [22] was employed to
improve the performance of the hybrid algorithm. Later, they
introduced an active learning effect into GA and a novel active
learning genetic algorithm (ALGA) was developed [23]. Qiao
and Lv suggested an improved genetic algorithm (IGA)
for this problem, where new genetic representations and
genetic operators were developed [24]. Recently, Zhang
and Wong [25] reported an object-coding genetic algo-
rithm for the IPPS problem, and very promising results
have been obtained. Except for the algorithms already
mentioned, other approaches adopted for the IPPS prob-
lem include the grammatical optimization approach [26],
the combined Genetic Algorithm (GA) and Fuzzy Neu-
ral Network (FNN) approach [27], the simulated
annealing-based optimization approach [28], the modi-
fied particle swarm optimization (PSO) algorithm [29],
the honey bee mating optimization (HBMO) algorithm

[30], scenario based meta-heuristic approach [31], and
agent-based methods [32].

It is worth mentioning that the above research papers con-
centrate on mono-objective algorithms. Usually, only the
makespan criterion is not sufficient to capture a desirable
scheduling scheme. Due to the multiple objectives require-
ment in real-world production situations, it is highly necessary
to consider the multi-objective IPPS problem. To deal with a
multi-objective optimization problem, a primary manner is to
aggregate various objectives into a weighted sum. A sophisti-
cated approach is to treat multiple objectives in a Pareto man-
ner because it can make trade-offs between conflicting objec-
tives. Moreover, the resultant Pareto front brings convenience
for decision makers (DM). Recently, Mohapatra et al. reported
a controlled elitist non-dominated sorting genetic algorithm
[9]; their algorithm was developed from the well-known
NSGA-II [33] and the number of individuals to be selected
as new parent in the currently best Pareto front was restricted.
They show that their algorithm is computationally more effi-
cient than NSGA-II. Another novel algorithm to deal with the
multi-objective IPPS problem is suggested in [18]; the Nash
equilibrium in game theory was introduced to deal with the
multiple objectives. However, both the two papers address
small- or medium-scale IPPS problems only, and promising
solutions for large-scale instances have not been reported.

Unfortunately, as one shortcoming of the previous algo-
rithms, these algorithms so easily get stuck into local optima
that high quality solutions are hardly acquired. Meanwhile, it
comes to our mind that existing approaches regarding the
multi-objective IPPS problem do not take effective local
search into account: although delicately designed, they cannot
capture promising solutions (Pareto fronts) especially for
large-scale instances.Moreover, objective-specific intensifica-
tion search methods have not been developed to take every
criterion in to account. For example, Li et al. employed a tabu
search (TS) in [18] for improving the makespan criterion only,
and they did not develop effective local search methods for
other two objectives.

To overcome these drawbacks, in this paper, the inte-
gration of process planning and scheduling is achieved
through a multi-objective memetic algorithm (MOMA).
We consider three objectives in capturing the optimal Pa-
reto front: the overall finishing time (makespan), the max-
imum machine workload (MMW), and the total workload
of machines (TWM). For the makespan criterion, individ-
uals are improved by VNS while the developed intensifi-
cation search method aims to improve the MMW and the
TWM criteria. Benefitting from the objective-specific in-
tensification search method and with the assistance of the
effective VNS local search method, the MOMA can
achieve a high solution quality. In addition, the TOPSIS
decision supporting method [34] is introduced to obtain
the most satisfactory scheduling scheme.
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The remainder of this paper is organized as follows. “Pre-
liminaries” section gives the definition of the multi-objective
IPPS problem with a MILP model. The details of all the com-
ponents of MOMA are described in “The multi-objective
memetic algorithm (MOMA)” section. “Computational re-
sults with discussions” section provides computational results
with discussions. Finally, conclusions and directions for future
study will be given in “Conclusions” section.

2 Preliminaries

The IPPS problem can be defined as [29]: Given a set of n
parts (jobs) to be processed on m machines with operations
including alternative manufacturing resources, select the suit-
able manufacturing resources and sequence the operations so
as to determine a schedule in which the precedence constraints
among operations can be satisfied and the corresponding ob-
jectives can be achieved.

Jobs to be processed in the IPPS problem are represent-
ed by network graphs [11] as illustrated in Fig. 1a. The
starting node and the ending node are dummy ones and,
respectively, indicate the start and the completion of the
manufacturing process of a job. Other nodes are operation
nodes (marked with numbers) and OR nodes (also OR
connectors, marked with “OR”). An operation node con-
tains the alternative machines that can perform the opera-
tion and processing times required for the operation accord-
ing to the machines. For operation 6 in Fig. 1a, it can be
processed by machine 1 or 5 with processing times 42 or
38. An arrow coming from node A to node B implies that
operation B should follow operation A directly or indirect-
ly. An operation path that begins at an OR node and ends
as it merges with other paths is called an OR link path.
Only one of the OR link path out of the two is needed to
be traversed. For the network of the job in Fig. 1a, paths
(9-10-11) and (12-13) are two OR link paths. Based on the

OR link paths, two (operation) combinations can be gener-
ated as presented in Fig. 1b and c. Possible process plans,
e.g., (7→1→8→4→2→12→3→5→13→6→14) and
(1→2→3→4→5→6→7→8→9→10→11→14), can
be obtained according to the two combinations as long as
the operation precedence relationships in process plans are
satisfied.

Traditional job shop scheduling problems generally as-
sume that there is a single feasible process plan for each job,
and each job has a fixed operation sequence (e.g., O1→O2→
O3→…) [35]. This implies that operation Oi+1 should be
scheduled after Oi and before Oi+2 in any case. However,
the IPPS problem is a more flexible problem because most
jobs may have a large number of feasible process plans that
rest on different operation permutations. Specifically, the pre-
cedence relationship of some operations is not fixed (e.g.,
operations 2 and 4 in Fig. 1a). Besides, some operations
may not be selected in a process plan if an OR link path is
not selected. The IPPS problem can be regarded as the flexible
job shop scheduling problem (FJSP) plus various routings,
and hence, the problem is a strong non-deterministic polyno-
mial-time (NP)-hard problem. The characteristics of the IPPS
problems are presented in the comprehensive review in [36].
For clarity, we provide here a mathematic model of the multi-
objective IPPS problem since a mathematic model can more
or less express the nature and important characteristics of the
problem. Further discussion on this problem is based on the
following assumptions:

1. Jobs and machine tools are independent and available at
time zero.

2. Job preemption is not allowed, and each machine can
handle only one job at a time. Different operations of
one job cannot be processed simultaneously.

3. Once a job is finished, it will be immediately trans-
ferred to another machine with transportation time
neglected.

4. Setup time of an operation is included in the processing
time.

Subscripts, notations, and sets:

i,i ′ jobs, 1≤i≤ |n|
j,j ′ operations
k,k ′ machines, 1≤k≤ |M|
l,l ′ process plans
Oijl the j-th operation of job i using the l-th process plan of

the job
n the set of jobs
M the set of all the machines
Ti the set of process plans of job i
NOil the set of operations for l-th process plan of job i
Rijl the set of available machines of OijlFig. 1 Network representations
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Parameters:

pijkl the processing time of Oijl on machine k
A a very large positive integer

Variables:

Cmax makespan
TWM the total workload of machines
MMW the maximum machine workload

X il ¼ 1; the l‐thprocessplanof job i is selected
0; otherwise

�
;

Zijkl ¼ 1; if Oi jl isprocessedonmachinek
0; otherwise

�
;

Y ijli0 j0l0 ¼ 1; if Oi jl isprocesseddirectlyor indirectly afterOi0 j0l0

0; otherwise

�
;

Cij the completion time of the j-th operation of job i

Objective:

minCmax ð1Þ
minTWM ¼

X
i∈n

X
l∈Ti

X
j∈NOil

X
k∈Ri jl

Zijklpi jk ð2Þ

minMMW ¼ max
k∈M

X
i∈n

X
l∈Ti

X
j∈NOil

Zijklpi jk

 !
ð3Þ

s.t.X
l∈T

X il ¼ 1; ∀i∈n ð4Þ
X
k∈Ri jl

Zijkl þ 1−X ilð Þ ¼ 1; ∀i∈n; l∈Ti; j∈NOil ð5Þ

Ci0 ¼ 0; ∀i∈n ð6Þ
Ci j≥Ci j−1 þ

X
k∈Ri jl

pijklZijkl; ∀i∈n; l∈Ti; j∈NOil; j≥1 ð7Þ

Ci j≥ Ci0 j0 þ pijkl− A 3−Y ijli0 j0l0−Zijkl−Zi0 j0kl0
� �

;
∀i∈n; i < nj j; i0 > i; l∈Ti; l0∈Ti0 ; j∈NOil; j0∈NOi0l0 ; k∈Ri jl∩Ri0 j0l0

ð8Þ

Ci0 j0 ≥Ci j þ pi0 j0kl0−A 2þ Y ijli0 j0l0−Zijkl−Zi0 j0kl0
� �

∀i∈n; i < nj j; i0 > i; l∈Ti; l0∈Ti0 ; j∈NOil; j0∈NOi0l0 ; k∈Ri jl∩Ri0 j0l0
ð9Þ

Cmax≥Ci j; ∀i; j∈NOil ð10Þ

In the model, the objectives are formulated by Eqs. (1–3).
According to constraint set (4), one and only one process plan
is selected for each job. For each operation that has been
selected, it should be assigned to a machine. This point is
reflected by constraint set (5). Constraint sets (6) and (7) are
used to determine the starting time of each operation of a job.
Constraint set (7) ensures that an operation of a job should be
processed after its job predecessor is completed. The index j in
constraint set (6) starts at 0 to accommodate the term Cij−1 in
constraint set (7). Thus, constraint sets (6) and (7) also mean
that every job can only be processed at time 0 or later. Con-
straint sets (8) and (9) schedule different operations on the
same machine. Note that constraint sets (4) and (5) are very
important because they prevent unnecessary variables from
taking value 1. Thus, there are only two subscripts in the

variable Cij. Constraint set (10) is used for capturing the value
of the makespan criterion. The mono-objective version of this
model with makespan criterion has been used to solve small-
scale instances successfully using GAMS/Cplex.

3 The multi-objective memetic algorithm (MOMA)

Different with other algorithms for the IPPS problem,
problem-specific multi-objective local search methods are
considered in MOMAwhere the three objectives are tactfully
covered by these local search methods (to be discussed in
“Problem-specific multi-objective local search” section). In
this way, all the objectives can be optimized at the same time.
In the following, basic components of MOMA, e.g., coding
and decoding schemes, are described first.
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3.1 Encoding and decoding

Figure 2 gives a pictorial presentation of the chromosome
structure. A chromosome consists of a scheduling string, some
process plan strings, and corresponding operation strings. The
scheduling string adopts an operation-based coding scheme
[37]. This coding scheme brings convenience to the decoding
process. The scheduling string is a permutation of job num-
bers with each job number appearing exactly |NOil| times,
where NOil denotes the set of operations that belong to the l-
th process plan of job i. The length of the scheduling string
equals the sum of the maximum possible number of opera-
tions of each job (∑|NOil|max). If the number of the operations
of a process plan is less than the maximum possible one of that
job (|NOil|<|NOil|max), (∑(|NOil|max− |NOil|)) randomly select-
ed positions in the scheduling string should be filled with 0 s
to avoid any infeasibility. In Fig. 2, there are a total of eight
operations to be scheduled and the actual numbers of opera-
tions for the three jobs are three, two, and three, respectively.
Assume that each job has three operations at most; the last
position should be filled with a “0.” The second string con-
tains the information of the process plan of a job. In a chro-
mosome, there are a total of |n| operation strings with each
string containing |NOil| operations (positions). As illustrated
in Fig. 2, every position in an operation string represents an
operation. Two numbers in a pair of parentheses in each posi-
tion represent the operation number and the selected machine,
respectively. The permutation of operations in an operation
string should satisfy the precedence relationships as indicated
in the network graph; a feasible operation permutation of a job
can be obtained by the binary tree method [38]. The actual
number of the operations of a job in an individual is deter-
mined by the selected combination (also the selected OR link
path). For instance, the job in Fig. 1a may have 12 or 11
operations dependent on the selected combination as shown
in Fig. 1b and c. This information is represented by the num-
ber in the process plan string. The number in a process plan
string specifies which operation combination is selected. For
the case in Fig. 1a, it has two operation combinations. Conse-
quently, the number in the process plan string is either 1 or 2,
which means that one of the two operation combination is
selected for this job.

The active scheduling procedure [39] is adopted in the
decoding process. The whole procedure is summarized as
follows.

Nomenclature

Oij the j-th operation of the i-th job
k the alternative machine for Oij

tijk the processing time of operation Oij on machine k
cij the completion time of Oij

ts the starting time of a time slot
te the ending time of a time slot
tk the last operation’s completion time on machine k at

present.

Step 1: For each number in the scheduling string, determine
the corresponding job and operation if the number is
not equal to 0: if the number i (i≠0) in the scheduling
string appears exactly l times, it means the operation
in the l-th position of the operation string of job i is
selected. For convenience, we denote this operation
as Oij.

Step 2: Find out the operation Oij by locating this operation
in the operation string.

Step 3: Assign this operation on the predefined machine mk.

Step 3.1: Check whether there is a time slot on mk.
Step 3.2: If there is a time slot and max{ci,j−1,ts}+tijk≤

te, insert the operation in this time slot and go
to step 1 for next operation. Otherwise, check
the next slot on the same machine till all the
time slots are checked.

Step 3.3: If there is no available time slot, append the
operation at the end of the machine with the
starting time max{ci,j−1,tk}.

Step 4: Go to step 1 for next operation till the operations are
all scheduled.

3.2 Genetic operators

Position-based crossover method [40], commonly used in
scheduling problems, is adopted in MOMA as the crossover
procedure. Randomly select some jobs, and exchange the op-
eration strings together with corresponding process plan
strings of the selected jobs in two individuals; other operation
strings and process plan strings in both individuals are kept
still. Then, two empty scheduling strings O1, O2 are initial-
ized. The genes in parent 1, which reflect the unselected jobs,
are passed on to the same positions as in the offspring 1 (O1).
These genes are removed from parent 2 (P2), and the remain-
ing elements are copied into the undetermined positions in O1
in the same order as they appear in P2. A repairing procedure
is adopted to resolve the illegitimacy; it deletes redundant
symbols or adds necessary symbols after check the actual
number of operations of each selected job (Fig. 3a) gives anFig. 2 The coding scheme
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example. Last two jobs are selected, and the selected operation
strings with corresponding process plan strings (in dashed
boxes) in the first individual are interchanged with the ones
in the second individual. A “0” is filled in a position in the
scheduling string of offspring 2 (O2) to avoid infeasibility.
Two resultant individuals are given at the bottom of Fig. 3a.

Recall that the sequencing flexibility (SF) is an important
feature of the IPPS problem. SF enables different feasible
permutations with the same operations (combination). Differ-
ent with the chromosome structures adopted by other reported
algorithms that seldom consider SF, our chromosome struc-
ture allows MOMA to take an advantage of SF by performing
the second crossover operator. This time, an order crossover
(OX)-based one point crossover [41] is performed between
two operation strings for the same job; the two jobs in both
individuals should have the same number in the process plan

Fig. 5 The problem-specific multi-objective search procedure

Fig. 4 Two local search methods

Fig. 3 Crossover and mutation operators
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strings (they have the same operation combination). As illus-
trated in Fig. 3b, there are two operations taken from two
different individuals, and two new feasible operation stings
are generated after the crossover procedure. To our knowl-
edge, this crossover operator is often neglected in other ap-
proaches for this problem.

The mutation procedure is performed by just changing a
machine for an operation or randomly swapping two numbers
in the scheduling string. As illustrated in Fig. 3c, machine 3
will process the first operation of the second job after muta-
tion. Meanwhile, numbers in two randomly selected positions
in the scheduling string have been interchanged.

3.3 Problem-specific multi-objective local search

3.3.1 VNS for the makespan criterion

In our algorithm, we employ the VNS algorithm to improve
the makespan criterion. In VNS, two neighborhood structures
are adopted. A neighborhood structure combines the special
knowledge of a certain problem to facilitate an effective and
slight perturbation in an individual. These two adopted neigh-
borhood structures have been successfully applied to the

Table 1 Test-bed instances

Number Jobs Job number Operations

1 6 1, 2, 3, 10, 11, 12 79

2 6 4, 5, 6, 13, 14, 15 100

3 6 7, 8, 9, 16, 17, 18 121

4 6 1, 4, 7, 10, 13, 16 95

5 6 2, 5, 8, 11, 14, 17 96

6 6 3, 6, 9, 12, 15, 18 109

7 6 1, 4, 8, 12, 15, 17 99

8 6 2, 6, 7, 10, 14, 18 96

9 6 3, 5, 9, 11, 13, 16 105

10 9 1, 2, 3, 5, 6, 10, 11, 12, 15 132

11 9 4, 7, 8, 9, 13, 14, 16, 17, 18 168

12 9 1, 4, 5, 7, 8, 10, 13, 14, 16 146

13 9 2, 3, 6, 9, 11, 12, 15, 17, 18 154

14 9 1, 2, 4, 7, 8, 12, 15, 17, 18 151

15 9 3, 5, 6, 9, 10, 11, 13, 14, 16 149

16 12 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15 179

17 12 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18 221

18 12 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17 191

19 12 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18 205

20 12 1, 2, 4, 6, 7, 8, 10, 12, 14, 15, 17, 18 195

21 12 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18 201

22 15 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 256

23 15 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 256

24 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 300

Fig. 6 Work flow of MOMA
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Fig. 7 Optimal Pareto fronts
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(flexible) job shop scheduling problem. The first one is the N5
neighborhood structure [22]. It is famous for its high cost
performance because only swapping the first and (or) last
two operations in a critical block is performed. The second
one is proposed byMastrolilli and Gambardella [42]. It tries to
remove every critical operation in a critical path from the
current machine to break the critical path. Figure 4a gives
the illustration of the two neighborhood structures. VNS tries

to perform a slight perturbation in the scheduling string
and operation string(s) using one neighborhood structure
continuously till there is no further improvement. Then,
it jumps to the second neighborhood. If the individual is
improved, it jumps back to the first neighborhood to
repeat the above process. Otherwise, the VNS procedure
is terminated. The detailed VNS procedure is given in
Algorithm 1.

IsContinue true; //The N5 neighborhood is first applied
while IsContinue=true
StopN5 false;
while StopN5 =false do

EndBlk false;
while EndBlk =false do
Find out a critical block;
if the block contains more than one operation then
if it is the first block then swap only the last two operations in the block end if
if it is the last block then swap only the first two operations in the block end if
if it is neither the first block nor the last block then swap the first two and the
last two operations in the block end if

end if
if the makespan after a swap<current makespan then
Accept the new schedule;
StopN5 false; EndBlk true; //Break this while-loop

else
StopN5 true; EndBlk false;
//keep the original schedule and go for the next swap

end if
if all the blocks have been checked and there is no improvement then
EndBlk true; StopN5 true; IsContinue false;

end if
end while

end while
//the algorithm jumps to the Nopt neighborhood
Determine a critical path and the number of critical operations (NCO);
Determine a right justified schedule to obtain the latest starting time of an operation;
for i 1 to NCO do
if NMi machines are able to process the ith critical operation then
//The algorithm tries to move a critical operation to other NMi-1machines.
Generate available neighbors; NeiborCnt 1; //record the number of neighbors
//Suppose the ith critical operation can be inserted in Nij positions.
//Put each neighbor in the set NeiborSet.
for j 1 to NMi-1 do
for k 1 to Nij do
NeiborSet[NeiborCnt] a neighbor; NeiborCnt++;

end for
end for

end if
end for
for i 1 to NeiborCnt do Evaluate NeiborSet[i]; Find the best one: BestNeibor; end for
Apply BestNeibor;
if the makespan is improved then Accept BestNeibor; IsContinue true;
//Jump back to the N5 neighborhood

else
Keep the previous schedule; IsContinue false; //Terminate the VNS algorithm

end if
endwhile

Algorithm 1

3.3.2 The intensification algorithm for TWM and MMW
criteria

The presence of multiple objectives encourages a family of
non-dominated or non-inferior solutions (the optimal Pareto

front). In fact, local search methods for all the considered
objectives have seldom been facilitated in existing algorithms
for the multi-objective IPPS problem. We developed an inten-
sification search method for the TWM and the MMW criteria
in MOMA. Figure 4b gives the principle of this procedure. It
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tries to remove each operation to be processed by the machine
whose workload is largest to other available machines that
have less workload. During the optimization process, the

TWM and MMW criteria are considered at the same
time. In Algorithm 2, the intensification search proce-
dure is outlined.

1: Step1: Identify the machine that has the maximum workload. Put the operations on this machine to the set MO.
2: Step2: Record the objective values as: P_makespan, P_TWM, and P_TWM
3: Step3: IsContinue false;
4: for i |MO| to 1
5: for j 1 to N(MOi) //MOi denotes the ith operation in MO; N(MOi) the number of available machines of MOi

6: if (Mj != current machine) then //Mj is an available machine for operation MOi

7: InsertMOi to this machine. Evaluate and record the objective values as N_makespan, N_TWM, and N_MMW
8: end if
9: //Judge if accept the machine assignment for the operation MOi:
10: If (N_MMW<P_MMW) and (N_TWM P_TWM) then
11: Accept this machine assignment and go to Step1.
12: else if (N_MMW<P_MMW) and (P_MMW - N_MMW)>(N_TWM - P_TWM) then
13: Accept this machine assignment and go to Step1.
14: else if (N_TWM<P_TWM) and (N_MMW P_MMW) then
15: Accept this machine assignment and go to Step1.
16: else if (N_TWM<P_TWM) and (P_TWM - N_TWM)>(N_MMW - P_MMW) then
17: Accept this machine assignment and go to Step1.
18: else
19: Abandon this machine assignment.
20: end if
21: end for
22: end for
23: Step 4: if (! IsContinue) then Stop searching and terminate the algorithm. end if

Algorithm 2

Both the TWM and the MMW criteria are considered
in this intensification search: the MMW criterion is con-
sidered in lines 10–13 in Algorithm 2 while the proce-
dure in lines 14–17 deals with the TWM criterion. More
importantly, influenced by the Pareto optimality concept,
this intensification search emphasizes trade-offs between
different objectives as described in line 12 and line 16
in Algorithm 2: if there are more improvements of the
MMW (or TWM) criterion than those of the TWM (or
MMW) criterion, the machine assignment can still be
accepted.

3.3.3 The problem-specific multi-objective search procedure

The multi-objective local search procedure is depicted in
Fig. 5. It contains both VNS and the intensification search.
N/2 (N is the population size) individuals are randomly
selected (marked in green in Fig. 5). For the selected indi-
viduals, the intensification search algorithm (Algorithm 2)
are first applied to improve the TWM and the MMW
criteria. VNS (Algorithm 1) is then applied to optimize
the makespan criterion. For the remaining N/2 individuals,
makespan-oriented VNS is applied before the intensifica-
tion search. After this, the two parts are merged and the
local search procedure is finished.

3.4 The Pareto-based algorithm

The proposed MOMA maintains a population that is im-
proved over iterations. The optimization process is sensed

in terms of the three objectives. Just as the case in NSGA-
II, the population is updated over iterations by selection,
crossover, and mutation operators. First, an offspring pop-
ulation Qt (of size N) is created from the parent population
Pt. Then, population Qt is combined with Pt to form an
intermediate population, Rt, of size 2N. After evaluating all
the individuals in each generation, all the Pareto fronts in
Rt can be identified. The new population Pt is obtained
from the merged population Rt by taking the Pareto solu-
tions. In MOMA, we adopt the novel sorting method pro-
posed in [43]. This fast non-dominated sorting method,
reduces the time complexity from O(rN2) in NSGA-II to
O(rNlogN) (r is the number of objectives).

3.5 The TOPSIS method

This decision supporting strategy is developed based on
the concept that the chosen alternative should have the
shortest distance from the ideal solution and the farthest
from the negative-ideal solution [34]. After a given number
of iterations, MOMA terminates with the resultant optimal
Pareto front. In the final step of MOMA, a decision should
be made in the presence of multiple criteria to determine
the most reasonable individual from the optimal Pareto
front. During the decision process, we assume that all the
three criteria are equally important, and a set of weights
w=[1/3, 1/3, 1/3] for the three objectives is accommodated
to the decision matrix of TOPSIS method in MOMA. The
whole algorithm is depicted in Fig. 6.
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4 Computational results with discussions

To evaluate the performance of MOMA developed for the
multi-objective IPPS problem, the typical benchmark in-
stances reported in [14] are considered in our experiment. This
data is the most popular set of instances tested in existing
works. We first show that better optimal Pareto fronts can be
captured by MOMA. Then, we compare MOMA with the
well-known NSGA-II algorithm using two metrics. More im-
portantly, satisfactory solutions are obtained by the TOPSIS
method from the Pareto fronts captured by MOMA and
NSGA-II, respectively; we compare the resultant satisfactory
solutions to demonstrate the advantage of MOMA over
NSGA-II. Finally, we present a visual comparison to demon-
strate the necessity of multi-objective optimization for the
IPPS problem.

The algorithm is programmed in C++ language and imple-
mented on a computer with an Intel i5 3470 3.2GHz CPU and
4 GB of memory. The parameters are set as follows: the pop-
ulation size is set to 400; the crossover probability and the
mutation probability are set to 0.7 and 0.08, respectively;
and the algorithm terminates after 800 iterations. To accom-
modate MOMA to the three criteria, half of the individuals in
MOMA are generated randomly while other individuals are
assigned with shortest process plans and the machines with
shortest processing times [24].

In our experiment, the 24 test-bed instances in Kim’s
benchmark [14] are constructed with 18 jobs. In each instance,
there are a total of 15 machines to process the jobs. The num-
ber of operations of these instances varies from 79 to 300. The
details of these instances are listed in Table 1.

To demonstrate the excellent performance of MOMA,
visual comparisons are presented as depicted in Fig. 7.
Three most complicated instances in Kim’s benchmark
(instances 22–24) are considered, and optimal Pareto
fronts taken from the last iteration of three cases are
depicted in Fig. 7. In case 1, we apply MOMA directly
to obtain the optimal Pareto front. In case 2, the pro-
posed intensification search is not employed. Thus, case
2 can be deemed as the NSGA-II algorithm combined
with VNS. For the last case, both VNS and the inten-
sification search are not considered, and only NSGA-II
is applied. In all the three cases, parameters remain
unchanged.

As can be seen in Fig. 7a and b, the Pareto front of case 1 is
more competitive than those of other two cases for the MMW
and TWM criteria. For the makespan criterion, we can find
that the optimal Pareto front of case 2 is better according to the
top view in Fig. 7b: it locates much closer to the coordinate
axis of the TWM criterion. For the MMW and the TWM
criteria, however, the Pareto front of case 2 exhibits its weak-
ness. This is due mainly to the fact that the VNS procedure is
makespan-oriented and only VNS is not enough to cope with

the three criteria in case 2. Clearly, the Pareto front of case 1
can make a reasonable tradeoff between the three objectives.
In other words, the non-dominated solutions of case 1 in
Fig. 7b are distributed more equally than the situation of case
2. Further, we can easily find out that the Pareto front yielded
byMOMA (case 1) is more competitive than the one obtained
by NSGA-II (case 3) according to Fig. 7a and b. The above
comparisons between MOMA and the other two algorithms
(NSGA-II+VNS and NSGA-II) indicate that the intensifica-
tion search method plays an important role in improving the
MMWand the TWM criteria. For instance 23, MOMAyields
competitive non-dominated solutions for the three criteria
from observation of Fig. 7c and d. Figure 7d gives a top view
of the optimal Pareto fronts yielded by the three algorithms. In
Fig. 7d, non-dominated solutions captured by MOMA give a
better distribution along the axis of the TWMcriterion. For the
last instance, MOMA yields an excellent Pareto front again.
According to Fig. 7e, the Pareto front captured by MOMA
totally dominated other two Pareto fronts. As indicated in
Fig. 7e and its top view (Fig. 7f), the MMW and the TWM
criteria receive less improvements again in case 2 and case 3.

Table 2 Comparisons between MOMA and NSGA-II

Number AR SP

MOMA NSGA-II MOMA NSGA-II

1 1* 1 7.32* 54.24

2 1* 0 33.66* 79.31

3 0.92* 0.21 25.11* 28.58

4 1* 0 213.86 27.87

5 0.96* 0.91 7.98* 85.92

6 1* 0.29 104.03 69.26

7 0.77* 0.5 109.172 76.56

8 1* 0.42 36.87 15.44

9 0.97* 0.23 5.84* 28.36

10 0.88* 0.84 28.96* 64.32

11 1* 0 22.5 17.81

12 1* 0.05 12.83* 108.35

13 0.95* 0.65 20.69* 172.31

14 0.65 1 24.32* 144.8

15 0.9* 0.55 12.53* 204.40

16 1* 0.56 78.03* 127.56

17 1* 0 13.92* 38.78

18 1* 0 71.60 38.03

19 1* 0.18 15.62* 105.66

20 1* 0.28 46.25* 64.45

21 0.24 1 72.75* 88.81

22 1* 0 46.69 35.91

23 1* 0 14.80 24.39

24 1* 0 64.44* 101.66

*The case where MOMA performs better than NSGA-II
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Based on the observations of Fig. 7 and the above discus-
sion, it is very intuitive to find out thatMOMA is the winner: it
can generate more satisfactory non-dominated solutions than
NSGA-II. MOMA is much better than the traditional NSGA-
II for the multi-objective IPPS problem because applying

problem-specific local search methods in MOMA makes it
able to find a better spread of solutions than other algorithms
in terms of the quality of solutions.

To demonstrate the fact that MOMA gains an advantage
over other algorithms, we compare the performance of
MOMA in Table 2 with that of the well-known NSGA-II
algorithm using Kim’s benchmark. Two metrics, the average
ratio (AR) and the spacing metric (SP), are introduced to eval-
uate the optimal Pareto solutions of MOMA and NSGA-II.
For the AR metric, it can be calculated in the following man-
ner. Let P1 and P2 be the optimal Pareto solutions gained from
MOMA and NSGA-II, respectively. The set P can be obtained
bymergingP1 and P2, e.g., P=P1∪P2. Thus, the AR value of
an algorithm is calculated as the ratio of the optimal Pareto
solutions in P1 that are not dominated by any other solutions
in P, as illustrated in Eq. (11).

AR Pið Þ ¼
Pi− x∈Pi

���∃y∈P : y≻x
n o��� ���

Pij j ð11Þ

In Eq. (11), y≻x means solution y dominates x. The higher
the ratio AR is, the better the solution set Pi is. The SP metric,
which is usually adopted for the optimization problem with
two objectives, are designed to evaluate the distribution of the
solutions in the optimal Pareto front. As described in Eqs. (12)
and (13), we improve this metric so that it can adapt to the
triple-objective IPPS problem studied in this work.

Fig. 8 The Gantt chart of the first instance

Table 3 Non-dominated solutions

Number Makespan TWM MMW

1 428 1843 129

2 428 1828 145

3 427 1822 150

4 428 1820 149

5 428 1826 147

6 436 1840 131

7 431 1839 132

8 432 1831 134

9 429 1816 154

10 428 1834 143

11 427 1841 133

12 428 1835 139

13 427 1842 132

14 427 1838 134

15 427 1835 143

16 427 1831 147

17 427 1824 149
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di ¼ min
j

f 1 xið Þ− f 1 x j
� ��� ��þ f 2 xið Þ− f 2 x j

� ��� ��þ f 3 xið Þ− f 3 x j
� ��� ��� �

;

i; j ¼ 1; 2; … ; nP ð12Þ

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

X
i¼1

nP

d−di
� �2s

ð13Þ

In Eqs. (12) and (13), nP is the total number of non-
dominated solutions in the optimal Pareto front, fk(xi) is

the value of the k-th criterion of solution xi, and d is
the mean value of di. A less SP value is more
acceptable.

Most of the AR values of MOMA in Table 2 take
value 1 or the value very close to 1 while the AR
values of NSGA-II fluctuates wildly between 0 and 1.
Based on the observation of Table 2, MOMA outper-
forms NSGA-II for 22 instances. For the SP metric, the
high performance of MOMA is observed again. Small
SP values of MOMA in Table 2 mean the distances
between the non-dominated solutions captured by
MOMA are distributed more equally. It can be seen that
the novel algorithm MOMA outperforms NSGA-II for
16 instances. We believe that the high performance of
MOMA stems from the VNS procedure and the pro-
posed intensification search method because most of
the non-dominated solutions obtained by NSGA-II are
dominated by the ones obtained by MOMA where
VNS and intensification search method are applied.

Because MOMA and NSGA-II each generate a set of non-
dominated solutions after a certain number of iterations, the
most acceptable schedule of each instance can be determined
by the TOPSIS decisionmethod from the optimal Pareto front.
Table 3 gives all the non-dominated solutions yielded by
MOMA in the optimal Pareto front of instance 1. By using
the TOPSIS method, the third solution in Table 3 is deter-
mined as the most acceptable solution, and the corresponding
Gantt chart is depicted in Fig. 8.

In Table 4, we list the objective values of the resultant
satisfactory schedules obtained by the TOPSIS method. Com-
petitive objective values in Table 4 are marked with asterisks.

From observation of Table 4, it can be seen that MOMA
outperforms NSGA-II: eight resultant schedules of MOMA
are better than those of NSGA-II for all the three criteria while
only one resultant schedule of NSGA-II is better than that
obtained by MOMA. Although the resultant solutions of
MOMA and NSGA-II of other 15 instances do not dominate
each other, superiorities of the novel algorithm MOMA can
still be observed: for the 12 instances (instances 1, 3, 5–6, 8–9,
12–13, 15–16, 19, and 21) of the remaining 15 instances, the
resultant objective values of the MMW criterion of MOMA
gain enormous advantages over the ones of NSGA-II accord-
ing to Table 4.

Finally, we give an example to demonstrate that it is highly
necessary to consider the multiple objectives requirement aris-
ing in a real-world production environment. Figure 8 gives the
Gantt chart of the first instance obtained by MOMA while
Fig. 9 depicts the schedule of the same instance that is yielded
by a mono-objective algorithm with makespan criterion only.
Although these two schedules have the same overall finishing
time (427), the scheduling scheme obtained by MOMA pre-
sented in Fig. 8 is more satisfactory than the other one after
judging theMMWvalues in Fig. 10 which gives the workload
of each machine presented in Figs. 8 and 9. The maximum
machine workload of the schedule in Fig. 8 is 150 while the
one in Fig. 9 is 254. Clearly, the workload of the scheduling
scheme in Fig. 8 is distributed more equally on 15 machines
than the case in Fig. 9. This means the proposed algorithm can
truly reduce the maximummachine workload of a schedule by
allocating excessive operations to other available machines.
For the TWM criterion, MOMA shows its talent again: the
total workload of machines in Fig. 8 is 1822, and this value is

Table 4 Objective values of resultant schedules

Number MOMA NSGA-II

Makespan TWM MMW Makespan TWM MMW

1 427 1822 150 427 1812 193

2 343* 1623* 174* 343 1624 206

3 347 1713 166 347 1710 181

4 306* 1433* 148* 307 1443 148

5 319 1588 159 319 1581 248

6 427 2134 175 427 2128 239

7 372 1826 189 372* 1826* 179*

8 343 1686 148 343 1676 237

9 427 1641 169 427 1637 198

10 428 2727 237 427 2728 244

11 348* 2449* 205* 348 2481 280

12 320 2231 175 327 2225 212

13 427 2936 245 427 2935 262

14 375 2749 210 384 2728 253

15 427 2430 215 427 2422 244

16 427 3451 251 427 3448 282

17 359* 3358* 254* 388 3391 302

18 329* 3043* 229* 347 3089 252

19 440 3733 270 439 3739 324

20 400 3558 262 421 3529 276

21 427 3336 268 427 3318 309

22 448* 4358* 317* 475 4381 379

23 418* 4238* 294* 448 4249 332

24 482* 5195* 362* 497 5224 397

*The case where MOMA performs better than NSGA-II
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less than 1860 which is the total workload of machines in
Fig. 9. Clearly, with the same makespan value, the schedule
obtained by a mono-objective algorithm in Fig. 9 is not very
promising due to the disadvantages on the other two criteria.
Thus, choosing the schedule in Fig. 8 can meet the real-life
situation better. Based on the analysis and comparisons in this
section, we can conclude that MOMA outperforms NSGA-II
in addressing the multi-objective IPPS problem.

5 Conclusions

In this study, the IPPS problem is addressed in a Pareto man-
ner and solved by the novel algorithm MOMA. Compared
with existing multi-objective meta-heuristic algorithms, the
proposed algorithm adopts an objective-oriented multi-objec-
tive local search method, where makespan-oriented variable
neighborhood search algorithm and machine workload-
specific intensification search are adopted to improve all the
three objectives. This is the distinct feature of MOMA.
A novel fast non-dominated sorting method is also
employed in MOMA to reduce the computational com-
plexity. After the optimal Pareto front is obtained, the
TOPSIS method is adopted in determining the most sat-
isfactory schedule among a set of non-dominated solu-
tions. To evaluate the proposed algorithm, MOMA was
tested on typical benchmark instances and compared
with the well-known NSGA-II algorithm. Computational
results reflected the following conclusions:

1. MOMA can effectively improve all the three objectives.
2. Compared with other multi-objective algorithms, e.g., the

well-known NSGA-II, MOMA is able to achieve more
competitive non-dominated solutions.

3. It is quite necessary to employ local search methods
for all the objectives in multi-objective optimization
algorithms.Fig. 10 Workload of each machine

Fig. 9 The Gantt chart of the first instance with makespan criterion only
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The focus of this work is mainly on deterministic con-
straints of jobs. However, a manufacturing system in the real
world is often subject to many sources of uncertainty. One
source of uncertainty lies in the processing time of an opera-
tion which may fluctuate within a certain range. Thus, a
predefined schedule may usually be affected. In future re-
search, uncertain processing times should be included, and a
multi-objective algorithm for the IPPS problem with uncertain
processing time can be considered.
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