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Abstract Laser brazing process with crimping butt is sensi-
tive to welding parameters, and it is difficult to acquire a good
quality of welding joint. To achieve good welding parameters
(welding speed, wire feed rate, gap), this paper addresses the
multi-objective optimization of bead profile, namely sum of
left side and right side of bead geometry and subtraction be-
tween top width of bead and bottom width of bead profile.
Back propagation neural network was used to predict goals
with average error of 9.95 and 8.54 %; non-dominated sorting
genetic algorithm was adopted to acquire a Pareto set, and
verification experiments demonstrated that relative errors
were controlled within 3.97 %. Meanwhile, the importance
from welding parameters on goals was ranked by signal-
noise ratio and interactions between each parameter.
Therefore, a novel multi-objective optimization method was
proved to be feasible and would be useful to guide the actual
welding process of laser brazing.
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1 Introduction

In fact, the welding bead geometry (WBG) is the first indica-
tion of the weld bead quality [1] and that also plays an impor-
tant role in determining the mechanical properties of the weld
[2]. However, it is very difficult to effectively control the
forming of WBG. On the one hand, WBG is firstly decided
by the fluctuation of the weld pool during the welding proce-
dure. Rao et al. found that electromagnetic force affected by
shielding gas compositions plays the most significant role in
determining the behaviors of metal transfer in gas metal arc
welding (GMAW) [3]. Courtois et al. developed a complete
modeling of heat and fluid flow mainly considering buoyancy
force, Marangoni effect, and recoil pressure [4]. On the other
hand, welding parameters have key influence on WBG and
are difficult to be accurately regulated. Sathiya et al. revealed
that shielding gas with different components have clearly im-
pacts on bead profile, hardness, micro-structural characteriza-
tion [5]. By experimental study, Phaoniam et al. researched the
formation of the weld bead and the bonding strength of narrow
gap welding considering wire current, wire feeding position,
laser irradiation angle, and wire feeding angle [6]. Gao et al.
explained the influence from heat power and welding speed
on weld appearances, microhardness, and tensile properties
[7]. Obviously, it is necessary to reveal the influence from
welding parameters on WBG in order to better control the
WBG and hence mechanical properties.

Up to now, mathematical method is a common method in
developingmodel between the welding parameters andWBG.
Sharma et al. built a WBG mathematical model of high depo-
sition welds by supposing reinforcement as an eccentric ellip-
se [8]. Prasad et al. used the gray relational analysis to opti-
mize the WBG of pulsed current micro plasma arc weld [9].
Lin et al. optimized weld shape of GMAWusing hybrid model
of gray relational analysis and Taguchi method [10]. Response
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surface method (RSM) was applied to research the relation-
ship between welding process (laser power, welding speed,
and wire feed rate) and bead shape in narrow gap laser
welding [11], while this technique was also used to relate the
identified important process parameters like welding voltage,
wire feed rate, welding speed, nozzle to plate distance, and
welding gun angle with bead geometry in flux cored arc
welding (FCAW) [12]. Korra et al. predicted and optimized
the depth of penetration of the stainless steel with gas tungsten
arc welding by artificial neural networks (ANN) and simulat-
ed annealing (SA) algorithm [13]. Katherasan et al. developed
the mathematical simulation model of bead profile about
FCAW through ANN and particle swarm optimization
(PSO) algorithm and hence tested the Vickers hardness of
each joint [14]. Sathiya et al. optimized the welding parame-
ters of GMAW by RSM and Genetic algorithm (GA) [15]. For
friction welding of AISI 904 L super austenitic stainless steel,
gray relational analysis and the desirability approach were
applied to optimize the input parameters, and GAwas applied
to resolve the mathematical model and to select the optimum
welding parameters [16]. Meanwhile, some new methods
were also induced in building the WBG mathematical model.
Minimum bead width and maximum depth of penetration
were calculated by imperialist competitive algorithm after that
regression equations for output goals were obtained using the
least squares method [17].Multiple bead geometry parameters
of submerged arc weldment were researched using Taguchi’s
robust design coupled with fuzzy based desirability function
[18].

It is found that many researchers have focused on the pre-
diction and optimization of the process parameters with dif-
ferent welding methods while the morphology of the bead
profile is selected as output objectives but that usually are
separated as the independent output. However, it is seldom
concentrated on laser brazing with crimping butt because the
brazing process is sensitive to welding parameters and diffi-
cult to acquire a good quality of the joint [19].Meanwhile, this
article is actually our team further research on the multi-
objective optimization of welding parameters of the laser braz-
ing with crimping joint.

2 Experiment setup

2.1 Material

In order to deeply research the influence from process param-
eters on bead profile, the laser brazing process would be fur-
ther optimized [19]. The experiment base metal is double
phase galvanized steel (DP590) with the size of 300×100×
0.8 mm, while the length of crimping butt is 10 mm. The filler
wire is CuSi3 with the diameter of 1.6 mm. Meanwhile, the

acetone was applied to protect DP590 from oil pollution and
oxide film disturbing.

2.2 Processing conditions

In this paper, the welding parameters include welding speed
(WS, 0.8~1.6 m/min), wire feed rate (WF, 2.6~3.4 m/min),
and gap (GAP, 0.0~0.8 mm), and each of them is divided into
five levels with 0.2 intervals. Laser power is set 3.2 KW, and
defocus length is 45 mm. Welding path is obtained via a
teaching method. Therefore, the experiment is designed by
the 3-factor and 5-level Taguchi method L25. Taguchi exper-
imental design matrix is shown in Table 1.

2.3 Measuring features

A typical WBG of the crimping joint of laser brazing can be
summarized as the top width and bottom width of bead shape
(WT and WB), and the efficient connection length of left side
and right side (ELL and ELR). WT and WB is linear distance
of end points of the bead width, while ELL and ELR are

Table 1 Taguchi experimental design and results

NO. WS
(m/min)

WF
(m/min)

GAP
(mm)

SLR
(mm)

STB
(mm)

1 0.8 2.6 0.0 5.91 3.51

2 0.8 2.8 0.2 4.62 2.66

3 0.8 3.0 0.4 4.16 2.81

4 0.8 3.2 0.6 5.30 3.17

5 0.8 3.4 0.8 5.36 2.55

6 1.0 2.6 0.2 4.67 0.73

7 1.0 2.8 0.4 4.49 2.75

8 1.0 3.0 0.6 4.81 3.07

9 1.0 3.2 0.8 4.48 2.64

10 1.0 3.4 0.0 4.47 2.99

11 1.2 2.6 0.4 5.26 2.85

12 1.2 2.8 0.6 4.31 2.35

13 1.2 3.0 0.8 5.96 2.64

14 1.2 3.2 0.0 3.69 2.39

15 1.2 3.4 0.2 4.14 2.53

16 1.4 2.6 0.6 2.83 1.83

17 1.4 2.8 0.8 4.13 2.32

18 1.4 3.0 0.0 3.43 2.41

19 1.4 3.2 0.2 3.52 2.29

20 1.4 3.4 0.4 3.88 2.10

21 1.6 2.6 0.8 3.64 2.15

22 1.6 2.8 0.0 3.24 2.19

23 1.6 3.0 0.2 3.363 2.19

24 1.6 3.2 0.4 3.28 2.02

25 1.6 3.4 0.6 4.46 1.55
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measured through manually picking up measurement point
and replacing curve by linear fitting. The measurement pro-
cess is completed by CSM1 software after that the weld zone
is amplified through optical microscope.

2.4 Experiment results

To study the coupling influences from welding parameters on
the quality of the crimping joint in laser brazing, the sum of
ELL and ELR (SLR) is defined to explain the total connection
length between base metal and welding zone and supposed to
reflect the joint mechanical properties. The subtraction be-
tween WT and WB (STB) is also acquired to describe the
esthetics of the crimping butt. Thus, higher values of SLR
and STB indicate a better mechanical properties and morphol-
ogy separately. The whole experiment flow is shown in Fig. 1.
The 25 groups of experiment are completed bywelding frame,
while each bead profile is measured through CSM1 software
together with optical microscope. The experiment results are
shown in Table 1.

3 Optimization methodologies

TheWBG optimization of the laser brazing is a high nonlinear
problem, and it is difficult to develop an explicit mathematical
model. To achieve a more accurate welding parameter set
attached to SLR and STB, a multi-objective optimization
method is established using back propagation neural network
(BPNN) and non-dominated sorting genetic algorithm
(NSGA-II). Flow chart is given in Fig. 2. The whole analysis
process consists of experiment stage, prediction stage, and
optimization stage.

3.1 Prediction model

In prediction stage, two networks of BPNNwere developed to
acquire the mathematical models in order to predict SLR and
STB. As shown in Fig. 3, the net consisted of input layer (3
nodes), hidden layer (8 nodes), and output layer. The input
parameters included WS, WF, and GAP, while SLR and STB
were output goals. The weight between the first layer and the
second layer was ωij, while ωjk represented the weight from
hidden layer to output layer. The fundamental concept of
BPNN algorithm was the continuous improvement of the abil-
ity of the memory and learning by updating weights and
thresholds according to the prediction errors. In this article,
the forecasting process of bead geometry of the laser brazing
with crimping butt can be summarized as the following steps.

Fig. 1 Technical process of laser
brazing

Inputs: WS, WF, GAP

Outputs: SLR, STB

Build BPNN network and

initialization

Train network

Experiment

results

Train set

Test set

Net1:SLR Net2:STB

Prediction and fitness

NSGA-II network and

initialization

Objective function

(f(1), f(2))

NSGA-II optimization

Pareto optimal solution

set

Prediction stage Optimization stageExperiment stage

Experiment

Fig. 2 Flow chart of multi-objective optimization of the crimping joint
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Step 1: The net structural parameters, including joint weight
(ωij and ωjk), thresholds of the second layer and third layer (aj
and bk), neuron excitation function (Eq. 1), are initialized after
that the experiment data are divided into the train set (16
groups) and the test set (9 groups). The neuron number of
the first layer ranges from 1 to 3, and that of the output layer
is between 1 and 2, while the number of the hidden layer
neurons keeps as 8. The maximum number of iteration is
supposed as 50.

f xð Þ ¼ 1

1þ ex
ð1Þ

where f(x) is the excitation function of hidden layer and x is the
input of this function.
Step 2: The results can be acquired by calculating the outputs
from hidden layer (Eq. 2) and output layer (Eq. 3) in turn.

H jð Þ ¼ f
X3
i¼1

ωi jX ið Þ−a j

 !
j ¼ 1; 2;…; 8 ð2Þ

Y m; kð Þ ¼
X8
j¼1

H jð Þω jk‐bk m ¼ 1or2 ; k ¼ 1; 2;…; 9 ð3Þ

where the ith input variables is represented by X(i), H(j) is the
output of the jth neuron of the hidden layer. Y(m,k) means the
mth output of the kth group of the test set, while m represents
the output objectives (SLR and STB).
Step 3: The prediction errors E(m,k) are decided according to
the difference from forecast output Y(m,k) to experiment out-
put Y_exp(m,k) as Eq. 4.

E m; kð Þ ¼ Y m; kð Þ‐Y exp m; kð Þ ð4Þ

Step 4: The weights (ωij and ωjk) and thresholds (aj and bk) of
the networks are refreshed based on the previous results
(Eqs. 5, 6, 7, and 8). The symbol ξ represents learning rate,
and its value is 0.5.

ωi j ¼ ωi j þ ξH jð Þ 1‐ H jð Þ½ �f gX ið Þ
X9
k¼1

ω jkE m; kð Þ ð5Þ

ω jk ¼ ω jk þ ξH jð ÞE m; kð Þ ð6Þ

aj ¼ aj þ ξH jð Þ 1‐ H jð Þ½ �f g
X9
k¼1

ω jkE m; kð Þ ð7Þ

bk ¼ bk þ E m; kð Þ ð8Þ

Step 5: The train process would be ended and jumped to next
step if the preset maximum number of iteration is reached.
Otherwise, return to step 2.
Step 6: The test set is used to verify the accuracy of BPNN
network.

3.2 Optimization model

As is known to all, NSGA-II considered as the out-growth of
single objective algorithms has been widely used in many
fields, such as vehicle design, building design, milling pro-
cess, cross-docking scheduling, and so forth, while the maxi-
mum differences between NSGA-II and GA are two necessary
operations (non-dominated ranking and crowding distance
ranking). In this part, the multi-objective optimization model
of crimping joint was developed as shown in Fig. 4. The

X(1)

X(2)

X(3)

WS

WF

GAP

H1

H2

H8

Y(m,k)

Hj

Y(1,k)=SLR

Y(2,k)=STB

Output

layer

Hidden

layer
Input layer

Wij Wjk

Input

parameters

Output

parameters

Fig. 3 Prediction networks of bead profile

Randomly initialize parent

population P0

Calculate the individual target
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and sort again
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End
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Fig. 4 Optimization process of laser brazing using NSGA-II
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calculation process of NSGA-II mainly included initialization,
calculation of the individual target, non-inferior sorting, iden-
tification of the crowding distance, development of a new
parent population, and estimation. Meanwhile, it is necessary
to explain the key steps of the NSGA-II algorithm that mainly
included three aspects (initialization, non-dominance sorting,
and swarm distance).

3.2.1 Initialization

The selection process of parameters of the NSGA-II
model is deeply important for that it would directly
decide the accuracy or even convergence of the solving
procedure. Thus, the first step in Fig. 4 is random ini-
tialization of the parent population, while other structur-
al parameters are listed in Table 2. Then, the ranges of
welding parameters are extracted from Table 1. WS
ranges from 0.8 to 1.6 m/min, WF is between 2.6 and
3.4 m/min, and GAP is from 0 to 0.8 mm. Meanwhile,
the objective functions of SLR and STB are invoked
from BPNN net1 and net2.

3.2.2 Non-dominance sorting

For dealing with multi-objective solutions, it is found
that some special cases are usually similar and hence
difficult to compare the superiority of these solutions
with each other using dominance method. Thus, it is
necessary that these cases should be ranked using a
new criterion that sorts again relative to other points.
The population P with number of N is divided into m
subsets (P1,P2,…,Pm, and P1>P2>…>Pm), and Pk+1 is
directly dominated by the individuals in population Pk,
k=(1,2,…,m). The sorting process of non-dominance
sorting can be executed as follows:

(1) Acquire parameters (ni and si) of each individual by
double-loop computations

(2) Calculate the individual pi using Eq. 9;
(3) Solve the population Pk through Eq. 10.

pi ¼ i
.
ni ¼ 0; i∈ 1; 2;…;Nf g

n o
ð9Þ

Pk ¼ Allindividuals i=ni ‐ k þ 1 ¼ 0f g k ¼ 2; 3;…;m ð10Þ

where each individual pi includes two principle parameters,
namely the number of individuals in the population for dom-
inating the pi (ni) and the number of individuals being

dominated by pi (si), while the dominance relation is estimated
by the values of multi-objective function.

3.2.3 Swarm distance ranking

To ensure the distribution and diversity of the solution
population and acquire the uniform distribution of the
fore-end of the Pareto set, the concept of swarm dis-
tance is brought in. The outstanding individual of which
swarm distance is relatively short would be selected to
participate in the evolution for a younger generation.
Meanwhile, the swarm distance of each individual can
be calculated by Eq. 11.

P i½ �d ¼ P iþ 1½ � f 1 ‐P i‐1½ � f 1
��� ���þ P iþ 1½ � f 2 ‐P i‐1½ � f 2

��� ��� ð11Þ

where objective outputs are and f2, P[i]d represents the
swarm distance of the ith individual, and P[i]f is on
behalf of a function value of the sub-objective f of the
ith individual.

4 Results

4.1 Prediction results

After being built by BPNN, the prediction model was
completed using MATLAB2012b. Sixteen groups of the
train set (No. 1, 5, 6, 7, 8, 10, 12, 13, 15, 17, 18, 20,
22, 23, 24, 25) were randomly fed into BPNN network
to acquire the accurately mathematical model, and the
test set (No. 2, 3, 4, 9, 11, 14, 16, 19, 21) was used to
verify the accuracy of the BPNN model. Errors (Err.) of
each group of the test set can be calculated by Eq. 12,
where Exp. and Pre. were abbreviation of experiment
results and prediction results. The prediction results
and errors were given in Fig. 5 and Table 3. The abso-
lute values of average errors of the bead profile (SLR
and STB) were respectively 9.95 and 8.54 %. The max-
imum error of SLR was −28.55 % and that of STB was
22.31 %. It is obvious that both average error and max-
imum error of SLR were all higher than that of STB.
Meanwhile, this phenomenon might be caused by the

Table 2 Parameter
setting of NSGA-II
algorithm

Parameter Value

Population size 100

Maximum number of iterations 200

Deviation of fitness function 10−10

Coefficient of Pareto fraction 0.3
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experiment error and the measurement error such as the
fluctuation of welding process and weld pool, assemble
accuracy of galvanized steel, metering veracity of the
curve of the bead shape, and so on.

Err: ¼ Exp:‐ Pre:

Exp:
� 100% ð12Þ

4.2 Pareto set of laser brazing with crimping butt

The multi-objective functions that would be used in optimiza-
tion procedure using NSGA-II algorithm were consisted of
prediction results and relevant BPNN nets. The optimization
process was also realized by MATLAB2012b. Table 4 and
Fig. 6 showed Pareto set with 30 groups of the laser brazing,
and the distribution of Pareto set was homogeneous. The num-
ber of the Pareto set kept line with the coefficient of Pareto

fraction (0.3). The values of SLR were between 3.1387 and
4.7804 mm, while that of STB ranged from 1.2837 to
1.9948 mm. The points of the Pareto set in Fig. 6 were only
29 groups because the optimization result of set No.1 was
same as that of set No.11 completely.

5 Discussion

5.1 Influence from process parameters on bead profile

For clearly revealing the complex influence from welding
process on WBG and deeply explaining the reasons for some
abrupt errors, it was necessary to build the concepts of signal-
noise ratio (S/N) and interaction (IA) in order to demonstrate
the relationship between parameters and WBG. S/N was

Table 3 Prediction results of laser brazing using BPNN

No. SLR STB

Exp.
(mm)

Pre.
(mm)

Err.
(%)

Exp.
(mm)

Pre.
(mm)

Err.
(%)

2 4.62 4.4866 2.89 2.66 3.2452 −22.00
3 4.16 4.6717 −12.30 2.81 3.2483 −15.60
4 5.30 5.4147 −2.16 3.17 3.2812 −3.51
9 4.48 5.0527 −12.78 2.64 2.6258 0.54

11 5.26 4.0073 23.82 2.85 2.2143 22.31

14 3.69 3.6075 2.24 2.39 2.4997 −4.59
16 2.83 3.6380 −28.55 1.83 2.1336 −16.59
19 3.52 3.5162 0.11 2.29 2.1524 6.01

21 3.64 3.3632 7.60 2.15 2.3154 −7.69

Table 4 Pareto set of laser brazing with crimping butt

Set no. WS
(m/min)

WF
(m/min)

GAP
(mm)

f1
(SLR, mm)

f2
(STB, mm)

1 1.5981 3.2237 0.4435 3.1387 1.9948

2 1.5970 3.3974 0.2979 3.5532 1.8095

3 1.5973 3.3999 0.7998 4.7804 1.2837

4 1.5964 3.3981 0.3151 3.6195 1.7979

5 1.5971 3.3500 0.3301 3.3168 1.8956

6 1.5972 3.3822 0.3074 3.4619 1.8421

7 1.5925 3.3716 0.3151 3.4099 1.8636

8 1.5954 3.3966 0.3977 3.9573 1.7507

9 1.5974 3.3980 0.4445 4.1599 1.7094

10 1.5853 3.3980 0.6534 4.6529 1.5115

11 1.5981 3.2237 0.4435 3.1387 1.9948

12 1.5915 3.3977 0.6755 4.6763 1.4791

13 1.5969 3.3989 0.5791 4.5369 1.5796

14 1.5974 3.3935 0.3798 3.8507 1.7716

15 1.5936 3.3985 0.5354 4.4430 1.6299

16 1.5978 3.3968 0.3335 3.6797 1.7900

17 1.5969 3.3994 0.5089 4.3781 1.6489

18 1.5963 3.3998 0.7632 4.7560 1.3403

19 1.5897 3.3975 0.4269 4.0875 1.7304

20 1.5961 3.2704 0.3782 3.1500 1.9739

21 1.5878 3.3540 0.3493 3.3965 1.8854

22 1.5972 3.3988 0.4899 4.3201 1.6679

23 1.5978 3.3982 0.4048 4.0010 1.7386

24 1.5960 3.3993 0.6037 4.5812 1.5511

25 1.5766 3.3971 0.4721 4.2546 1.7064

26 1.5973 3.3973 0.4784 4.2743 1.6846

27 1.5926 3.3982 0.4338 4.1200 1.7206

28 1.5974 3.3977 0.3460 3.7404 1.7799

29 1.5964 3.3403 0.3376 3.2844 1.9084

30 1.5970 3.3974 0.2666 3.4735 1.8260

Fig. 5 Curve graph of the prediction results of the test set
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applied to evaluate the influence from each parameter on
welding quality. In other words, the extent of the impact from
each welding parameter to WBG can be denoted by the value
of S/N that can be calculated by Eq. 13. IA represented differ-
ent effects of each level from this welding parameter to anoth-
er, and the symbol of A*B was on behalf of the interaction
between A (one of three welding parameters) and B (one of
another two).

S=N ¼ −10log
1

n

Xn
i¼1

1

Y 2
i

 !" #
ð13Þ

Figure 7a showed main effects of S/N related to SLR. The
S/N value of WS ranged from 10.95 to 14.04, and that of WF
was between 12.02 and 12.94, while that of GAP stayed
around 12.10 to 13.33. It is hence concluded that the rank of
importance for SLR was WS, GAP, and WF in turn by com-
paring variation range of S/N values for each welding param-
eter. Similarly, it can be evaluated from Fig. 7b that WS had
the most influence on STB while WF owned the weakest
effect. As can be seen from Fig. 8, the welding parameters
(WS, WF, and GAP) interacted with each other, and some

IA tendencies can be summarized as follows by analyzing line
graphs in Fig. 8.

For SLR,

(1) WS*WF: The WS value with level of 1.2 m/min had
drastic influence on SLR, and that with 1.0 m/min owed
weak effect.

(2) WS*GAP: Comparing with GAP, WS with the level of
0.8 m/min had a deeply effect on SLR, and that with
1.6 m/min owed faint influence.

(3) WF*GAP: The whole fluctuation of WF (around 2.6 m/
min) on SLR was more sharply than that of other levels,
and GAP had much more effects on SLR than that from
WF.

For STB,

(4) WS*WF: The strong fluctuation happened on the WF-
level of 2.6 m/min, and that of other four levels changed
relative gently. The value of STB turned to higher with a
lower WS value.

(5) WS*GAP: STB value decreased gradually with the in-
crease of WS, while unexpected fluctuation was present-
ed in the GAP second level of 0.2 mm.

(6) WF*GAP: The sharp fluctuation occurred in the level of
2.6 m/min of WF, while the STB values of other four
levels ranged from 1.55 mm to 3.17 mm.

5.2 Verification experiment of the Pareto set

It was necessary and significant that the confirmatory ex-
periment was carried out to demonstrate the feasibility of
optimization methodology. According to the Pareto set in
Table 4 and Fig. 6, one group (No.25) was randomly
selected to operate verification experiment after that the
welding parameters were simplified (WS 1.577 m/min,
WF 3.397 m/min, GAP 0.5 mm) in order to better adapt
to the actual engineering welding process, while other ex-
periment operations were kept line with Section 2

Fig. 7 Main effects of S/N of a
SLR and b STB

Fig. 6 Distribution of Pareto set of two objectives (f1 and f2)
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“Experiment setup”. The experiment results were listed in
Table 5. The errors of SLR and STB by comparing opti-
mization result with verification experiment were 3.97 and
−1.61 %. Therefore, the multi-objective optimization hy-
brid method using BPNN with NSGA-II together was
proved to be feasible and would be useful to guide the
actual welding process of laser brazing.

6 Conclusion

In this article, a further research on optimization of laser braz-
ing with crimping joint was discussed. First two assumptions
were developed: (a) SLR was applied to reflect the joint me-
chanical properties; (b) STB was also used to describe the
esthetics of the crimping butt. Based on these assumptions,

Fig. 8 Interactions between each
welding parameter for a SLR and
b STB

Table 5 Results of the
verification experiment No. ELL

(mm)

ELR

(mm)

WT

(mm)

WB

(mm)

SLR STB

Exp.

(mm)

Opt.

(mm)

Err.

(%)

Exp.

(mm)

Opt.

(mm)

Err.

(%)

25 1.750 2.681 2.603 0.924 4.431 4.255 3.97 1.679 1.706 −1.61
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prediction models of SLR and STB were built separately.
Then, the Pareto set of laser brazing was acquired by
NSGA-II and verified using confirmatory experiment.
Meanwhile, the influence from welding process (WS, WF,
and GAP) on SLR and STB was analyzed through main ef-
fects of S/N and interactions between each parameter. The
following conclusions can be summarized.

(1) S/N of laser brazing process and interactions for each
welding parameter on SLR and STB were analyzed, re-
spectively, and hence, the rank of importance for SLR
and STB were all WS, GAP, and WF in turn.

(2) BPNN algorithm was used to predict SLR and STB with
the average error about 9.95 % and 8.54 %, and then
NSGA-II was selected to acquire the Pareto set while
the error of verification experiment was controlledwithin
merely 3.97 %.

(3) The multi-objective optimization mathematical model
using BPNN with NSGA-II together was proved to be
feasible and would be useful to guide the actual welding
process of laser brazing for crimping butt.

Acknowledgments This research are supported by the National Basic
Research Program of China (973 Program, NO. 2014CB046703) and the
Fundamental Research Funds for the Central Universities (HUST,
NO.2014QN016). It is also very grateful to Master Longchao Cao
(School of Mechanical Science and Engineering) and Master Zeyang
Zhao (School of Materials Science and Engineering) for their help in
experiment operations.

References

1. Aloraier A, Almazrouee A, Shehata T, Price JWH (2012) Role of
welding parameters using the flux cored arc welding process of low
alloy steels on bead geometry and mechanical properties. J Mater
Eng Perform 21(4):540–547. doi:10.1007/s11665-011-9948-6

2. Juang SC, Tarng YS (2002) Process parameter selection for opti-
mizing the weld pool geometry in the tungsten inert gas welding of
stainless steel. J Mater Process Technol 122:33–37. doi:10.1016/
S0924-0136(02)00021-3

3. Rao ZH, Hu J, Liao SM, Tsai HL (2010) Modeling of the transport
phenomena in GMAW using argon–helium mixtures. Part II—the
metal. Int J Heat Mass Transf 53:5722–5732. doi:10.1016/j.
ijheatmasstransfer.2010.08.010

4. Courtois M, Carin M, LeMasson P, Gaied S, BalabaneM (2014) A
complete model of keyhole and melt pool dynamics to analyze
instabilities and collapse during laser welding. J Laser Appl 26(4).
doi: 10.2351/1.4886835

5. Sathiya P, Mishra MK, Soundararajan R, Shanmugarajan B (2013)
Shielding gas effect on weld characteristics in arc-augmented laser
welding process of super austenitic stainless steel. Opt Laser
Technol 45:46–55. doi:10.1016/j.optlastec.2012.07.035

6. Phaoniam R, Shinozaki K, Yamamoto M, Kadoi K, Tsuchiya S,
Nishijima A (2013)Development of a highly efficient hot wire laser
hybrid process for narrow-gap welding-welding phenomena and
their adequate conditions. Weld World 57:607–613. doi:10.1007/
s40194-013-0055-1

7. Gao M, Tang HG, Chen XF, Zeng XY (2012) High power fiber
laser arc hybrid welding of AZ31Bmagnesium alloy.Mater Des 42:
46–54. doi:10.1016/j.matdes.2012.05.034

8. Sharma A, Arora N, Mishra BK (2015) Mathematical model of
bead profile in high deposition welds. J Mater Process Technol
220:65–75. doi:10.1016/j.jmatprotec.2015.01.009

9. Prasad KS, Chalamalasetti SR, Damera NR (2015) Application of
grey relational analysis for optimizing weld bead geometry param-
eters of pulsed current micro plasma arc welded inconel 625 sheets.
Int J Adv Manuf Technol 78:625–632. doi:10.1007/s00170-014-
6665-y

10. Lin HL, Yan JC (2014) Optimization of weld bead geometry in the
activated GMAwelding process via a grey-based Taguchi method. J
Mech Sci Technol 28(8):3249–3254. doi:10.1007/s12206-014-
0735-9

11. Shi H, Zhang K, Xu ZY, Huang TY, Fan LW, Bao WN (2014)
Applying statistical models optimize the process of multi-pass nar-
row-gap laser welding with filler wire. Int J AdvManuf Technol 75:
279–291. doi:10.1007/s00170-014-6159-y

12. Senthilkumar B, Kannan T (2015) Effect of flux cored arc welding
process parameters on bead geometry in super duplex stainless steel
claddings. Measurement 62:127–136. doi:10.1016/j.measurement.
2014.11.007

13. Sudhakaran R, Murugan VV, Sivasakthivel PS, Balaji M
(2013) Prediction and optimization of depth of penetration
for stainless steel gas tungsten arc welded plates using arti-
ficial neural networks and simulated annealing algorithm.
Neural Comput & Applic 22:637–649. doi:10.1007/s00521-
011-0720-5

14. Katherasan D, Elias JV, Sathiya P, Haq AN (2014) Simulation and
parameter optimization of flux cored arc welding using artificial
neural network and particle swarm optimization algorithm. J Intell
Manuf 25:67–76. doi:10.1007/s10845-012-0675-0

15. Sathiya P, Ajith PM, Soundararajan R (2013) Genetic algorithm
based optimization of the process parameters for gas metal arc
welding of AISI 904L stainless steel. J Mech Sci Technol 27(8):
2457–2465. doi:10.1007/s12206-013-0631-8

16. Balamurugan K, Mishra MK, Sathiya P, Sait AN (2014)
Weldability studies and parameter optimization of AISI 904L super
austenitic stainless steel Using friction welding. Mater Res-Ibero-
Am J Ma t e r 17 ( 4 ) : 908–919 . do i : 1 0 . 1590 /S1516 -
14392014005000099

17. Yazdipour A, Ghaderi MR (2014) Optimization of weld bead ge-
ometry in GTAW of CP titanium using imperialist competitive al-
gorithm. Int J Adv Manuf Technol 72:619–625. doi:10.1007/
s00170-014-5682-1

18. Singh A, Datta S, Mahapatra SS, Singha T, Majumdar G (2013)
Optimization of bead geometry of submerged arc weld using fuzzy
based desirability function approach. J Intell Manuf 4:35–44. doi:
10.1007/s10845-011-0535-3

19. Rong YM, Zhang Z, Zhang GJ, Yue C, Gu YF, Huang Y, Wang
CM, Shao XY (2015) Parameters optimization of laser brazing in
crimping butt using Taguchi and BPNN-GA. Opt Lasers Eng 67:
94–104. doi:10.1016/j.optlaseng.2014.10.009

Int J Adv Manuf Technol (2016) 85:1239–1247 1247

http://dx.doi.org/10.1007/s11665-011-9948-6
http://dx.doi.org/10.1016/S0924-0136(02)00021-3
http://dx.doi.org/10.1016/S0924-0136(02)00021-3
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.010
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.010
http://dx.doi.org/10.1016/j.optlastec.2012.07.035
http://dx.doi.org/10.1007/s40194-013-0055-1
http://dx.doi.org/10.1007/s40194-013-0055-1
http://dx.doi.org/10.1016/j.matdes.2012.05.034
http://dx.doi.org/10.1016/j.jmatprotec.2015.01.009
http://dx.doi.org/10.1007/s00170-014-6665-y
http://dx.doi.org/10.1007/s00170-014-6665-y
http://dx.doi.org/10.1007/s12206-014-0735-9
http://dx.doi.org/10.1007/s12206-014-0735-9
http://dx.doi.org/10.1007/s00170-014-6159-y
http://dx.doi.org/10.1016/j.measurement.2014.11.007
http://dx.doi.org/10.1016/j.measurement.2014.11.007
http://dx.doi.org/10.1007/s00521-011-0720-5
http://dx.doi.org/10.1007/s00521-011-0720-5
http://dx.doi.org/10.1007/s10845-012-0675-0
http://dx.doi.org/10.1007/s12206-013-0631-8
http://dx.doi.org/10.1590/S1516-14392014005000099
http://dx.doi.org/10.1590/S1516-14392014005000099
http://dx.doi.org/10.1007/s00170-014-5682-1
http://dx.doi.org/10.1007/s00170-014-5682-1
http://dx.doi.org/10.1007/s10845-011-0535-3
http://dx.doi.org/10.1016/j.optlaseng.2014.10.009

	Multi-objective optimization of laser brazing with the crimping joint using ANN and NSGA-II
	Abstract
	Introduction
	Experiment setup
	Material
	Processing conditions
	Measuring features
	Experiment results

	Optimization methodologies
	Prediction model
	Optimization model
	Initialization
	Non-dominance sorting
	Swarm distance ranking


	Results
	Prediction results
	Pareto set of laser brazing with crimping butt

	Discussion
	Influence from process parameters on bead profile
	Verification experiment of the Pareto set

	Conclusion
	References


