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Abstract Face milling by round insert is currently one of the
most common processes for roughing, semi-finishing, and
finishing machining operations. Proper estimation and analy-
sis of the round insert cutting forces play an important role in
the process optimization. This paper presents a new method
for identifying specific cutting force coefficients (SCFCs) for
full immersion face milling with round inserts. At the first
step, an inverse method is proposed to solve the mechanistic
force model equations by non-dominated sorting genetic al-
gorithm II (NSGA-II) which is one of the powerful multi-
objective optimization methods. In addition, the artificial neu-
ral network (ANN) models are developed to predict the
SCFCs in non-experimented conditions. Mean absolute per-
centage error values for the proposed ANN are between 1.7
and 10.1 % for training and testing which are satisfactory. In
order to evaluate the efficiency of NSGA-II and ANNmodels,
extensive experimental cutting force results are compared
with those obtained with the proposed algorithm. The good
accordance in the entire time of cutting edge engagement
shows the validity of the developed methodology. Moreover,
the interactions of cutting parameters, i.e., cutting speed, feed
per tooth, and depth of cut (DOC) on variations of tangential
and radial shearing coefficients (ktc, krc) of specific cutting
force are thoroughly investigated. The results show that in
addition to cutting conditions, the cutting edge geometry of
round insert has a significant influence on ktc and krc
variations.

Keywords Specific cutting force coefficients (SCFCs) . Face
milling .Round insert .Multi-objective optimizationmethod .
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1 Introduction

Reaching to high material removal rate and relatively smooth
surface finish are the most important aims in machining of
metallic parts. Face milling by multiple-tooth cutter is a wide-
ly used machining process in mass production of functional
surface [1]. Knowledge of cutting forces plays an important
role in prediction of power, torque, and machine tool vibra-
tions during milling operations [2, 3]. Many studies were per-
formed to calculate and predict the instantaneous milling cut-
ting forces. A machining literature review shows that three
basic approaches are as follows: analytical, numerical, and
mechanistic modeling. Analytical models focus on mathemat-
ical relationships between cutting forces and various physical
parameters such as friction, cutting edge rake angle, and sei-
zure [4]. The numerical or finite element methods studies the
tool tip contact zone, distribution of temperature, and stress on
the tool tip and in addition displacement of tool or workpiece
[5, 6]. In the third approach, mechanistic modeling of the
cutting forces is followed. Mechanistic modeling is not only
based on metal cutting mechanics but also dependent on ex-
perimental tests data. In this approach, a combination of ana-
lytical and experimental modeling procedures are used [7]. In
mechanistic modeling, the cutting force dependence on the
chip load, cutting conditions, and workpiece tool materials
are derived [2].

In the mechanistic method, usually cutting forces are
expressed as a sum of two separate terms, i.e., shearing forces
and edge forces [8–10].
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Many studies have been done to empirically determine the
shear and edge cutting force coefficients. Often, these coefficients
were obtained based onmean forcemeasurements per revolution
for desired immersions [2, 8, 11]. In addition, in some recent
research work, specific cutting force coefficients (SCFCs) were
obtained from orthogonal cutting test data [12]. In some cases,
the SCFCs of mechanistic approach are determined using the
inverse way [13, 14]. The SCFCs are obtained by equating the
analytical expressions of cutting forces to their average of mea-
sured cutting forces for a series experiments. Experimental works
are usually conducted for slot milling at different feed rates in
constant radial and axial immersions [13–16].

Round inserts with strong cutting edge and superior geo-
metrical features spreads the force and heat distributions more
evenly. Therefore, cutting edge wear is reduced and conse-
quently fair surface finish is obtained [17, 18]. Due to complex
geometry of the round insert, the pronounced effects of cutting
edge entrance, and exit zones on the cutting forces, the aver-
age of cutting forces during engagement will introduce model-
ing errors. Thus, improved models incorporate the instanta-
neous cutting forces during engagement in order to determine
the SCFCs [13].

Current work presents a new method for calculating the
SCFCs using an inversed mechanistic model by equating the
instantaneous and measured cutting forces during the cutting
edge and workpiece engagement. The problem can be consid-
ered as a multi-objective problem where objective functions
are the sum of squared errors between the simulated and mea-
sured instantaneous cutting forces in X, Y, and Z directions.
Variables are SCFCs which should be determined such that
the objective functions are minimized. In this research, the
non-dominated sorting genetic algorithm II (NSGA-II) is used
in order to find the optimal solution of multi-objective optimi-
zation problem. Moreover, the artificial neural network
(ANN) models are developed to predict the SCFCs in non-
experimented conditions. Mean absolute percentage error
(MAPE) values of training and test data for the proposed
ANNs are used to assess the computed models.

Henceforth, this paper is organized as follows: Sect. 2 in-
troduces the chip geometry for the round insert of facemilling.
The mechanistic modeling approach for instantaneous cutting
force modeling is proposed in Sect. 3. The next section pre-
sents a new method for obtaining the SCFCs using multi-
objective optimization method. Section 5 demonstrates an ex-
perimental set up for validating proposed multi-objective op-
timization method. The proposed ANN topology which effi-
ciently predicts the SCFCs in non-experimented cutting con-
ditions is explained in the next section. The results of cutting
force simulations are compared with measured values in
Sect. 7. The cutting parameters interaction on tangential and
radial shearing cutting coefficients (ktc, krc) are also discussed
in this section. Finally, the last section summarizes and con-
cludes the current research work.

2 Instantaneous chip geometry for round insert

In facemilling process, the instantaneous chip thickness varies
continuously during engagement. Assuming a circular trajec-
tory for the cutting edge, the following equation can express
the variation of instantaneous chip thickness (see Fig. 1) [11]:

Cl θk ϕð Þð Þ ¼ f t:sin θk ϕð Þð Þ ð1Þ
where Cl(θk) is chip thickness, ft is feed per tooth, and θk(ϕ) is
angular position of kth insert in the ϕ cutter rotation angle. As
seen in Fig. 2, the chip thickness distribution along the cutting
edge of a round insert is not constant and varies along the
edge. Minimum chip thickness is located at the zero axial
DOC, and the maximum chip thickness occurs at the ap axial
DOC. The chip section is subdivided into differential discrete
elemental areas dA, which is marked with crosshatch in Fig. 2.
The thickness [2] and width of the element are shown by h and
db, respectively, and specified by the following:

h ¼ C θk ϕð Þð Þ⋅sin ψð Þ
d b ¼ r ⋅ d ψ
d A ¼ h ⋅ d b

ð2Þ

where r is the insert radius and dψ is the angular increment of
cutting edge, which is set to 0.10.

3 Mechanistic modeling of cutting forces

According to Sect. 2, the width and thickness of each element
are computed and the elemental cutting forces are then deter-
mined. In the mechanistic model proposed by Budak et al.
[12], cutting forces of each element in the tangential (dFT),

Fig. 1 Cutter tool path and instantaneous chip thickness of kth insert at θk
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radial (dFR), and axial (dFA) directions, which are shown in
Fig. 3, are calculated by the following relationships [12]:

d FT ¼ KtcdA þ Ktedb ¼ Ktchþ Kteð Þ⋅db
dFR ¼ KrcdA þ Kredb ¼ Krchþ Kreð Þ⋅db
dFA ¼ KacdAþ Kaedb ¼ Kachþ Kaeð Þ⋅db

ð3Þ

The equations include two terms. The first term consists of
shearing coefficients (Ktc, Krc, Kac) that are multiplied by un-
deformed chip section (dA), and the second term consists of
edge coefficients (Kte, Kre, Kae) that are multiplied by width of
cut (db). The shearing coefficients represent the influence of
shearing at the shear zone and friction at the rake face on
the cutting forces. Also, the edge coefficients represent the
influence of rubbing or ploughing at the cutting edge on
the cutting forces [12, 13]. The X (feed), Y (normal), and
Z (axial) direction of cutting forces are obtained by
transforming the tangential, radial, and axial cutting forces
of each element which are shown in Fig. 3 and can be
written as follows [12]:

dFX

dFY

dFZ

2
4

3
5 ¼

−cos ϕð Þ −sin ϕð Þsin ψð Þ −sin ϕð Þcos ψð Þ
sin ϕð Þ −cos ϕð Þsin ψð Þ −cos ϕð Þcos ψð Þ

0 cos ψð Þ −sin ψð Þ

2
4

3
5

dFT

dFR

dFA

2
4

3
5 ð4Þ

The total cutting forces in feed (FX), normal (FY), and axial
(FZ) direction can be achieved through integrating forces of
each cutting edge [12]:

FX

FY

FZ

2
4

3
5 ¼

Xz

1

Xp

1

dFX

dFY

dFZ

2
4

3
5 ð5Þ

where z is the number of cutter edges or inserts and P is the
total number of differential elements on the cutting edge and
given by

P ¼
cos−1

r−ap
r

� �

dψ
ð6Þ

4 A new method for obtaining SCFCs of mechanistic
model

The proposed method for calculating the SCFCs is based on
using an optimization method. By use of this method, the total
engagement time can be an effective influence in the inverse
solution of instantaneous cutting forces mechanistic equation.
Substituting relations (3) and (4) in Eq. (5), the force at any
discrete time, t, can be written as follows:

FX

FY

FZ

2
4

3
5
t

¼ G h; b; t;ϕ;ψð Þ

Ktc

Kte
Krc

Kre
Kac

Kae

2
666664

3
777775

ð7Þ

Equating the simulated and experimental forces in n dis-
crete times, t, the equation systems are as follows:

FX

FY

FZ

2
4

3
5
t1

⋮
FX

FY

FZ

2
4

3
5
tn

2
66666664

3
77777775

exp

¼
G h; b; t;ϕ;ψð Þt1

⋮
G h; b; t;ϕ;ψð Þtn

2
4

3
5

Ktc

Kte
Krc

Kre
Kac

Kae

2
666664

3
777775

ð8Þ

where n is the size of sample data and depends on the sam-
pling frequency during the experimental tests. After measur-
ing the experimental cutting force and calculating the instan-
taneous chip’s cross-sectional area of each discrete time, t,
SCFCs are the only unknown parameters of Eq. 8. In this
research, a new method has been suggested to determine
SCFCs using multi-objective optimization method. In this

Fig. 2 Chip thickness variation along the round cutting edge

Fig. 3 Force components of a discrete element on the round cutting edge
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method, the NSGA-II is used for solving the very large system
of equation result of Eq. 8.

4.1 Multi-objective optimization method

Multi-objective optimization is one of the most widely used
methods in the optimization problems [19]. In a single-
objective optimization problem, there is usually a unique op-
timal solution. But, in multi-objective optimization problems,
the objective functions may be conflicting with each other. A
general method to solve multi-objective problems is
transforming the multi-objective into one combined objective
function. In this approach, it is proposed to multiply each
objective function by a proper weighting factor. All contribu-
tors are integrated into a single objective function. However,
selecting the appropriate weighting factors for the objective
functions is a challenging task [19]. Therefore, it can be diffi-
cult to find precise and accurate solution for all objectives
simultaneously. Another approach to solve multi-objective
problems is to determine Pareto optimal solutions. Pareto op-
timal solutions are a set of results which each of them is not
dominated by any other [19, 20]. The former method was used
in this work. Given the cutting force in x, y, and z coordinates,
the force system of equation (Eq. 8) is obtained as a three
objective optimization problem. The objective functions are
the sum of squared errors between empirical and simulated
instantaneous cutting forces for each direction which can be
expressed by the following:

Ei ¼
X
n

‖yi− f i Ktc;Kte;Krc;Kre;Kac;Kae; tð Þ‖2 ð9Þ

where yi is the X, Y, and Z instantaneous experimental cutting
forces and fi represents the simulated cutting forces.

4.2 Multi-objective optimization using genetic algorithm

During the past decades, population-based optimization algo-
rithms such as genetic algorithm are commonly used in multi-
objective optimization problems such as machining process
[21–23]. Genetic algorithm can achieve reasonable answers
to create non-dominated solutions of the Pareto front with
respect to conflict objectives [19]. NSGA-II is one of the most
efficient multi-objective optimization algorithms [24]. In this
study, NSGA-II is used to achieve the optimal solutions of
three-objective optimization problem of the cutting force
mechanistic model. The NSGA-II used includes the following
major steps:

Step 1: Creating a set of search points called the initial
population which is randomly determined
(initialization)

Step 2: Evaluating the fitness function of each chromosome
of the population (fitness evaluation) and sorting
based on non-domination criteria.

Step 3: Producing the new generations using three operators:
selection (making then mating pool based on tourna-
ment method), crossover, and mutation. The new
generation has higher fitness than the previous gen-
eration which means that from current generation to
the next one the fitness of the population improves.

Step 4: The search would stop if the maximum generation is
considered or the stopping and convergence criteria
is satisfied.

The values of parameters used in the NSGA-II are shown in
Table 1.

5 Experimental work

The experiments carried out on a vertical CNC machining
center with a Siemens 802D control system. The workpiece
material was aluminum 7075-T6 which is usually used in the
aerospace industry. Experimental tests were performed by a
42-mm diameter facemill cutter with three round inserts under
dry cutting condition. The round insert, which has a radius of
6 mm, was a tungsten carbide TTI–15 produced by WIDIA.
The axial and radial rake angles of cutter were 7.74° and 2.3°,
respectively. Cutting force components were measured using
a three-axis Kistler 9255B table dynamometer. Cutting condi-
tions for milling tests are shown in Table 2.

A full factorial design of experiment is introduced to effec-
tively investigate the interaction of independent variables. In
this regard, 125 experiments were conducted and the X, Y, and
Z forces were measured accordingly.

In order to increase the accuracy of results, each experi-
ment has been repeated three times. The experimental setup
used for performing the experiments is depicted in Fig. 4.

6 Modeling of SCFCs using ANN

In the previous section, SCFCs were determined using
NSGA-II based on 125 experimental tests. In order to obtain
SCFCs for non-experimented conditions, ANN models were
taken into consideration. ANNs are widely used in modeling

Table 1 NSGA-II
parameters Parameter Value

Population 100

Generation 100

Crossover 0.8

Mutation 0.2
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of machining processes such as turning, milling, and drilling
[25, 26].

ANNs could present a robust method to simulate complex
and unknown problems. Each of the parameters such as hid-
den layer number, training algorithm, the number of neurons
in each layer, and the activation function of hidden layers can
influence the results [27]. Back-propagation algorithm is a
common algorithm for training and testing ANNs. In this
study, the five feed forward back-propagation algorithms,
i.e., Levenberg–Marquardt (LM), Bayesian regularization
(BR), resilient propagation (RP), conjugate gradient Fletcher
(CGF), and Broyden–Fletcher–Goldfarb (BFG), are used to
train ANNs. Furthermore, various activation functions are
used in hidden layers, namely logarithmic sigmoid function

(Logsig) and the hyperbolic tangent sigmoid function
(Tansig). In the output layer, the linear function (Purelin) is
used. The cutting speed, feed per tooth, and DOC are input
dataset parameters of the network. The output of the neural
networks are desired SCFCs for the given cutting condition.

In order to increase the efficiency and accuracy of the pre-
dictions, each of SCFCs is modeled in a separate neural net-
work (six ANNmodels). The neural network topology used in
the present work is shown in Fig. 5. The input/output dataset
was divided randomly into two groups, i.e., training dataset
and test dataset. The training dataset consists of 75 % of input/
output dataset, and the remaining 25 % is used as the test
dataset [27].

Training and test output datasets of neural networks are
SCFCs which have been determined by NSGA-II introduced
in Sect. 5. The number of hidden layers, the number of neu-
rons in each layer, the training algorithm, the activation func-
tion of hidden layers, and the output layer are investigated in a
certain range using trial and error method. The main parame-
ters’ ranges of the neural network are shown in Table 3. Train-
ing and testing procedure of each neural network is imple-
mented in MATLAB software. The multi-layer perceptron
(MLP) type of ANN has been used for training and testing
ANNs. Each of multi-layer ANNs consist of three inputs (cut-
ting parameter) and one output (each of SCFCs). The two-
layer perceptron back-propagation with the training epoch of
1000 is used in order to predict the SCFCs. A criterion to
select the best network is the mean absolute percentage error
of training (MAPEtr) and testing (MAPEts) datasets which de-
fines as follows:

MAPEtr& MAPEts % ¼ 1

N

XN

t¼1

Dpre−Dexp

Dexp

����
����*100 ð10Þ

where N is the number of training or testing dataset, and Dpre

and Dexp are the predicted and measured values, respectively.
As reported in Table 4, six networks with the least mean ab-
solute percentage error of training and testing were selected as
the best networks to predict each SCFC. As seen in Table 4,
the maximum mean absolute percentage error, which was
considered for the training and testing of ANN models, is

Fig. 5 Predictive SCFCs model topology
Fig. 4 Experimental setup for measuring the cutting force components
and data acquisition

Table 2 Cutting conditions of experimental work

Cutting condition Range

Feed per tooth ft (mm) 0.03, 0.05, 0.07, 0.09, 0.12

Cutting speed vc (m/min) 64, 122, 166, 220, 256

DOC ap (mm) 0.25, 0.5, 0.8, 1.1, 1.5
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10.1 %. Therefore, the two-layer ANN is suitable for predic-
tion of SCFCs. The training mean absolute percentage error
(MAPEtr) values of ktc and krc are 1.7 and 4 %, respectively.
Also, the testing mean absolute percentage error (MAPEts)
values of ktc and krc are 3.6 and 9.7 %, respectively. Therefore,
the ANN results can be used as an acceptable database to
develop the regression model for evaluating interactions of
the cutting parameters on ktc and krc value variation. In order
to assess the training of designed ANNs, a number of exper-
imental and ANN output datasets are evaluated. Figures 6 and
7 are compared the tangential and radial SCFCs of experimen-
tal and the ANN prediction results. As mentioned before, the
training and test output datasets of ANNs are the SCFCs
which have been determined by 125 experimental tests. It
can be noted that the experimental and the predicted data are
in appropriate accordance. Thus, the training of ANNs is ac-
curately performed.

7 Results and discussion

In this section, face milling cutting forces are computed using
the force model proposed in Sect. 3. The SCFCs of simulated
cutting forces are obtained by NSGA-II and ANNs. The cut-
ting parameter interaction on ktc and krc variations are then
investigated, and the results are thoroughly discussed.

7.1 Cutting force simulation

In order to validate the performance of NSGA-II and ANN in
prediction of SCFCs, cutting forces of the face mill cutting
process with round insert is simulated and compared to the

experimental results. Figure 8 shows simulated and measured
cutting forces for cutting speed vc=220 m/min, feed per tooth
ft=0.05 mm, and DOC ap=0.25 mm. This figure represents
one of the 125 experiments in which SCFCs of the cutting
force model are determined using NSGA-II. The excellent
accordance between simulated and measured cutting forces
confirms validness of NSGA-II. Therefore, the NSGA-II is
an accurate way for identification of SCFCs of a mechanistic
cutting force model. Figure 9 shows simulated and measured
cutting forces for cutting speed vc=144 m/min, feed per tooth
ft=0.07 mm, and DOC ap=1.25 mm. It should be noted that
SCFCs of the simulation are predicted using ANN models.
The good agreement between the simulated and measured
cutting forces proves the capability of ANN models to predict
the SCFCs for non-experimented cutting conditions.

7.2 Cutting parameters interaction on ktc and krc
variations

In addition to the process prediction, ANN models can be
effectively used for the evaluation of cutting parameter inter-
action. In the current research, the mathematical function de-
veloped by the ANN modeling is used for evaluating interac-
tions of the cutting speed, feed per tooth, and DOC on ktc and
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Fig. 6 Comparison of ktc obtained from ANN and experimental data

Table 4 Specifications of the best networks which selected for each of SCFCs

SCFC No. of first hidden
layer’s neurons

No. of second hidden
layer’s neurons

Training algorithm Activation function
of first hidden layer

Activation function of
second hidden layer

MAPEtr (%) MAPEts (%)

Ktc 3 3 BR Logsig Tansig 1.7 3.6

Krc 6 3 BR Tansig Logsig 4 9.7

Kac 5 2 BR Logsig Logsig 9.19 10.1

Kte 8 22 BR Logsig Logsig 2.8 7.3

Kre 18 25 CGF Tansig Logsig 6.57 7.55

Kae 27 24 LM Tansig Logsig 2.58 8.2

Table 3 Main parameters’ range for neural network modeling

Parameter Investigated range

Hidden layer 1 or 2 layer(s)

No. of each layer’s neurons 1 to 30

Training algorithm LM; BR; CGF; BFG; RP

Activation function Tansig; Logsig
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krc values. 3D surfaces and their contours are proposed to
comprehensively study the interactions.

7.2.1 Cutting speed and feed per tooth interaction

In Figs. 10 and 11, the cutting speed and feed per tooth inter-
action on ktc and krc in constant DOC ap=0.75 mm are shown,
respectively.

It can be seen that by increasing feed per tooth and decreas-
ing cutting speed, both of ktc and krc are declined. The ob-
served trend is in accordance with the size effect [28–30].
The following equation precisely expresses the size effect
[29]:

K ¼ B tcð Þp ð11Þ
where K is SCFC, tc is an uncut chip thickness, B and p are
constants depending on tool geometry andmaterials. Based on
the size effect, for small values of the uncut chip thickness, ktc
and krc are reduced by increasing feed per tooth.

7.2.2 Feed per tooth and DOC interaction

The interaction of feed per tooth and DOC which influences
on ktc and krc is illustrated in Figs. 12 and 13 for cutting speed
vc=100 m/min. According to Fig. 12, by increasing feed per
tooth and DOC, the value of ktc is reduced. The distinguished
feature of round inserts is that the variation of the uncut chip
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thickness not only depends on the feed per tooth but
also is determined by DOC. The chip thickness distri-
bution along the round insert is illustrated in Fig. 14.
As can be seen in Fig. 14, by increasing DOC, chip
thickness gradually increases.

For a certain DOC, the equivalent chip thickness is defined
as follows [31]:

heq ¼
X P

j¼1
hj

P
ð12Þ

where hj is the chip thickness of jth discrete element and P is
the total number of elements on the cutting edge.

According to Fig. 14 and Eq. 12, by increasing DOC and
feed per tooth simultaneously, chip thickness is increased and
ktc is reduced. It should be noted that the size effect is intense
for small values of the uncut chip thickness. On the other
hand, for higher values of DOC, ap> 0.85mm, and the desired
range of feed per tooth, the ktc value is almost constant (see
Fig. 12).

The parameters which influence variations of krc are chip
thickness and cutting edge geometry. Increase in chip

thickness leads to decrease in krc. On the other hand, for round
insert geometry, increase in DOC results in reduction of lead
angle (γl). Consequently, the ratios of radial cutting force to

axial cutting force FR
FA
, and accordingly, the krc are increased.

At low DOCs, the dominant mechanism which leads to
decreasing krc is size effect. In other words, for low values
of DOCs by increasing feed per tooth and DOC concurrently,
krc is declined, see Fig. 13. The ratios of radial cutting force to

axial cutting force FR
FA

are computed along line AB (in triangle

points) of Fig. 13b and are depicted as a black line in Fig. 15.

At low DOCs (ap< 0.85 mm), the FR
FA

ratio is reduced by

increasing the feed per tooth and DOC. This trend indicates
at lowDOCs, the size effect is the dominantmechanismwhich
results in reduction of krc and consequently radial cutting force
component (FR).

At higher DOCs, the trend of FR
FA

ratio variation is reversed.

In other words, by increasing the feed per tooth and DOC

simultaneously, the ratio of FR
FA

is increasing. Thus, for higher

values of feeds per tooth (ft>0.08 mm) and DOCs (ap>
0.85 mm), the krc is grown.
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0.75 mm
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7.2.3 Cutting speed and DOC interaction

The interaction of cutting speed and DOC on ktc at feed per
tooth ft=0.1 mm is shown in Fig. 16. By increasing DOC and

decreasing the cutting speed concurrently, the value of ktc is
reduced.

The variations of krc is decreasing for low cutting speeds
and DOCs. But, for higher values of cutting speed and DOC,
i.e., vc>140 m/min and ap>0.8 mm, the variations of krc is
increased (see Fig. 17). Figure 15 also illustrates the variation
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Fig. 15 Ratio of radial cutting force to axial cutting force FR
FA

versus
cutting DOC. Triangles correspond to line AB in Fig. 13b, and circles
correspond to line DC in Fig. 17b

Fig. 14 Variation of lead angle (γl) and equivalent chip thickness (heq)
along the cutting edge by increasing DOC
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of FR
FA

ratios by red line for the circle points along line CD

which are depicted in Fig. 17b. With respect to cutting speed
and DOC interaction, it can be noted that for small values of
DOC the dominant mechanism is the size effect which leads to

decreasing krc, while for higher values of DOC the ratio of FR
FA

is increasing and the dominant mechanism is the cutting edge
geometry which results in reduction of krc.

8 Conclusions

Due to complex geometry of the round insert, the pronounced
effects of cutting edge entrance and exit zones on the cutting
forces, the instantaneous cutting forces during engagement
must be measured and used to determine the SCFCs. In the
current work, the proposed mechanistic cutting force model is
considered as a three-objective optimization problem. One
hundred twenty-five experiments are conducted at desired
values of cutting conditions which are repeated three times

in order to assure the validity of experimental data. SCFCs
for each experimental result are obtained by NSGA-II.

The prediction of SCFCs for non-experimented cutting
conditions is performed by the ANN models. Training and
testing output dataset of each six neural networks are SCFCs
obtained by NSGA-II. Training dataset consists of 75 % of
input/output dataset, and the remaining 25% is used as the test
dataset. In this research, the five feed forward back propaga-
tion algorithms, namely LM, BR, RP, CGF, and BFG, are used
to train ANNs. The multi-layer perceptron back-propagation
algorithm (BPA) with the training epoch of 1000 is used in
order to predict the SCFCs. Each of multi-layer networks con-
sists of three inputs (cutting parameter) and one output (each
of SCFCs). In various tries, the mean absolute percentage
error of ANN models of SCFCs were between 1.7 and
9.19 % for training (MAPEtr) and between 3.6 and
10.1 % for testing (MAPEts) which are acceptable (see
Table 4).

The MAPEtr of ktc and krc are 1.7 and 4 % respec-
tively. In addition, the MAPEts values are 3.6 and 9.7 %
respectively. Therefore, the ANN results are used as an
acceptable database to develop the regression model for
evaluating interactions of the cutting parameters on ktc
and krc variations.

The accuracy of the optimization method and ANNmodels
is validated by simulated and experimental cutting forces. In
addition, it is demonstrated that the data obtained from multi-
objective optimization method can be used as training and
testing output dataset for ANN modeling.

Moreover, the cutting parameters interaction i.e., cutting
speed, feed per tooth, and DOC interactions on ktc and krc
are thoroughly investigated. The cutting edge geometry of
round insert plays an important role in ktc and krc variations.
By increasing DOC for a round insert, chip thickness in-
creases and ktc and krc values reduces according to the size
effect. Furthermore, increasing DOC results in higher ratios of

radial component to axial component of the cutting force FR
FA

and accordingly increasing krc. At low DOCs, the size effect is
the dominant mechanism affecting ktc and krc reductions.
However, at high DOCs, ratio of radial force to axial force
FR
FA

is increased and krc is grown.

The results developed in this research can be used by ma-
chining experts in order to estimate the efficient cutting pa-
rameters, i.e., cutting speed, feed per tooth, and depth of cut
for round insert prior to machining operations. Moreover, se-
lection of the proper depth of cuts which lead to decreasing the
ratio of radial cutting force to axial cutting force, could be of

great practical significance. By decreasing FR
FA
, the distribution

of cutting forces in the axial direction has been increased, thus
vibration generated due to long tool overhangs is reduced and
workpiece surface quality is improved.
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