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Abstract The geometric errors have a significant effect on
the machining accuracy of multi-axis machine tool. Because
of their complex inter-coupling, the process to control these
geometric errors and then to improve the machining accuracy
on this basis is recognized as a difficult problem. This paper
proposes a method based on the product of exponential (POE)
screw theory and Morris approach for volumetric machining
accuracy global sensitivity analysis of a machine tool. When a
five-axis machine tool is chosen as an example, there are five
screws to represent the six basic error components of each axis
(in an original way) according to the geometric definition of
the errors and screws. This type of POE model is precise and
succinct enough to express the relation of each of the compo-
nents as the Morris method is based on the elementary effect
(EE). The method can compare incidence of these errors and
be used to describe the nonlinear relationship by less calculat-
ed amount in a global system. Based on the POE modelling,
the Morris method is adopted to identify the key geometric
errors which have a greater influence on the machining accu-
racy by global sensitivity analysis. Finally, according to the
results obtained from analysis, suggestions, and guidelines are
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provided to adjust and modify the machine tool components to
improve the machining accuracy economically.
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1 Introduction

Multi-axis CNC machine tool is widely used in the manufactur-
ing industry. Because of its high efficiency and capability in
machining complex surfaces, it is one of the most important
components in the modern manufacturing facilities [1, 2]. Ma-
chining accuracy is a key factor in evaluating the capability of
multi-axis machine tools, and it is affected by geometrical,
thermal, kinematic, stiffness, and cutting tool deflection errors
[3-5]. Among these, the geometric error has major effect on the
machining accuracy [6], accounting for 40 % of all errors [7],
especially when relatively high precision is a requirement [8].
The geometric errors are systematic or repeatable, time-
invariant and can be measured and stored [9, 10].

Generally, there are two ways to improve the geometric
accuracy of machine tools: (1) design and manufacture for
precision and (2) error compensation [11]. The error modeling
aims to establish a map from the geometric source errors to the
position errors of machine tool. It is the common premise of
precision design and error compensation [12] and can lay a
foundation for the error compensation. Over the past several
decades, research was focused on the error modeling of ma-
chine tools along with the modeling methods for geometric
errors, especially the influence of geometric errors on three-
axis machine tools [13].

The modeling methods for geometric errors have been de-
veloped from different perspectives, and these include geomet-
ric modeling method, error matrix method (EMM), quadratic
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model method, mechanism modeling method, rigid body ki-
nematics method [14, 15], and multi-body system kinematics
theory [16]. Fan et al. [17] proposed kinematics of a multi-
body system theory (MBS) by adding movement and position-
ing error terms. This approach allowed development of a gen-
eralized kinematic model, applicable to the NC machine tools.
The POE model has been widely used in recent years in the
field of robotics. Because this model can express the kinematic
chain of a robot clearly, it is more suitable to describe the
motion of robot according to its geometric property, and it is
a zero reference position method [18]. Moon et al. studied the
geometric error modeling and compensation for the machine
tools using the screw theory [19]. They expressed the basic
error components of each joint as a modular error screw and
defined modular error screws and motion screws of the joints
with respect to a global reference frame. Despite all this work,
they merely used this method to establish the three-axis ma-
chine tool model excluding the rotation axis.

There are several inter-coupling [20] geometric errors in a
multi-axis machine tool, but the method to determine the in-
fluence of different geometric errors on the machining accu-
racy currently remains as a difficult problem in the design of
machine tools. The sensitivity analysis is one approach to
identify and quantify the relationships between input and out-
put uncertainties [21]. Different strategies have been applied
as found in the literature [22], which are typically classified
into two categories: global sensitivity analysis (GSA) [23, 24]
and the local sensitivity analysis (LSA). The LSA which em-
phasizes the effect of small parameter variations on the model
responses is used to determine the changes in model response
with an individual parameter. The GSA is applied to under-
stand how the model response varies with model parameters
and to determine interaction strengths among the parameters
[25]. However, the LSA can only inspect one point at a time,
and the sensitivity index of a specific parameter is dependent
on the central values of the other parameters.

With rigorous sensitivity analysis (SA) of geometric errors,
the most critical geometric errors can be identified and can be
strictly controlled, and thus, the machining accuracy of ma-
chine tool can be significantly improved [26]. The most recent
research work is found to focus on the application of LSA.
However, only three special configurations were selected to
perform the analysis, which probably were insufficient. Cheng
et al. [27] considered the stochastic characteristics of geometric
errors and used the Sobol’ global sensitivity analysis method to
identify the key geometric errors of machine tool. The screen-
ing method initially developed by Morris [28] and later mod-
ified by Campolongo et al. [29] is known as elementary effects
method. This method has been successfully applied in hydro-
logical [30] and ecological disciplines [31] and also in environ-
mental engineering [32], as it can estimate the parameter inter-
actions by considering both the mean and variance of the ele-
mentary effects with far less computational expenses [33].
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To overcome the drawbacks of local sensitivity analysis
and identify the critical geometric errors of machine tools
more reasonably, this paper proposes a new analytical method
for the identification of key geometric errors of multi-axis
machine tool based on POE screw theory and Morris global
sensitivity analysis. There are two major contributions from
this paper: One is the volumetric error modeling of five-axis
machine tool by POE screw theory. The other is that the ran-
dom characteristic of geometric errors is taken into consider-
ation, and the Morris method is introduced to identify the key
geometric errors of machine tool. The method of Morris can
estimate the parameter interactions by considering both the
mean and variance of the elementary effects.

The rest of this paper is organized as follows. Section 2
gives the framework of the proposed method. In Sections 3
and 4, the modeling of the volumetric machining accuracy
based on geometric errors is presented. The analytical method
based on Morris method to identify the critical geometric er-
rors is presented and a vertical machining center is selected as
an example for experimental verification of the analytical
method in Section 5. The conclusions are presented in
Section 6.

2 Framework of the proposed approach

In this paper, two major innovations are presented. One is that
POE screw theory is used for error modeling, especially for
the rotation axis error modeling. The other is Morris global
sensitivity. With experimentation and simulation, the useful
results were obtained and successfully analyzed. The ap-
proach presented in this paper consisting of three main steps
is summarized in Fig. 1.

3 Geometric error modeling for five-axis machine
tool

3.1 Screw theory and POE modelling

The screw theory forms the basis for error modelling. In this
expression, w denotes the instantaneous angular velocity and v
is linear velocity. In the Pliicker coordinate system, the unit

screw can be expressed as:

T
$:[WT VT] = [wl,w2,w3,v1,V2,V3]T (1)

If it is assumed that, “$ ” can express any motion of the
rigid body:

=153 g
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Fig. 1 Framework of the proposed approach

where, v=[v;,v,,v;]" and & is a skew-symmetric matrix.

The composite motion of the rigid body contains ro-
tation and translation [34]. Assuming that the vector
between the rigid body coordinate system and reference
coordinate system is ¢, the homogeneous transformation
matrix of the rigid body is given by:

T — o — [R Q]

0 1 (3)

The exponential matrix of the screw is also the cor-
responding homogeneous transformation matrix, namely
T = ¢*. There are two extreme situations in motions
that is only translational motion (w=0) or rotational
motion (w#0) [15]:

If $ is unit screw, the motion of rigid body can be written as

follows:
[{;Xs lv] iful] = 0
T=¢% = = T
N w X v —— —
e (z_ew9)< ) SV w0
0 MO ey |

(4)

where, ¢’ can be expanded by trigonometric series method:

2

=1+ -2 sing + w_z (1—cos0)
]l Jlwll

For the case when

(5)

llewll 0,

w? + w3 + w}. Otherwise, the translational distance
0=1/v? +v3 +14. A given point is defined by different co-
ordinates in different coordinate systems, and the transforma-
tion matrix of these coordinate systems is used to express the
relationship between the coordinates. A screw is similar to a
point. The coordinates of a screw in different coordinate sys-
tems are different. The adjoint matrix, in different coordinate
frames for the screws, is used to obtain the different expres-
sions. The transformation matrix of rigid body motion screw
0% can be expressed by Eq. (2) and the adjoint matrix of
transformation matrix is given by Eq. (6:)

() =5

The properties of adjoint matrix can be expressed in the
form shown by Egs. (7) and (8) [27].

31 = Adj (eﬁﬁl ) 8 = 6931 32 (663;])

the rotation angle

(6)

-1

(7)

@ Springer



2304

Int J Adv Manuf Technol (2016) 84:2301-2318

Fig. 2 Tllustration of a five-axis
machine tool

-1
. eeg1 $2 (6931) . N\ !
S —e = %15 (e%') (8)

Moreover, the POE screw theory modelling can be adopted
to express the forward kinematics of an open chain robot. For
an n-DOF(degrees of freedom) robot, the forward kinematics
can be written as shown by Eq. (9) [35].

T = 63101 ,63292...63;;9;1,]*(0) (9)

The matrix 7(0) represents the initial transformation ma-
trix. Equation (9), which represents the POE model, can also
be used in error modeling of the machine tools.

3.2 Geometric error for five-axis machine tool

In the previous section, the POE screw theory modelling
for rigid body is introduced in general terms. In this sec-
tion, the POE screw theory modelling is applied to estab-
lish the volumetric error model of a five-axis machine
tool. The motion of each axis and the geometric errors
of machine tool can be described by a screw and POE
modelling. The squareness and parallelism errors are rep-
resented in detail with the POE model. The screws can be
used to explain the squareness errors clearly according to
their geometric properties, and the model can be used to
describe the rigid body transformation.

Each component of the machine tool which is repre-
sented in the global reference coordinate system has mo-
tion screws and error screws, such as the axes, spindle,
and milling head. These screws of these parts make up the
kinematic chain and are basic to the topological structure.
The geometric error from the workpiece obtained by the
coordinate system of the working table is chosen as the
reference coordinate system. The exponential matrixes of
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error screws and motion screws are multiplied to obtain
the geometric error model by the analysis of topological
structure. In this paper, the five-axis machine tool is con-
sidered as an example to introduce the method for volu-
metric machining accuracy global sensitivity analysis.
The five-axis machine tools are becoming increasingly
popular in high-accuracy and processing of abnormal
parts. The schematic diagram of the five-axis machine
tool is shown in Fig. 2.

In general, a five-axis machine tool has 39 error
components in total, which include the linear position-
ing errors, straightness errors, angular errors, squareness
errors, and parallelism errors. These errors are listed in
the Table 1. In this list, § is the linear error, and ¢ is
the angular error; dy, is the linear error in y direction
while the X-axis is in motion. Here, the definitions and
relationships of S,y and Scy are similar to those of par-
allelism errors. Furthermore, they are considered as re-
petitive and unimportant error terms and for this reason
are not explained in detail in this paper

Table 1  Error components of five-axis machine tool
Errors Number Symbols

of errors
Linear positioning errors 5 Oxx> Oy Ozz5 Oy O
Horizontal straightness errors 5 Oyxs> Oy Oxzs Oy, Oxc
Vertical straightness errors 5 Ozx> Oxys Oyzs Oz Oyc
Roll angular errors 5 Exxs Eyp €225 ExAs E2C
Pitch angular errors 5 Eyx> Ez» Exzs EyAs ExC
Yaw angular errors 5 Ezxs Exp Eyzs EzA» EyC
Squareness errors 5 Sxy» Syzs Sxzs San Scy
Parallelism errors 4 PYias PZa, PX,c, PY,c
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3.3 Geometric errors modelling by screws

The five-axis machine tool in general has three translational
and two rotational motions. The unit motion screws can be
expressed as:

T
Sy = [rxy 0,72, 8y, 8y, Sz}

in which,s=[s,,s,,s s.]” represents the unit vector in direction of
motion of the translational axis;r=[r,, O,rZ] represents the unit
vector of rotation about the translation axis.

The exponential matrix of five-axis machine tool motion
which is ¢* can be expressed as:

s, |- 1 ooy
¢ 0 r 1 s,
0 0 0 1

For instance, with regard to X-axis, the unit motion screw is
$,. The symbol x represents the displacement of X-axis, and
the same applies to Y-axis, Z-axis, A-axis, and C-axis. $,, and §
, represent the motion screws of Y-axis and Z-axis, respective-
ly, and the symbols y and z represent the displacement of each
axis. $ o and $ - represent the rotation screws. The symbols A
and C represent angle of rotation about the 4-axis and C-axis,
respectively. Then, the corresponding exponential matrixes
are the ideal transformation matrixes of each axis. The motion
screws and exponential matrixes are as follows:

8. = [0,0,0,1,0,0]"
$, = [0,0,0,0,1,0]"
8. = [0,0,0,0,0,1]"
$4= [1,0,0,0,0,0]"
$c = [0,0,1,0,0,0]
1 00 x 1 00 0
ex$}\_o1oo 010 vy
00 1 0 00 1 0
00 0 1 00 0 1 (10)
1 000 1 0 0 0
s |0 1 00 s_ |01 =40
=100 1 2 s 04 1 0
00 0 1 00 0 1
1 -C 0 0
SO B cC 1 00
0 0 1 0
0 0 0 1

Due to manufacturing and installation defects, geometric
errors are inevitable for each axis. In general, the six error
components can be used to describe the geometric errors of
a moving axis since a rigid body has six degrees of freedom
[22], which include three translational errors and three rota-
tional errors. Moon et al. described the six error components
as modular error components using the screw theory [28].

They defined the modular error screw, m,$ ., as follows:
T
m,$, = [Exa €y, €z, O, 6y7 62]

Considering the X-axis part as an example, the first group
contains linear positioning error d,, and roll angular error &y,
for which the corresponding screw is $,,. The second group
consists of horizontal straightness error d,, and pitch angular
eITor £y, for which the corresponding screw is § ... The third
group consists of vertical straightness error §,, and yaw angu-
lar error &,,, for which the corresponding screw is $ .

The screws, $y, $,x and $,, can be written as follows:

S = [£xx, 0,0, 84, 0,0]" (11)
$yx = [076}’X)0)0)6)7X30]T (12)
$zx = [0707€ZX50;0;5Z,’C]T (13)

The corresponding exponential matrices represent the

transformation of these three screws, and %« represents the
transformation matrix of geometric errors for X-axis as shown
by Eq. (14):

egxe — egxx,egyx ,egzx (14)
The error modelling for X-axis can be written as:
T* = ode — i b odn odn (15)

On a basis similar to the method used for the error model-
ling of X-axis, Fu [13] introduced the motion screws clearly.
Here, the error screws of Y-axis and Z-axis will not be listed in
detail. Furthermore, the corresponding geometric error rota-
tion screw models of 4-axis and C-axis can be represented as:

$e4 = [£xa,0,0,0,4,0,0]"

84 = [0,44,0,0,8,4,0]" (16)
$zA = [07 07 EzA5 07 07 6ZA]T

egAe — e&\‘A ,egyA ,eng (17)

A _ eAgA_egAe — eAgA_eng_egm_eng; (18)
$ic = [£x¢,0,0,6,¢,0,0]"
T

$yc = [0,€y¢,0,0,6,c¢,0] (19)
$zC = [05 0) €2C, 07 07 6ZC]T

e$Ce _ egx(f, e‘gy(,'_ egz(,' (20)

TC _ ngc,e;?Ce _ ecgc,egxc,egyc,eﬁzc (21)
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3.4 Squareness and parallelism errors modelling

Due to the deviation of actual axis from the ideal axis, the angle
between the adjacent axes is not equal to 907, and this causes
squareness error. The squareness errors can be explained as
follows: as the Y-axis is defined to align with the reference
coordinate system, there is no squareness error (for actual Y-
axis). Sy, is the squareness error between X-axis and Y-axis, S,
is between Y-axis and Z-axis, and S, is between X-axis and Z—
axis. The plane formed by actual X-axis and Y-axis is called the
reference X=Y plane. There is only squareness error Sy, for
actual X-axis; meanwhile, for the actual Z-axis, there exist
two other squareness errors, which are shown in Fig. 3.

Taking the X-axis as an example, the ideal unit motion
screw Sy; is given by:

$xi = [070707 I,O,O]T (22)

With the squareness error S,, the actual unit motion screw
is $, and it is given by:

$xs = [0707OaCOS(SxJ’)’_Sin(Sxy)’O]T (23)

5= the actual exponential matrix of X-axis, can be written
as:

1 0 0 xcos(Sy)
5, _ |0 1 0 -xsin(Sy)
e = 0 0 1 0 (24)
0 0 0 1

Further, the adjoint matrix can be used to represent the
coordinate transformation. According to the Eq. (7), the refer-
ence coordinate system rotates through an angle about the
ideal Z-axis, and this process can be denoted by Eq. (25).

Sy

Fig. 3 Three squareness errors in five-axis machine tool
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Y G S P
$xs - Ad] (6 ) $x1 (25)
$., = [0,0,1,0,0,0]"

In the above, second subscript r represents the rota-
tion of the screw about the axis denoted by first sub-
script which means the nominal axis.

Similarly, the ideal unit motion screw for Z-axis is $_;
the actual unit motion screw is $,,, and exponential matrix

is €. These can be written as shown in Eq. (26).

84 = [0,0,0,0,0,1)"

8z = [0,0,0,=sin(Sx;), —sin(S,;) cos(Sxz), cos(Syz)cos(sz)}T
1 00 —zsm(sz)

o5 _ 010 *zcos 2)sin (Sy;)
0 0 1 zcos(Sy)cos(Sy,
0 0 0 1

(26)

As in the method of the adjoint matrix coordinate
transformation, the reference coordinate system rotates
through an angle about the ideal Y-axis at the first instance
and then rotates through an angle about the ideal X-axis.
This transformation can be shown by Eq. (27).

In the above, $.,=[1,0,0,0,0,0]” is the unit rotation
about ideal X-axis and $,,=[0,1,0,0,0,0]" is the unit
rotation about ideal Y-axis.

With regard to the parallelism errors, especially for
the rotation of A-axis and C-axis, a deviation occurs
between X-axis and Z-axis during the installation of ma-
chine tool. There are two errors between the actual 4-
axis and ideal X-axis, and these are the parallelism error
PY, 5 on Y-axis, and PZ,, on Z-axis. In a similar way,
the two parallelism errors between the actual C-axis and
ideal Z-axis can be shown as illustrated in Fig. 4, in
which X;, ¥, and Z; represent ideal axes.

Considering A4-axis as an example, the ideal rotation unit
screw about the X-axis is $ 4; and it is given by:

$4i = [1,0,0,0,0,0]" (28)

With the parallelism errors PY, 4 and PZ, 4, the actual unit
rotation screw $ 4 can be shown as:

—sin(PZy4),0,0,0]"
(29)

= [coS(PY4)cos(PZy4),—SIN(PYy4)cos(PZ.y),
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The actual exponential matrix of 4-axis e?*# can be written
as:

1 Asin(PZ,4)
S —Asin(PZ,4) 1
| Asin(PYx4)cos(PZyy) Acos(PYx4)cos(PZyy)
0 0

—Asin(PYx4)cos(PZy,)
—Acos(PYx4)cos(PZ.4)

1 (30)

0

— o O O

As in adjoint matrix coordinate transformation meth-
od, the reference coordinate system rotates through an
angle about the ideal Y-axis at firs and then rotates
through an angle about the ideal Z-axis. Equation (31)
shows this transformation.

Sas1 = Adj (eP Y*"$> $xiy Sus = Adj (ep Z*Ag"") $40 (31)

On a similar basis, the ideal unit rotation screw for
C-axis is represented by $(y, the actual unit rotation
screw by $¢,, and exponential matrix is represented by

¢CSc. These can be expressed as shown by Eq. (32).

$¢i =1[0,0,1,0,0,0)" 8¢y = [-sin(PY.c),—sin(PX.c)cos(PY.c), cos(PX.c)cos(PY.c),0,0,0]"

1 -Ccos(PX.c)cos(PY.c)
oCScs — Ccos(PX .c)cos(PY .¢) 1
Csin(PXc)cos(PY ) ~Csin(PY.c)
0 0

—Csin(PX,¢)cos(PY.c)

1

0
Csin(PY .¢) 0
0
0 1

As in adjoint matrix coordinate transformation meth-
od, the reference coordinate system rotates through an
angle about the ideal Y-axis at first and then rotates
through an angle around the ideal X-axis. This transfor-
mation can be expressed as shown by Eq. (33).

Scor = Adj (e'PYzcg”’) 8zi; $cs = Adj (ep XZ"“@“") Sca (33)

3.5 Modelling of volumetric error using topological
structure

In this paper, the five-axis machine tool is considered as an
example, and its schematic diagram is shown in Fig. 2. The
multi-body system (MBS) theory is applied to obtain a detailed
topological structure of the machine tool, which is shown in
Fig. 5, and it can be applied to the geometric errors POE model.

Under ideal conditions, errors do not exist. The order
of modelling is in the following sequence: C;—X;—
Y;—>Z;—A;. The ideal transformation matrix, namely
the ideal POE model, 7; is obtained as:

T; = o 8¢ .o, o V8Y; L o787; o018 (34)

Fig. 4 Four parallelism errors in five-axis machine tool
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Fig. 5 Topological structure of
the five-axis machine tool
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With the error screws, squareness errors, parallelism errors,
linear errors, and rotation errors, the actual POE model 7, of
the machine tool as illustrated in Fig. 5 can be written as
Eq. (35):

Ta — eﬁgCe ,e*C$c.s .eﬁg){g ,e*x‘g){x _eﬁg)'e ,e*ygw '€$/ .
eZ$ZS,e$z@ ,eA$As ,e$Ae

_ e—$ce.(e—PYzc$w.ePch x,.>,ev$c,_(e—PYzc$yr,ePXLc )

-1

. . . N T . .
= (esw&,) o (esw&,.) S Tt .
. . ) ) -1
( PR $,,.,) ., ( P N $,,,.> .
) . . . ) N
S, (ePYX,, 8. . oPZua $> 5. (ePYX,, 8. oPZxa yr> e
(35)
$_f =10,0,0,0,0,0] T represents the machine bed.
The tool tip error is the deviation of the ideal from the

actual homogeneous coordinates of the tool tip. The error
transformation matrix E, can be written as:

E=T"T, (36)
The three components of E are Ey, Ey and E..
[ExaEyaEml]T :E-[O,O,O,I]T (37)
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The installation errors of the tool and workpiece are too
small and can be ignored. Therefore, they are not considered
in this paper. E\, E,, and E; are shown by the Egs. (38, 39), and
(40), respectively.

Ey = 1x(PY.cmPX:c0xc) + 000y + 0xEpxEay 0y Epuiny
+ x(Swyyy + APY xaExa) ~OpErate + (2 + 0z + 0zt + SyzExc)
(& + EpEnex) (WX + Oz + OrcEpa) (€2 + E—ExyEnr)
+ o (EnEn—eneza) e (e + EnEsy)
(e + &0 + 2 (1) + Exp (ErEye + EpEnssy))
+ (~28y: + 6,:—0-6x2) <ezx +e; (azAfe'We»l,y) + e (Ex + EpEntn))

(38)

Fig. 6 Machine origin in the machine workspace
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Fig. 7 Measurement of 30
geometric errors with laser = ,
interferometer ‘ ‘ .451

receiver

(a) Linear geometric error (b) Rotation geometric error
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Y(~€xy + Eppzy + Ex(Epa + EmxExx) + (€ + ExExx) (1 + €yt
Jr(_ZSyz + 0y-—0zc sz) (_Exy t &yt Exc (EyA + 5XX5H) + (_5~\’~X + 5yx52X) (1 + 5xy5yy52y))

X-Y plane error distribute

e}
=
5
5 0.005 _|
t
S
—
—
w

500 500 600

i o ey T
Y-axis(mm) 200 100'0 5 Too 200 306

X-axis(mm)

Fig. 8 Distribution of volumetric machining errors on X—Y plane
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X-Z plane error

Error distribute (mm)

Fig. 9 Distribution of volumetric machining errors on X—Z plane

It should be noted that the value of geometric error
(E) can be divided into two components. One is the
deterministic value (Egetermine) and other is the random
error (A). As an example:

E = Egetermine + A

distribute

e e

NS

SRR <

X-axis(mm)

The E would be fluctuated around Ejgeiermine. The random
part A cannot be compensated because of its randomness. It
can be described by the rule of statistic. Cheng et al. [2] de-
scribed it as Gaussian white noise.

Then, by ignoring the second and higher order error terms
(for example, the term of e, it is multiplied by €,,,¢. and ¢,

Y-Z plane error distribute

Error distribute (mm)

Fig. 10 Distribution of volumetric machining errors on Y—Z plane
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Table 2 Six geometric error

components of X-axis Axis (mm) 0 50 100 150 200 250 300
S () 0 ~7.550 ~12.130  —18.882  —24.178  —28963  -31.998
Sy (pum) 0 ~2.226 -5.613 -12535  -20243  -29.135  -38.138
8, (um) 0 1.743 3212 7214 9.856 12.795 15.286
£x (1rad) 0 -1.020 ~2.945 ~5.682 ~7.263 -9.253 -12.118
£y (1rad) 0 6.130 6.020 5.896 5.886 5.695 5.486
£, (urad) 0 2.130 5332 6.135 8.265 10.130 12.685
Axis(mm) 350 400 450 500 550 600
S (1) —40.100  —62.152  -76.853  —85.685  —88.685  —90.152
Syx () —43.595  -50.130  -59.155  —62.100  -75.133  —80.183
8 (um) 20.283 24.137 35.200 42.400 50.145 60.853
£x (1rad) -15167  -16.690  -32153  —39.110  —43200  —48.163
£y (jrad) 5.135 4950 4700 4.653 4377 4.000
£, (urad) 15.162 17.009 18.593 19.165 22.130 24.000

in Eq. (38). The results are very small and have less influence  errors of guide rail are found who have foremost influence
on the results, and there is not necessary to keep the higher ~ on the machine accuracy and they also appear in the first order
order error terms in the final expression. Furthermore, as the ~ model. The first order model is reduced to the following
comparison and simulations in Section 5.3 said, the main [36]:

E, = xA_5xx_ 5xy + vx (PYZC +é&c+ 522) _Zsz_ZEyX_Zgy)’_y €07 V€
Ey = 0,00y + ay(syA + PYXA)—vysxA + x84y2S); + Z8xx + zExy + XE (41)
Ez = On 5zx_ 6zy + o g X Eyx + Yy ext Yy Exy

In the Eq. (38-41): In recent years, innumerable methods for obtaining

o Represents the angle of rotation of A-axis measurements have been presented which include 22-
v Represents the angle of rotation of C-axis line method [37], 15-line method [38], 12-line method,
X Represents the X-axis displacement nine-line method, and the vector diagonal measurement
Y Represents the Y-axis displacement method. In this paper, the nine-line method is applied to
Z Represents the Z-axis displacement. obtain the linear error data because identification theory

Table 3 Six geometric error

components of ¥axis Axis (mm) 0 50 100 150 200 250 300
8y (1) 0 ~0.286 -1.230 -8.082 -9.008 -15.063  —18.008
8, (1) 0 7.580 12.150 18.000 23.685 28.695 33.595
8, (1) 0 0.050 0.980 1.630 9.856 12.795 15.286
£, (urad) 0 0.020 1.935 3282 4253 6203 10.018
£,y (urad) 0 ~0.530 -0.993 -1.196 ~4.056 ~8.690 ~12.086
£,y (urad) 0 ~0.100 -0.392 ~1.160 ~1.580 -2.831 ~8.685
Axis(mm) 350 400 450 500 550 600
8y (1) —20400  —22.002  —24900 38605  —40985  —52.152
8, (1m) 36.178 44.100 53.655 58.860 72.300 89.162
8, () 18.203 24.137 30.110 35.030 38.155 47.853
£,y (urad) 13.267 20.000 30.053 25210 33.200 48.163
£,y (urad) ~18735  —23.050  —28950  —29.653 35377  —38.000
£,y (urad) -10.000  -12.109  -15003  —20.000  —23.930  —25.993
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Table 4 Six geometric error

components of Z-axis Axis(mm) 0 50 100 150 200 250 300 350 400
S (um) 0 0050 -0230 -1.172  -2008  -3.000 -5009 —6.440  —6.906
Sy (um) 0 0.080 0.993 1300 1.995 2695  2.999 3965 4860
5, (um) 0 2750 2.980 1306 1.866 1095 0468  —0203  -1.137
e (urad) 0 0 -0535  -1082 0 0998  1.069 2067  3.000
e, (urad) 0 048  -1.093 —0596 -1.100 —0660 0 0756  1.050
e, (urad) 0 0 0302 0960  1.000 1641 2.585 2023 3.109

of this method is not based on the geometric error mod-
el, whereas the other methods identify the error compo-
nents by employing the geometric error model. There-
fore, it may not be accurate to verify the integrated
geometric error model using these error components.
Figure 6 is a sketch showing the position of origin of
the machine in machine workspace (Fig. 7). Based on
the measurements shown, the volumetric machining er-
rors on X-Y plane, Y-Z plane, and X—Z plane were
calculated and are shown in Figs. 8, 9, and 10. Pictures
(a) and (b) of Fig. 7 illustrate the measurement scenario
of the nine-line method for identifying the 18 linear
geometric error components and 12 rotation errors. The
results obtained from these experiments are shown in
the Tables 2, 3, 4, 5, and 6. The linear error results
of the illustrated five-axis machine tool were measured
with API 6D laser interferometer, and the rotary errors
were measured with RENISHAW (XL80) laser interfer-
ometer. From the data in these figures, it can be seen
that the volumetric machining errors increased with the
distance. This result is due to the squareness errors and
parallelism errors.

4 Global sensitivity analysis based on the Morris
method

In the earlier work, the error modelling was established by
POE screw theory. A suitable method should be employed
for the analysis and to elucidate the key error terms according
to the error modelling. Such approach is very important for
improving machining accuracy and determining the defective
components. With this as objective, for the next study, the
Morris analysis method is introduced to solve the problem.
In the Morris method [28], a model parameter is changed in
a large global district which influences the output result. The
implementation process of this method is shown in Fig. 11.
The elementary effect (EE) is assumed to evaluate the sensi-
tivity of parameter ¢;, which obeys a distribute type F;. The
global sensitivity of parameter can be defined by the mean
Hmoris and standard deviation o5 of the distribute type
F; (Here, the mean and standard deviation are not used for
describing the real error distribution. Their functions are used

@ Springer

to obtain the most global influencing error components). The
higher the mean of the parameter ¢y, the greater is its influence
on the output result. Similarly, the smaller the standard devi-
ation of the parameter ¢;, the less is its influence on others
parameters in the global system and vice versa. However,
because of randomness of this method, errors in the sampling
or stochastic process are caused easily. Therefore, the sample
should be measured repeatedly and the averaged result obtain-
ed should be taken as the sensitivity of parameter.

The system model is set as p=(6;,6,,0s,...6,). The
Morris method rule states that every parameter should be nor-
malized so that its value is in between 0 to 1 and discretized.
From this process, each parameter gets a value form the group

12
{0, 2
each parameter. Every parameter in the system model gets a

value in the sample randomly, and vector Z consists of these
parameters as shown in Eq. (42):

, l}, in which, p is the number of sample of

Z:[thza-"?ZVﬂ] (42)

In the above expression, m is the number of samples.
The variation A applies on z; in vector Z. Elementary effect

(EE) is:

,Z? + A, ...,zgl)—cp(zo)
A

o, .. .

EE;(Z") =

The value of A is set at A = p%l in advance.

Using these rules, the process for global sensitivity analysis
based on Morris method is carried out in following steps.

Step 1 The matrix $* is diagonal, its size is m, and each
diagonal element is “1” or “-1” equiprobably. The
Table 5 Six geometric error components of 4-axis
Axis (°) 0 60 120 180 240 300 360
oa(um) 0 0 —0.080 O 0.062 0 —0.008
Oya (um) 0 0.030 0.089 —0.333 0 —0.695 —-0.999
O (um) 0 —0.046 —0.065 -1.060 -2.343 -3.152 -3.235
exa (prad) 0 0.422 1.735 6.072  10.000 11.998 14.069
eya (urad) 0 —1.083  0.093 1.596 2.100  3.560 4.000
e (urad)y 0 0 —-1.801 —2.888 —3.000 —4.391 -—5.555
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Table 6  Six geometric error components of C-axis

Axis (°) —80 —40 0 40 80

dxc (wm) 0 0 0 0 0

dyc (um) —2.000 —-1.030 0 1.000 1.828
0yc (1m) 1.113 0 0 —2.333 —3.343
exc (prad) 0 0.333 0 1.200 1.958
gyc (urad) 0 —-1.083 0 1.596 2.100
&,c (nrad) 4.862 3.338 0 —2.969 —3.000

matrix D is lower tridiagonal and its elements are “1”’
and “0”. D belongs to R™" "™,

0 0 O 0
1 0 O 0
D=1 1 0 0
1 1 1 1 0

Aj 1s the unit matrix the size of which is (/xm), and /I=m+
1. Then, the size of matrix A*=(2D—4;,,)S*+4;,, is (Ixm).
Moreover, every element in matrix 4* is equal to the corre-
sponding element in the matrix D,or “0” transforms to “1”’and
“1” transforms to “0”.
Step 2 6* is the base value for input parameters 6, and each
parameter gets a value from the group

{0,#,%,..., 1} randomly.

Step3  W* is the permutation matrix the size of which is (m %
m). There is only one element with value “1” in each

Fig. 11 Process of Morris
method in global sensitivity
analysis

The system model
P=9(6,,6,.6;.>-6,,)

o =

line or row in this matrix; other elements are “0”. The
randomized matrix D* of sample matrix D is as
shown in Eq. (44):

D= [Am+1,10* + (A / Z)A*} W (44)

The matrices S*, 0* and W* are stochastic and in-
dependent. The matrix D* also is randomized. More-
over, there is only single value difference between every
two rows in the matrix D* and considering the rank j as

an example.
. 0, 0; 0

D(j) = J " 45
() 0, 0, 0, (45)

Here, 0, —0,,=A, and D(j) is chosen as the input parameter
vector. The element j is of “EE” and can be calculated basing
on Eq. (46).

@(91,...,(%1,

79m)_()0(917
A

7€j27 ---aem)

EE; = (46)
The entire adjacent rows of elements are the input
parameters in this system. The “EE” of all parameters
is calculated using this procedure, especially for the
complex geometric errors with higher efficiency.

Step4 According to the sampling number #n, steps 1 to
3 should be carried out for » times. With a
counting process, EE value of every parameter
can be calculated.

o,

m

]

[6,.6,,...,

1=1

Sample size of each parameter

is 6, p and normalization in

[0,1].

Set matrix D for lower tridi-
agonal, 4,,, for an unit ma-
trix and w* for a permuta-

=
1
1 . :
1 The randomization matrix : honmatrx:.
I * * * *
1 D' =[ 4,6 +(A/2)A" W
1
1
I A=6 e —1
P Crrp—— —0. —0.,=
1 J1 J2 p _ 1
1
! 90.....0,.....0)-9(0.....6 .....6)
] EE = s = ) "
1 / A
1
1
1
1
I n
i EE;
Himorsisy = =
S EE
O-i(marris) = HZ( j_lui(mam's))

Bl
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X-axis errors uniform distribution by Morrirs

2.5 T G e RS R SRR

15

O orris

O} o B

--------------------------------------------------------------------------------------------

p'morris (“ m)

Fig. 12 Uniform distribution of X-axis errors by Modified Morris Method

Step 5 Calculate the mean and standard deviation of the EE
with € as input parameter.

n
Zj:lEEj
Hi(morris) = —

Step 6 Make a judgment on the global sensitivity for input
parameters.

n 5 Global sensitivity analysis and modification
5.1 The modification for process of Morris
Ti(morris) = %Z (EE ,——ui(mom-s)) According the POE modelling of screw theory for volumetric
J=1 machining errors, the error models on X-, Y-, and Z-axis of the
X102 Y-axis errors uniform distribution by Morrirs
- pr gy
35 el ———— T ST——
S SR T, S—— -------------------- T——
B 1.5 | e T—— e
S S DT G2 Wt NS N
7% INCRRPINEERPUSISE ISP, HSOSISHNSEIRIS, SSRPSSNISISUSSIIP: SEETSRR RIS
0 YL (5D (V) | i |

l’l morris ("l In)

Fig. 13 Uniform distribution of Y-axis errors by Modified Morris Method

@ Springer



Int J Adv Manuf Technol (2016) 84:2301-2318 2315

1073 Z-axis errors uniform distribution by Morrirs
e
R
0

Omorris

.....................................................................................................................

0.2
0 | | J
0 5 10 15

”’ morris (”l ln)
Fig. 14 Uniform distribution of Z-axis errors by Modified Morris Method

five-axis machine tool are shown in Eq. (47) to Eq. (49): Modified Step 3 The W* is the permutation matrix of size
xm). There is only one element with
Ex = 0 5}(){ 6\: PYz ¥4 zzyPxzy Eyx zx 47 (m . . . . .
f( x4 Oxxs Oxy) C1€2C; €22y Sxzs Eymy Eyr € ) (47) value “1” in each line or row in this matrix,
and rest are “0”.
Ey = g(8y2, 6yx, s €3, PY s, Exts Sy Syzy Exx, Exys Exx) (48)

Ez - (P((szzv(szxa(szyyEZC;eyxyexxasxy) (49) b = [Am+1’10 + (A/2>A :|W

Here, 0,,—0,,=A, and D(j) is chosen as the input parameter
vector. The element j is of “EE” and can be calculated using
the following relationship:

There are 25 error terms that mostly affect the volumetric
machining errors and these include 10 parameters on the X-
axis, 11 parameters on Y-axis, and 7 parameters on Z-axis.

There are 3 repetitive terms. \/Z Uasis Lty - oos Lty oy L10)~F s (L1 oy Ly ooy Lio) |
Considering the measured data of geometric errors on X-  EEj = A
axis as an example, the true value of every error term L; (i=1, (51)

2,3,...,11) is C and is normalized as:
In the above, f,,is(*) represents the output geometric errors

ﬁ (50) on X-axis with the element ;.

10

> lcl;
1

The range of L; is from 0 to 1, and belongs to uniform

distribution. To shrink the range, the p should be even, and
the variation is A = 2(;%1). The Step 2 and Step 3 described

i =

earlier should be modified in Morris method according to the !
procedure shown below. { .,_U_ guide rail

Modified Step2 L* is the base value for the input parameters
L and each parameter can get a value from

{0,#,%, e I—A} randomly.

Fig. 15 Guide rail modification for obtaining higher precision
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Fig. 16 Comparison of E,, for the
original and modified guide rails

T
=4~ modified geometric errors’
—om

original geometric errors

/
yd
v

P

Ey(mm)

0.04

0.03

0.02

5.2 The global sensitivity analysis by modified Morris
method

Finally, the global sensitivity can be calculated using steps 4—
6. For this process, p is set as 16, and sampling times are 500.
The results from global sensitivity analysis obtained on X-axis
with Morris method are shown in Fig. 12. (e, is x X cos(e;), and
its unit is pwm).

By using similar procedure, the results of global sensitivity
on Y-axis and Z-axis were determined and shown in Figs. 13
and 14.

In this study, the mean fi,,o.is Of geometric errors on the X-
axis, namely F,, is calculated according to the modelling cal-
culation process. The global sensitivity order of degree of
influence for the key geometric errors in Ey is: §,.)d,,)e 4)0-
1€z P Y001 )Ex)ex)S,2)Sx- In view of the standard devia-
tion oy ormis, the top three key geometric errors on X-axis which
interact with other geometric errors relatively to a larger de-
gree are: €.¢,0y, and €,,. These error terms should be con-
trolled primarily.

Similarly, the global sensitivity order of degree of influence
for the key geometric errors in E according to the magnitude
of mean Hmorris is: 5yz>6yy>6xA>6yx>€zx>P Y xA>6yA>€xx>€xy>Syz>Sxy
In view of the standard deviation oo, the top three key

I
100

200 300 400 500 600
Y-axis route(mm)

geometric errors on Y-axis which interact with others relatively
to a larger extent are: d,,,d,, and d,.. These error terms should
be controlled primarily and all these impact the accuracy of Y-
axis guide rail. As for the E,, the global sensitivity order of
degree of influence for the key geometric errors according the
magnitude of mean Hmorris is: 622)6zy>5zx>gzc>€xx>€yx>5xy- In the
view of the standard deviation 0,045, the top three key geo-
metric errors on Z-axis which interact with others to a greater
extent are: d,,€.c and d... The eight key error terms should be
controlled primarily in order to improve the volumetric ma-
chining accuracy.

5.3 Verification and simulation based on GSA results

Because the squareness errors and parallelism errors PY, ., S,.,
PY,4,S,. and S,,, are system errors, they have less influence on
the other error terms. According to the results of global sensi-
tivity analysis, the volumetric machining error of Y-axis main-
ly depends on the precision grade of guide rail on Y-axis.
Therefore, the guide rails on Y-axis are replaced by two other
rails with higher precision, as shown in Fig. 15. The geometric
errors are measured after this modification. By the volumetric
machining accuracy model, Fig. 16 shows the £, under the
original and modified conditions of the machine tool. It can be

Fig. 17 Simulation results of E

~-modified geometric errors

for original and modified guide
rails

‘\\

& —e-original geometric errors

\\

N
NN

\

Ex(mm)

N\

S\

\\<b«
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Fig. 18 Simulation results of £, 410
for original and modified guide
rails

=%-modified geometric errors
—e-original geometric errors

50

seen that the Ey is obviously reduced with the modified guide
rails.

The methodology has a wide-range of practical applicabil-
ity. A simulation was carried out as a proof. An assumption is
made that the key components of five-axis machine tools are
replaced according to the results of methodology. These key
components are those that can lead to key geometric errors
mostly affecting the machining accuracy. After replacement,
the key geometric errors were reduced by 20 %. Figures 17
and 18 show that space errors £, and E, clearly decreased.

Therefore, on the basis of experimental and simulation re-
sults obtained, it can be stated that the POE of screw theory
modelling and Morris method global sensitivity analysis are
very useful tools and can be widely applied to improve the
machining accuracy of a machine tool.

6 Conclusion

In this research, based on the POE screw theory, a method was
established to model the volumetric machining accuracy of a
five-axis machine tool. The formulae for geometric errors on
X-, ¥-, and Z-axis were established, and then by ignoring the
second and higher order error terms, the relationships for vol-
umetric machining errors Ey,E,, E. were developed. After
measuring the geometric errors by nine-line method, the vol-
umetric machining error distributions on X-Y, Y-Z, and X-Z
plane were established.

In view of the fact that 37 geometric errors were involved
in intercoupling, in this paper, a modified Morris method was
used to perform global sensitivity analysis and identify the key
error terms having a greater influence on the volumetric ma-
chining error. The results indicated that the Morris mean af-
fects the output results, and that Morris standard deviation
represents the degree of influence.

Of course, besides the geometric errors, thermal and load-
induced errors also lower the volumetric machining accuracy
of a machine tool. Therefore, in future research, in order to

100 150 200 250 300 350 400
Z-axis route(mm)

improve machining accuracy further, the authors hope to pur-
sue the sensitivity analysis of machining accuracy by taking
more error sources into consideration.
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