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Abstract Cloud manufacturing (CMfg) is emerging as a
promising manufacturing paradigm, which can realize and
provide distributed and heterogeneous manufacturing re-
sources as services for all phases of the product lifecycle. A
task-driven manufacturing cloud service (MCS) proactive dis-
covery and optimal configuration method is presented in this
paper to realize full-scale sharing, on-demand use, and collab-
orative configuration of manufacturing resources in CMfg. In
this research, two kinds of resources, including manufacturing
machine and manufacturing cell (MC), are viewed as a break-
through point of the investigation of multi-granularity re-
source configuration process. During resource modeling, ad-
vanced information and sensor technologies are adopted to
construct the information models of resources, which consist
of static attributes, real-time manufacturing data, and evalua-
tion information. It makes the traditional production process
more transparent, traceable, and on-line controllable. By ap-
plying the service proactive discovery mechanism, service
providers rapidly respond to task requirements on the basis
of real-time status and submit requests to perform tasks pro-
actively. Hence, the responsiveness and initiative of service
providers are highly enhanced. Consequently, the efficient
discovery of potential services can be achieved. In service
configuration process, a scientific evaluation system is
established to perform the comprehensive assessment of

services. Then, through the evaluation method based on grey
relational analysis (GRA), the service optimal configuration is
implemented. Finally, the effectiveness of proposed models
and methods is validated by a case study.

Keywords Cloudmanufacturing .Multi-granularity
resources . Proactive discovery .Optimal configuration .Grey
relational analysis

1 Introduction

In recent years, rapid development and widespread application
of information and sensor technologies have been achieved in
manufacturing field, such as Cloud Computing (CC) [1],
Internet of Things (IoT) [2], service-oriented technologies
(SOT) [3], and so on. These technologies have brought vigor-
ous development opportunities to modern manufacturing in-
dustry. Under this background, CMfg as a new computing and
service-oriented manufacturing mode is developed from vari-
ous existing advanced manufacturing modes (e.g., agile
manufacturing (AM), application service provider (ASP),
and manufacturing grid (MGrid)) and enterprise information
technologies [4]. The concept of CMfg was presented by Li
et al. [5], and the architecture, characteristics, and core en-
abling technologies are extensively researched [6–8].

Cloud manufacturing as the manufacturing version of
cloud computing [9] extends the philosophy of “everything
is a service” by adding new concepts like “manufacturing
resource as a service” and “manufacturing capability as a ser-
vice” [3]. In CMfg, distributed manufacturing resources and
capabilities are virtualized and encapsulated into MCSs,
which can be managed and operated in an intelligent and
unified way to achieve the full sharing and circulation of
manufacturing resources and capabilities [10]. The service
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demanders can then search and hireMCSs through the pay-as-
you-go mode to execute manufacturing tasks according to
their requirements [4].

Due to complexity and diversity of manufacturing re-
sources, resource optimal configuration has become a key
issue in CMfg and has been widely studied in both industrial
community and academia. Generally, manufacturing re-
sources comprise four different granularities, namely enter-
prise level, workshop level, cell level, and machine level. In
this circumstance, resource search and invocation mainly de-
pend on the granularity of task requirements [11]. For in-
stance, process-level tasks can be executed by machine-level
resources while complex tasks, like assembly-level or
product-level tasks, need to be performed by invoking cell-
level resources or higher. Accordingly, further resource allo-
cation can be implemented. However, existing researches
have a vague explanation for resource granularity. The opti-
mization configuration process for multi-granularity resources
and further internal resource optimal allocation within coarse-
grained ones are few discussed. To achieve the efficient im-
plementation of CMfg, the following questions should be tak-
en into consideration:

1. How to apply IoT technologies to traditional production
activities, so that the real-time running data and dynamic
capability information of manufacturing resources can be
timely sensed and captured.

2. How to establish a scientific information model for two
kinds of resources investigated in this research, including
manufacturing machines and cells, before these resources
can be registered and published to CMfg platform.

3. How to realize efficient service discovery and optimiza-
tion configuration, especially during the implementation
process from cell level tomachine level for coarse-grained
tasks which require for multi-level decomposition.

To address the above questions, this research adopts and
develops three critical technologies. They are IoT, SOT, and
GRA. Within IoT, multi-source real-time manufacturing data
can be sensed and captured easily by radio frequency identi-
fication (RFID) techniques, and intelligent interconnection
between different manufacturing resources and objects can
also be achieved [12]. SOT (e.g., service-oriented architecture
(SOA), Web service, semantic web and ontology) can provide
support for intelligently constructing a virtual manufacturing
and service environment, which is one of the key enabling
technologies to realize access, invoking, deployment, and
on-demand use of MCSs [5]. GRA is a multiple criteria deci-
sion support approach to establish a ranking and suggest a best
choice on a set of alternatives by analyzing relational grade
among the discrete data sets [13, 14].

The rest of the paper is organized as follows. “Literature
review” section reviews the literatures related to this research.

A framework of MCS proactive discovery and optimal config-
uration method is presented in “Framework of MCS proactive
discovery and optimal configuration method” section.
Servitization of multi-granularity manufacturing resources is
described in “Servitization of multi-granularity manufacturing
resources” section. “Service optimization configuration” sec-
tion elaborates the service optimization configuration method.
A case study is simulated in “Case study” section. Conclusions
and further work are summarized in “Conclusion and future
work” section.

2 Literature review

Three streams of literatures are relevant to this research. They
are cloud manufacturing, real-time manufacturing information
perception and acquisition, and service selection and compo-
sition method.

2.1 Cloud manufacturing

As a new promising manufacturing paradigm, CMfg is
reshaping the service-oriented, highly collaborative, knowl-
edge-intensive, and eco-efficient manufacturing industry
[15]. Significant efforts have been expended on the investiga-
tion of CMfg. To realize the full sharing, free circulation, on-
demand use, and optimal allocation of various manufacturing
resources and capabilities, Tao et al. investigate the applica-
tions of the technologies of IoT and CC in manufacturing
firstly, and service system, architecture, and relationship of
CC-based and IoT-based CMfg is studied [16]. Intelligent per-
ception and access of various manufacturing resources based
on IoT in CMfg has also been achieved [17]. In addition,
virtualization is important for resources sharing and dynamic
allocation in CMfg. Consequently, an effective resources
virtualization mechanism for CMfg is presented. Also, a
multi-granularity manufacturing model is designed to manage
manufacturing resources based on manufacturing capabilities
[8]. Luo et al. present a modeling and description method of
multidimensional information for manufacturing capability in
CMfg system [18]. Wang et al. propose an information model
for manufacturing resources under CMfg environment, which
consists of capability information and server information [19].
A new organization and model based on physical manufactur-
ing unit (PMU) layer, working cell layer, and physical equip-
ment layer was proposed by Yao et al. [20]. Zhang et al. pres-
ent a service encapsulation and virtualization access model for
manufacturing machine by combining the IoT and CC in
CMfg [21]. A SME (small-sized and medium-sized enter-
prise)-oriented CMfg service and capability transaction plat-
form for small- and medium-sized enterprises is presented to
serve the sharing and coordination of network-based
manufacturing resource of SMEs, and to address the key
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problems (e.g., deficiency of self-innovation and design capa-
bility) [22]. A hybrid manufacturing cloud is proposed to al-
low companies to deploy different cloud modes for their pe-
riodic business goals with the self-defined access rules and
self-managed mechanism [23].

2.2 Real-time manufacturing information perception
and acquisition

The Internet of Things (IoT) is a novel paradigm which
is rapidly gaining ground in the scenario of modern wire-
less telecommunications, and it relies on technologies
such as RFID, sensor, etc. [24]. It has been reported that
IoT is widely applied in manufacturing field based on its
significant advantages by many researchers. A real-time
information capturing and integration framework of the
Internet of Manufacturing Things (IoMT) is presented by
extending the techniques of IoT to manufacturing field
[12]. RFID technology has been used in manufacturing
industries to form a RFID-enabled ubiquitous environ-
ment. Zhang et al. describe a framework of multi-agent-
based real-time production and logistics scheduling sys-
tem for RFID-enabled ubiquitous shopfloor environment
[25]. Zhong et al. utilize real-time advanced production
planning and scheduling to improve the quality and reli-
ability of plans and schedules to achieve collective intel-
ligence based on the RFID-enabled real-time information
for RFID-enabled ubiquitous manufacturing [26]. Based
on acquired real-time and multi-source manufacturing
data, Zhang et al. propose an optimization method for
assigning shopfloor material handling tasks [27].
Moreover, a kind of real-time information-driven intelli-
gent navigation method for assembly station in unpaced
lines is also presented [28]. Guo et al. describe the RFID-
based intelligent decision support system architecture by
integrating RFID technology and cloud technology to
handle real-time and remote production capturing, mon-
itoring, and scheduling in a distributed manufacturing
environment [29]. Wang introduced IoT and cloud
manufacturing to help a conventional assembly modeling
system evolve into an advanced system and to deal with
complexity and change in their application of modern
enterprise [30]. Huang et al. apply the RFID technology
into automotive manufacturing and deploy RFID-enabled
real-time services in a common platform across members
of automotive part and accessory manufacturer alliance
[31]. Zhong et al. introduce a big data approach into
RFID-enabled logistics production data to mining the
invaluable trajectory knowledge [32]. Li et al. conclude
and analyze the various date involved in the three main
phases of product lifecycle management (PLM) and in-
vestigate the potential applications of “Big Data” tech-
niques in PLM [33].

2.3 Service selection and composition method

In CMfg, services can be searched, invoked, and deployed by
service demanders. Selection of single service and service
composition is of great importance to provide an ideal solution
for specific manufacturing tasks. Wang et al. study the selec-
tion strategy of machining equipment in CMfg and propose an
optimal selection of machining equipment model [34]. A trust
evaluation model oriented to mechanical manufacturing filed
based on the framework of CMfg service platform is
established by Li et al. to achieve the effective management,
convenient use, and reliable transactions of resources and
tasks [35]. Service composition and optimal selection
(SCOS) is a typical multi-objective combinatorial optimiza-
tion (MOCO) problem in CMfg. Tao et al. point out that
SCOS is one of the key technologies to implement CMfg,
and investigate the multi-objective MGrid SCOS problem
[36], then propose a new manufacturing grid resource SCOS
method, based on the principles of particle swarm optimiza-
tion (PSO), to minimize implementation time and cost, and
maximize the reliability of MGrid resource service composi-
tion paths [37]. Tao et al. also investigated the formulation of
SCOS in CMfg with multiple objectives and constraints. And
a parallel intelligent algorithm was developed [38]. Liu et al.
describe a “Multi-Composition for Each Task” (MCET)
pattern-based global approach to combine the incompetent
composite services into a whole to perform each multi-
functionality manufacturing task collaboratively [39]. Xiang
et al. introduce a new multi-objective optimization algorithm
based on the combination of the idea of Pareto solution and
group leader algorithm (GLA) to address the problem of
SCOS based on quality of service and energy consumption
in CMfg [40]. Huang et al. design a new chaos control optimal
algorithm (CCOA) to address the SCOS problem with large-
scaled and irregular cloud services in CMfg [41]. Qu et al.
propose a generic analytical target cascading optimization sys-
tem for decentralized supply chain configuration [42].
Lartigau et al. develop an adapted Artificial Bee Colony opti-
mization algorithm based on quality of service with geo-
perspective transportation to answer all the challenges identi-
fied in CMfg service composition, satisfying computational
optimization [43]. Li et al. propose a decision diagram exten-
sion method based on original Binary decision diagram for
large-scale system [44].

3 Framework of MCS proactive discovery
and optimal configuration method

Figure 1 illustrates the framework of MCS proactive discov-
ery and optimal configuration in CMfg which consists of four
modules, namely servitization of multi-granularity
manufacturing resources, manufacturing task publishing,
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task-driven MCS proactive discovery, and MCS optimal
configuration.

Manufacturing resource full-scale sharing and circula-
tion are the very important objectives in CMfg. It is the
prerequisite of achieving on-demand use and collaborative
configuration of resources and services, e.g., cluster sup-
ply chain configuration (CSCC) [45]. In order to achieve
these goals above, the issue of realizing reasonable and
scientific description of manufacturing resources needs to
be further studied, especially when it comes to complex
coarse-granularity ones. In resource modeling, a service
provider (the machine or MC) needs to emphasize follow-
ing points to clarify its manufacturing capability, basic
description of service, manufacturing resource informa-
tion, real-time execution status and production logistics
(PL) process [46], typical product information, service
implementation process, and evaluation of the service.
Based on the resource servitization method and core en-
abling technologies, resources are virtualized and encap-
sulated into MCSs, including manufacturing cell cloud
service (MCCS) and manufacturing machine cloud ser-
vice (MMCS), and registered and published to manufactur-
ing cloud pool latterly. Meanwhile, manufacturing tasks are
published to the demand cloud pool so that service demanders
can find satisfying solutions with low cost and time
consumption.

The task-driven MCS proactive discovery mechanism pro-
poses a pattern that service providers make real-time response
to task requirements according to their real-time manufactur-
ing status, and submit requests to undertake tasks proactively.
This pattern is capable of enhancing providers’ responsive-
ness and initiative. By adopting the proposed intelligent match
method between service functional information and task re-
quirements, the MCS candidate sets (MCSCSs) for
manufacturing tasks will be formed. Here, tasks with different
granularities have different candidate sets, including MCCS
candidate sets (MCCSCSs) and MMCS candidate sets
(MMCSCSs). In particular, MMCS discovery process in
MC (private cloud) will be further investigated. By adopting
this service discovery approach, the solution space of service
compositions can be greatly reduced. As a result, the efficien-
cy of service configuration is effectively enhanced.

The MCS optimal configuration method is proposed to
select an optimal solution from large-scale service composi-
tions (for both MCCSs and MMCSs). Based on the real-time
manufacturing status data and evaluation information, this re-
search establishes a systematic evaluation system, which con-
tains criteria like cost, time, quality, and energy consumption.
In addition, a comprehensive evaluation approach based on
GRA is presented to assess and optimize service composi-
tions. As a consequence, the optimal MCS composition solu-
tion is generated for the manufacturing task.

Fig. 1 Framework of MCS proactive discovery and optimal configuration
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4 Servitization of multi-granularity manufacturing
resources

4.1 Servitization framework of manufacturing resources

Servitization of manufacturing resources is the key tech-
nique in CMfg. Distributed and heterogeneous manufactur-
ing resources are virtualized and encapsulated as MCSs.
They can be registered and published to CMfg platform
to achieve efficient management and extensive application
which contributes to the full-scale sharing, dynamic allo-
cation, and on-demand use of MCSs.

As shown in Fig. 2, the proposed manufacturing resources
servitization framework consists of three layers, resource lay-
er, perception layer, and service registration and publishing
layer. They are described as follows:

The resource layer contains various manufacturing re-
sources that can support manufacturing activities which are
involved in the product lifecycles. Here, manufacturing ma-
chines and cells that are involved in production process are
thoroughly investigated.

Perception layer is responsible for collecting, process-
ing, and managing the related manufacturing information,
including static description information derived from in-
herent attributes of resources and history record, and dy-
namic sensing manufacturing information based on real-

time status data captured by advanced technologies such
as RFID, IoT, etc.

Service registration and publishing layer enables the
multi-granularity resources to seamlessly access the
CMfg platform. The following steps are done in this
process:

Step 1 Informat ion model of mul t i -granular i ty
manufacturing resources: Manufacturing service
information models with different granularities
will be constructed, including manufacturing
machine service model and manufacturing cell
service model.

Step 2 Ontology model of manufacturing service:
Manufacturing service ontology endowed with se-
mantic information based on ontology and semantic
web technology is established.

Step 3 Registration and publishing mechanism of
manufacturing service based on the Manufacturing
Service Universal Description, Discovery, and
Integration (MS-UDDI): The MS-UDDI construct-
ed in registration module, publishing module, and
search module is presented to realize manufacturing
service registration, publishing, searching, and
invoking.

Fig. 2 Servitization framework
of manufacturing resources
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4.2 Capability model of manufacturing machine

In this section, the capability model of manufacturing ma-
chine is investigated at first. Manufacturing machine is
the basic execution unit in manufacturing activities and
the major element of the complex MC. Thus, a reasonable
and detailed machine service model is the foundation of
constructing a complex manufacturing cell service infor-
mation model. The presented model is responsible for
describing the manufacturing machine capability explicit-
ly from two aspects: static description information and
dynamic sensing manufacturing information based on
real-time running data.

As shown in Fig. 3, the manufacturing machine service
model consists of four attributes; they are basic attributes,
function attributes, real-time status attributes, and evalua-
tion attributes, respectively. The circles marked with num-
bers represent the subclasses of corresponding attributes.
For each circle, the solid line arrow denotes the “Own”
relationship and the dotted line arrow denotes the “Belong
to” relationship. So manufacturing machine cloud service
is defined as:

MMCS

¼ MMBasicAttr;MMFunctionAttr;MMStatusAttr;MMEvaluationAttrð Þ:

4.2.1 Basic attribute

The basic attribute of machine provides an overview of
manufacturing machine, which can reflect the unique identi-
fication information of machine in CMfg platform. It facili-
tates the quick positioning of relatedMCSs during the stage of
service discovery and match. Here, basic attribute primarily
includes service ID, service name, work shop, the purchase
date, manufacturer, and service life of machine. It is defined
as:

MMBasicAttr

¼ MMID; MMName; Workshop; MMPurDate; MMManufacturer; MMLifeð Þ:

4.2.2 Function attribute

The function attribute of machine is the core component of
capability model. It provides technical support for
searching potential services and completing function
match in CMfg by describing capabilities of machines in
details. It mainly includes processing part type, processing
method, processing characteristic, achievable processing
size, processing material, processing precision, and pro-
cessing roughness. It is defined as:

MMFunctionAttr ¼ MMPartType;MMMethod;MMCharacteristic;MMSize;MMMaterial;MMPrecision;MMRoughnessð Þ:

4.2.3 Real-time status attribute

In CMfg, real-time manufacturing data is accurately cap-
tured by attaching heterogeneous sensors and adapters on
machines. This makes the whole manufacturing process
more transparent, traceable, and controllable. Thus, it
provides a sound basis for real-time scheduling and op-
timal configuration of MCSs, which contains service sta-
tus, manufacturing task sequence, load status of the ma-
chine, and detailed processing information. It is defined
as:

MMStatusAttr

¼ MMStatus;MMTaskSequ;MMLoadStatus;MMProcessingInfoð Þ:

4.2.4 Evaluation attribute

The evaluation attribute of machine is a significant part of
capability model and plays an important role in the stage of
service optimal selection. It contains the cost of service, pass
rate, on-time delivery rate (OTDR), reliability, service times in

CMfg platform, maintainability, and customer satisfaction
(CS). It is defined as:

MMEvaluationAttr

¼ Cost;PassRate;OTDR;Reliability; STimes;Maintainability;CSð Þ:

4.3 Information model of manufacturing cell

Based on the capability model of manufacturing machine
mentioned above, the MC information model is further
researched to build a solid foundation for full-scale sharing
and on-demand use of MCCSs. Compared to the manufactur-
ing machine, the MC is capable of undertaking more complex
manufacturing tasks, like assembly-level tasks or even
product-level tasks. In manufacturing process, complex tasks
are completed by invoking, scheduling, and managing the
collaborative manufacturing resources in real time.
Therefore, MC can display different capabilities at different
times in different manufacturing activities. The presented MC
information model takes exhaustive consideration of both stat-
ic and dynamic information of related manufacturing re-
sources in MC.
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The structure of manufacturing cell service model is shown
in Fig. 4, which consists of description information, resource
information, status information, and evaluation information. It
is defined as:

MCCS
¼ MCDescriptionInfo;MCResourceInfo;MCStatusInfo;MCEvaluationInfoð Þ:

4.3.1 Description information

The description information is responsible for clarifying the
following points: what the MC is, the job can be undertaken,
and service implementation process. It is defined as:

MCDescriptionInfo

¼ MCBasicInfo;MCProductInfo;MCBusinessInfoð Þ

whereMCBasicInfo is the identification information of MC in
CMfg platform, which is similar to that of manufacturing ma-
chines. MCProductInfo is the general description of product
output from MC, which contains typical product, production
record, etc. MCProductInfo can reflect the intuitive
manufacturing capability of MC. Meanwhile, a product case
base is established by taking advantage of product informa-
tion, which can enhance the efficiency of intelligent match in
service discovery stage. MCBusinessInfo is used to describe

the specific implementation of business. It mainly includes
transaction information, transaction record, etc.

4.3.2 Resource information

MC is the integration of heterogeneous manufacturing re-
sources related to manufacturing activities. Manufacturing re-
sources are the main carriers of capability of MC. The re-
source information can reflect the manufacturing capability
by elaborating the resource structure ofMC. Here, it is defined
as:

MCResourceInfo

¼ MResource;Human;Knowledge; Softwareð Þ

MResource refers to hard resources involved in manufactur-
ing activities, which includes manufacturing machines, tools,
varieties of sensors, raw materials, etc. Human, Knowledge,
Software are soft resources in MC. Human describes the infor-
mation of personal and organization in MC, such as operators,
designers, technicians, and so on. Knowledge is the basis of
supporting manufacturing activities, including engineering
knowledge, specifications, product models, etc. Meanwhile,
some intellectual elements such as experience and skills are
involved. Software plays a vital role throughout the product
lifecycle, including design, simulation, process planning, fabri-
cation, and test, such as CAD (computer-aided design), CAPP

Fig. 3 Manufacturing machine service model
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(computer-aided process planning), and CAM (computer-aided
manufacturing).

4.3.3 Status information

The status information is capable of sensing the running pro-
cess and dynamic changes of manufacturing activities in MC,
which enables service real-time controlling, scheduling, and
exception tracking. Furthermore, real-time updating status in-
formation also reflects dynamic manufacturing capability of
MC. It is defined as:

MCStatusInfo ¼ MCTaskQueue;MCProcessInfo;MCLoadStatusð Þ

MCTaskQueue provides an overview of tasks undertaken
by MC, which primarily contains tasks being processed and
those waiting to be processed.MCProcessInfo is in charge of
monitoring and recording current manufacturing process data.
It includes current task ID, machining progress, production
exceptions and disturbances, etc. MCLoadStatus describes
load condition of each machine related to manufacturing ac-
tivities in MC to reflect the capability from a global perspec-
tive. For the high load machines, they are the bottleneck of
MC to hinder the dynamic capability of undertaking corre-
sponding manufacturing tasks.

4.3.4 Evaluation information

Comprehensive evaluation is a critical part of assessing
manufacturing capabilities in CMfg. Evaluation information
is a multi-level integration of service metrics ofMC, including
business-level metrics and service-level metrics. Evaluation
indicators defined in this research come into two classes,
customer-oriented indicators and objective ones from actual
history data. It is defined as:

MCEvaluationInfo ¼ QoSEvaluation;BusinessAssessmentð Þ

Here,QoSEvaluation describes the functional evaluation of
service, which mainly includes quality, cost of service,
makespan, reliability, etc. BusinessAssessment describes the
subjective rating of transaction process, including credit of
the service provider, cooperation, compliance, innovation,
and so on.

4.4 Registration and publishing method of MCSs

4.4.1 Ontology model of MCSs

To improve the quality and efficiency of service discovery and
intelligent match, ontology and semantic web technology are

Fig. 4 Manufacturing cell service model
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widely applied to describe web service in CMfg. Ontology
can not only support the explicit definition of relevant domain
knowledge and relationship but also have strong reasoning
ability. To achieve effective expression of manufacturing in-
formation and connotative meanings, the ontology description
language OWL-S is adopted as the description carrier of on-
tology model of services. In this paper, the ontology model of
MCSs is constructed by Protégé series [46] developed by
Stanford University which is a widely used ontology model-
ing tool.

4.4.2 Registration and publishing based on MS-UDDI

This part discusses the issue of publishing services to
manufacturing cloud pool. MS-UDDI is used to complete
the registration and publishing of MCSs.

UDDI specifications provide a feasible approach to register,
publish, and discover information about web services. A stan-
dard UDDI XML schema defines four core information struc-
tures ; they are businessEnt i ty, businessService ,
bindingTemplate, and tModel. The businessEntity is responsi-
ble for representing the providers of web services in CMfg
platform which may contain one or more businessServices.
The businessServices is a descriptive container of specified
technical services. The bindingTemplate defines essential infor-
mation needed for invoking specific web services. The tModel
is a list of references contained in the bindingTemplate and used
to access information about specifications.

Based on the UDDI technology, the framework of MS-
UDDI consists of three sub-modules. They are registration
module, publishing module, and search module.

In registration module, based on captured manufacturing
information and supported by ontologies and rules, the infor-
mation model and ontology model of MCSs are established.
Meanwhile, the mapping relationship between the data struc-
ture of manufacturing services described by OWL-S and that
supported by UDDI is formed through the OWL-S/UDDI
matchmaker [47]. In publishing module, distributed
manufacturing resources are published to CMfg platform,
and then manufacturing cloud pool is formed. In search mod-
ule, services related to manufacturing activities can be
searched and inquired by service demanders, which contrib-
utes to quick response to task requirements and on-demand
use of MCSs.

5 Service optimization configuration

In CMfg, to meet customized requirements of manufacturing
tasks, related MCSs should be invoked and selectively inte-
grated into collaborative service compositions. In order to
realize the aims of the shortest execution time, lowest cost,
cleanest environment, and highest quality (TCEQ), it is

necessary to appropriately orchestrate the service composi-
tions. The proposed service optimization configuration pro-
cess encompasses two stages: task-driven MCS proactive dis-
covery and MCS optimal configuration.

5.1 Task-driven MCS proactive discovery

5.1.1 Service discovery mechanism

The presented task-driven MCS proactive discovery mecha-
nism enables MCSs to quickly respond to task requirements
and to apply to undertake tasks actively. By adopting the se-
mantic match method, CMfg platform can perform intelligent
match between requirements and services based on the func-
tional information. In consequence, functionally equivalent
services are pooled into MCSCSs. If manufacturing tasks are
too complex to find the competent services, CMfg platform
would implement the top-down decomposition of tasks until
the qualified MCSs can be found. In this case, tasks need to be
executed collaboratively by multiple services. Here, to avoid
increasing extra transportation expense among distributed ser-
vices, also for the convenience of controlling and tracking
manufacturing process efficiently and continuously, tasks will
not be further decomposed into more subtle ones by the
platform.

This research considers coarse-grained manufacturing
tasks be undertaken by one or more MCs. Here, as shown
in Fig. 5, a two-phase service discovery process for tasks
which need to invoke multiple collaborative MCs is pre-
sented, including the MCCS discovery and MMCS
discovery.

Phase 1. Manufacturing tasks are published to the demand
cloud pool in CMfg platform. Meanwhile, the
platform advertises task requirements for ser-
vices. The MCs make quick response to task re-
quirements and submit requests. Then, tasks are
determined whether they are able to be complet-
ed by eligible MCCSs. If unable, they will be
progressively decomposed into subtle tasks
(part-level, assembly-level, or combination of
both) until which can be executed by MCs.
Generally, there are no sequence constraints
among subtle tasks in production process.
Through the presented intelligent match method,
MCCSCSs are formed.

Phase 2. CMfg platform issues call for proposals for each
subtle task to the MCs from their respective
candidate sets. Each MC puts forward a propos-
al in terms of their real-time manufacturing sta-
tus. By evaluating the combination proposals of
all possible service compositions, the optimal
composition solution will be generated, and
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MCs will get corresponding subtle tasks. The
tasks are further decomposed into several sub-
tasks (process-level) by the selected MCs ac-
cording to CAPP so that tasks can be assigned
to manufacturing machines. These subtasks
have to be completed by invoking services in
a certain sequence according to the process con-
straints among themselves. By adopting the in-
telligent match method based on functional in-
formation of services, qualified MMCSs for
each subtask will be pooled into MMCSCSs.

Particularly, for tasks which can be completed by single
MCCS, the platform evaluates all the proposals submitted
by competitive MCs. The optimal proposal will be accepted
and corresponding MC will get the task. The MMCSs discov-
ery in public cloud for fine-grained tasks is similar to that
described in phase 2.

5.1.2 Intelligent match method

This part is dedicated to describe the intelligent match method
between task requirements and services. As shown in Fig. 6,
the matching process is presented which includes a product
case base and function match module.

The product case base is constructed to achieve quick
match between complex tasks and coarse-grained re-
sources (the MCs). Typical products, especially for those
with competitive advantages of MCs, are recorded in this
case base. The similarity between requirement informa-
tion and product specifications can be measured by que-
rying the case base. When the similarity exceeds a preset
threshold, the MC is considered to be competent for the
task.

In contrast, if the similarity is not significant enough or
the existing cases in this base cannot match with tasks
directly, these tasks will be decomposed into process-
level tasks. Semantic match method will be implemented
for each subtask one by one. If all the machines involved
in manufacturing activities can match accurately with re-
spective subtasks, the corresponding MCCS is viewed as
a feasible solution.

Based on semantic match method [48], the semantic
matching degree is rated and then defined as four levels.
They are Exact, Plug in, Subsume, and Fail, respectively.

According to the method above, the semantic match
method will be implemented based on the following func-
tion attributes of manufacturing machines: processing part
type, processing method, processing characteristic, pro-
cessing size, processing material, processing precision,

Fig. 5 Task-driven MCS
proactive discovery process
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and processing roughness. According to Eq. (1), only if
all the matching degrees of corresponding attribute reach

Exact, the machine can meet the task requirements.
Otherwise, it will not be pooled into service candidate set.

Match MMPartType;MTPartTypeð Þ∧Match MMMethod;MTMethodð Þ∧Match MMSize;MTSizeð Þ∧
Match MMMaterial;MTMaterialð Þ∧Match MMCharacteristic;MTCharacteristicð Þ∧
Match MMPrecision;MTPrecisionð Þ∧Match MMRoughness;MTRoughnessð Þ ¼ Exact

ð1Þ

The task-driven MCS proactive discovery mechanism in-
vestigated above can facilitate the active discovery of potential
services and pool them into candidate sets for specific tasks.
As a result, it contributes to reduce the solution space of ser-
vice compositions to a great extent, which enables to provide a
fundamental support for service optimal configuration.

5.2 MCS optimal configuration

This part is responsible for elaborating service optimal
configuration process, which includes the configuration
process of MCCSs or MMCSs in public cloud, and further
optimization composition of machines in MCs (private
cloud). Above all, a systematic evaluation system is con-
structed to achieve comprehensive evaluation of single
service or service compositions. Then, by adopting the
evaluation method based on GRA, the service optimal
configuration is implemented.

5.2.1 Evaluation system

The evaluation system is established by taking full consider-
ation of the particularity, complexity, and difference of
different-level manufacturing activities. Thus, the evaluation
indicators should be defined in accordance with the specific
level of manufacturing activities.

The evaluation system for MCCS aims to evaluate services
from an overall perspective, which focuses on all the machines
involved in manufacturing activities in the MC. Meanwhile,
the defined indicators contain not only quality evaluation

criteria of finished tasks but also subjective appraisement of
transaction activities from service demanders. Evaluation
criteria of MCCS in this research are as follows:

& Cost (C): the cost of MCCS, including machining cost,
storage cost, etc.;

& Delivery Time (DT): the date that MCCS promises to de-
liver tasks according to its real-time status and capacity. It
can embody the real-time dynamic capability of MC for
different tasks from the perspective of time. The closer it
approaches to deadline, the better it is, which means that
neither advanced too much nor even delayed can it be;

& Delay Time (dt): the part that Delivery Time exceeds the
deadline of task;

& Reliability (R): the execution reliability of MCCS; it
changes along with manufacturing activity type and is
mainly determined by the global reliability of related
machines;

& Credit (Cr): the reputation of MCCS assessed by service
demanders (maximum ten points) in CMfg platform;

& Energy (E): the energy consumption (electricity) of
MCCS in the whole service process.

Here, the evaluation system used to evaluate MMCSs in
MCs (private cloud) focuses on the quality parameters of the
finished subtasks. In particular, the evaluation criteria used to
assess MMCSs in the public cloud include both objective
indicators and subjective ones which are similar to those of
MCCSs. Here, they will not be further discussed. The main
evaluation criteria of MMCSs in MCs are:

Fig. 6 Intelligent match method

Int J Adv Manuf Technol (2016) 84:29–45 39



& Cost (C): the execution cost of MMCS;
& Delivery Time (DT): the duration that service (machine)

can complete the task;
& Pass Rate (PR): the probability that the machined task

meets the functional requirement;
& On-Time Delivery Rate (OTDR): the probability that ma-

chine can deliver tasks on time referring to the production
schedule;

& Reliability (R): the execution reliability of MMCS; it dif-
fers from that of MCCS mentioned above. Here, this in-
dicator describes the reliability of single machine;

& Energy (E): the energy consumption of machine.

5.2.2 Evaluation method

Service optimal selection can be implemented by adopting the
evaluation method based on GRA, which can be divided into
the following steps.

1. Initial evaluation indicator matrix

S ¼ spq

h i
m�n

Here, sq
p denotes the value of qth indicator of the pth

service, where m is the total number of services in candi-
date set and n is the total number of defined evaluation
indicators.

2. Ideal indicator sequence
The ideal indicator sequence is determined by both

task requirement information and the types of evaluation
indicators.

Definition 1

sþq ¼ max
1≤p≤m

spq

n o
s−q ¼ min

1≤p≤m
spq

n o

s*q ¼
sþq ; q∈I

þ

s−q ; q∈I
−

�
; q ¼ 1; 2; 3…; n

ð2Þ

where sq
* is the qth ideal indicator, I+ is the set of the

benefit-oriented indicators, and I− is the set of cost-
oriented ones. Therefore, the ideal indicator sequence is
generated as follows:

S* ¼ s*1; s
*
2;⋯; s*n

� �

3. Normalizing evaluation matrix
Due to different dimensions in the initial evaluation

matrix, indicators need to be normalized according to

Eq. (3) so that the evaluation results can be more
reliable and accurate.

γ p
q ¼

spq−s−q
sþq −s−q

; q∈Iþ

sþq −spq
sþq −s−q

; q∈I −

8>>><
>>>:

; q ¼ 1; 2; 3;…; n ð3Þ

Thus, the initial evaluation matrix is transformed into
V=[γq

p]m×n.

4. Relational coefficient matrix
According to the grey theory, ξq

p represents the grey
relational coefficient between the qth indicator of the pth
service and the ideal indicator.

Definition 2

γþq ¼ max
1≤p≤m

γ p
q

n o
γ−q ¼ min

1≤p≤m
γ p
q

n o

ξpq ¼
min

1≤p≤m
min
1≤q≤n

γþq −γ
p
q

���
���þ η max

1≤p≤m
max
1≤q≤n

γþq −γ
p
q

���
���

γþq −γ
p
q

���
���þ η max

1≤p≤m
max
1≤q≤n

γþq −γ
p
q

���
���

ð4Þ

where η is distinguishing coefficient, and η=0.5.
Therefore, the obtained relational coefficient matrix is
E=[ξq

p]m×n.

5. Comprehensive evaluation matrix
The victor W=(w1,w2,w3…,wn)

T is used to represent
the weight of each indicator, which can be determined by
the widely used Analytic Hierarchy Process (AHP) [49].

The comprehensive evaluation matrix is obtained as:

R rp½ � ¼ EW ð5Þ
where rp is the grey relational degree between pth service
and the ideal indicator sequence. The bigger the value of
rp is, the better service behaves.

5.2.3 Problem formulation

In this section, the service optimization configuration process
is elaborated based on the evaluation system and method. The
service configuration process for the coarse-grained
manufacturing tasks undertaken by MCCSs can be divided
into the following steps:

1. MCCS optimization configuration: Let T={STi;i=1,2,3,
…,NT} denote a coarse-grained task, where NT is the total
number of the decomposed subtle tasks which can be
executed by the MCs and STi is the ith subtle task of T.
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(If NT=1, the task only needs to invoke single MCCS).
All the competent MCCSs are pooled into corresponding
candidate sets for each subtle task. Here, let
MCCSCSi={MCi

j; j=1,2,3,…,Mi} represent the candi-
date set available for STi, where Mi is the total number
of MCs and MCi

j is the jth service in the set. In this case,

there are ∏
i¼1

NT

Mi possible compositions theoretically. To

avoid extremely large solution space, services in each
candidate sets can be evaluated in advance by adopting
the proposed evaluation method. Then, services are se-
quenced in descending order in terms of respective grey
relational degrees. Top Xi services in queue are selected

for STi, and consequently, there are ∏
i¼1

NT

X i compositions.

The evaluation criteria of each service composition can be
calculated as shown in Table 1. By adopting the evalua-
tion method again, the optimal MCCS composition solu-
tion is generated.

2. MMCS optimization configuration: From the opti-
mal MCCS composition solution, it is assumed that
ST[i,j]={ST[i,j]

k ;k=1,2,3,…,MST} is assigned to MCi
j,

whereMST is the total number of decomposed subtle tasks
(process-level) which can be undertaken by the machines
in MC and ST[i,j]

k is the kth subtask. The candidate set for
ST[i,j]

k is defined as MMCSCSk={MMk
l;l=1,2,3,…,Nk},

where Nk is the total number of machines in the candidate
set and MMk

l is the lth machine; Here, service configura-
tion process is divided into two cases.

Case 1 ST[i,j] without batch: In this case, service opti-
mizing configuration process is similar to that described
above. The evaluation criteria of each MMCS composi-
tion can be calculated as shown in Table 1. According to
the generated optimal MMCS composition solution, let
ST[i, j]

[k,l] represent the process-level task undertaken by
MMk

l.
Case 2 ST[i, j] with batch Li: At first, services in candi-

date set for each process-level task (e.g., ST[i,j]
k ) are se-

quenced in descending order in terms of respective rela-
tional degrees. Then, starting with the optimal service, the
ordered services take turns to undertake tasks according to
respective capacity until the batch tasks are entirely
assigned.

Definition 3 Let CAl denote the capacity of MMk
l, which

can be calculated by Eq. (6):

CAl ¼ d−Tlð Þ=ETl ð6Þ

where d is the deadline of the batch tasks, Tl is the ar-
ranged start time of production, and ETl is the execution
duration for single task.

The service configuration process for the fine-grained tasks
which can be undertaken byMMCSs in public cloud is similar
to step 2 described above.

6 Case study

6.1 Case description

This section presents an application of proposed service opti-
mization configuration method by taking a typical complex
manufacturing task published to CMfg platform. The detailed
structure of task is shown in Fig. 7.

Table 1 Calculation method for evaluation criteria of service
composition

Service
composition

Evaluation
criteria

Function

MCCS
composition

C

C ¼ ∑
i¼1

NT

C MCið Þ

DT
DT ¼ DT MCNTð Þ

dt
dt ¼ max DT MCNTð Þ−dtNTf g

R

R ¼ ∏
i¼1

NT

R MCið Þ

Cr

Cr ¼ ∑
i¼1

NT

Cr MCið Þ=NT

E

E ¼ ∑
i¼1

NT

E MCið Þ

MMCS
composition
(e.g., for ST[i,j])

C

C i; j½ � ¼ ∑
k¼1

MST

C i; j½ � MMkð Þ

DT

DT i; j½ � ¼ ∑
k¼1

MST

DT i; j½ � MMkð Þ

PR

PR i; j½ � ¼ ∏
k¼1

MST

PR i; j½ � MMkð Þ

OTDR

OTDR i; j½ � ¼ ∏
k¼1

MST

OTDR i; j½ � MMkð Þ

R

R i; j½ � ¼ ∏
k¼1

MST

R i; j½ � MMkð Þ

E

E i; j½ � ¼ ∑
k¼1

MST

E i; j½ � MMkð Þ

DT MCNTð Þ the final Delivery Time of MCCS composition, dtNT the

deadline of the initial manufacturing task
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According to the service discovery mechanism illus-
trated in “Service discovery mechanism” section, the
decomposed subtle tasks close above the red dotted line
(e.g., Assembly 2, Part 31) can be undertaken by qual-
ified MCCSs. It should be noted that the deadline of
each subtle task is determined by the production sched-
ule, which is listed in Table 2. The grey rectangles
below the red dotted line denote the decomposed subtle
tasks (process-level) which can be assigned to machines
in MCs.

6.2 Optimization process

6.2.1 Phase 1: MCCS optimal configuration

Let T={STi; i=1,2,3,…,8} represent the coarse-grained
task, which is decomposed into eight subtle tasks under-
taken by MCs as depicted in Fig. 7. Accordingly, eight
MCCSs candidate sets are formed. For instance, there
are seven candidate services in the set for Assembly 2
(ST3), which can be represented as MCCSCS3={MC3

1,
MC3

2, MC3
3, MC3

4, MC3
5, MC3

6, MC3
7}. The evaluation in-

dicator parameters of each candidate service are shown
in Table 3.

These candidate services are assessed by adopting the
evaluation method based on GRA illustrated in
“Evaluation method” section, which will be described
as follows:

1. According to Eq. (2), the ideal indicator sequence is:

S* ¼ 550; 35; 0; 85; 9:2; 39ð Þ

2. According to Eq. (3), normalized evaluationmatrix can be
derived.

V ¼

0:5 0 0 0 0:307692 0:625
0 0:875 1 0:8 0:692308 0:5

0:625 0:125 0:333333 0 0:384615 1
1 0:375 1 0:4 0:153846 0:5

0:8125 0:625 1 1 1 0:625
0:25 0:5 1 0:5 0 0:875
0:1875 0:875 1 0:8 0:461538 0

2
666666664

3
777777775

3. Relational coefficient matrix is arrived by adopting
Eq. (4).

E ¼

0:5 0:636364 0:333333 0:333333 0:419355 0:571429
0:333333 0:538462 1 0:714286 0:619048 0:5
0:571429 0:777778 0:428571 0:333333 0:448276 1

1 1:4 1 0:454545 0:371429 0:5
0:727273 0:777778 1 1 1 0:571429

0:4 1 1 0:5 0:333333 0:8
0:380952 0:538462 1 0:714286 0:481481 0:333333

2
666666664

3
777777775

Product Order

Assembly 2 Assembly 3 Assembly 4Assembly 1

Part 11 Part 12 Part 31 Part 32 Part 33 Part 41 Part 42Part 21 Part 22

............ ... ... ... ... ...

Fig. 7 The structure of
manufacturing task

Table 2 The production schedule of manufacturing task

Manufacturing task level Deadline

Product order 40

Assembly 1 37

Part 11 36

Part 12 35

Assembly 2 35

Part 21 –

Part 22 –

Assembly 3 38

Part 31 35

Part 32 37

Part 33 36

Assembly 4 37

Part 41 26

Part 42 35
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4. According to Eq. (5), the grey relational degree of each
candidate service is derived.

Here, the weights for each evaluation indicator determined
by AHP method are denoted as W=(0.186, 0.195, 0.205,
0.147, 0.138, 0.129)T. Then, the comprehensive evaluation

matrix is obtained as:

R ¼ EW ¼ 0:466; 0:627; 0:586; 0:847; 0:851; 0:697; 0:595½ �

In the same way, evaluating other seven candidate services
based on the above method, the corresponding comprehensive
evaluation matrixes will be achieved. Here, top Xi services
(Xi=3) are selected in each descending queue in terms of re-
spective relational degrees, and the evaluation indicator pa-
rameters of all candidate services are shown in Table 4.

As shown in Table 4, total 38 service compositions can be
generated. By calculating the relational degrees of all possible
compositions, the highest one is obtained as 0.7184, and the
corresponding optimal MCCS composition solution for T is
{MC1

3, MC2
1, MC3

5, MC4
5, MC5

6, MC6
6, MC7

7, MC8
9}.

6.2.2 Phase 2: MMCS optimal configuration

According to the optimal service composition solution gener-
ated in above simulation, all eight subtle tasks are assigned to
corresponding MCCSs. For example, PT41is undertaken by
MC7

7 and then decomposed into six process-level tasks in a
certain sequence based on the CAPP as depicted in Fig. 8.
Meanwhile, the scheduled deadline of each subtask can be
seen in Table 5. Related manufacturing machines are pooled
into corresponding candidate sets for each subtask. Top Xk

services (Xk=3) in each queue are selected to constitute com-
positions as shown in Table 6.

By calculating the relational degrees of all service compo-
sitions, the highest one is achieved as 0.6559. Accordingly,
the optimal MMCS composition solution for PT41 (ST7) is
{MM1

6, MM2
5, MM3

7, MM4
7, MM5

5, MM6
7}.

In particular, services optimization selection for coarse-
grained task which only needs to invoke single MCCS is
similar to that (e.g., Assembly 2) described in “Phase 1:
MCCS optimal configuration” section. Besides, for fine-

Part 41

P411 P412 P413 P414 P415 P416
(process)

Fig. 8 The process flow of PT41

Table 4 The evaluation indicator parameters of candidate services (for
T)

Candidate services Evaluation criteria

C DT dt R Cr E

MC1
3 185 36 0 0.95 9.3 19.6

MC1
6 180 36 0 0.89 7.9 14

MC1
2 190 35 0 0.85 8.8 16

MC2
1 295 35 0 0.91 9.1 23.2

MC2
4 250 32 0 0.88 7.8 21.6

MC2
3 275 34 0 0.89 8.2 26

MC3
5 565 33 0 0.85 9.2 42

MC3
4 550 35 0 0.79 8.1 43

MC3
6 610 34 0 0.80 7.9 40

MC4
5 185 32 0 0.92 8.7 32

MC4
7 245 35 0 0.88 8.8 34

MC4
8 189 33 0 0.89 9 36

MC5
6 395 37 0 0.94 8.9 27.6

MC5
2 410 37 0 0.88 7.3 26

MC5
3 400 35 0 0.82 9 28

MC6
6 395 36 0 0.95 8.9 39.5

MC6
9 375 35 0 0.84 8.8 35

MC6
4 360 33 0 0.88 8.5 36.5

MC7
2 320 26 0 0.83 8.8 44

MC7
7 275 25 0 0.90 7.9 48.5

MC7
6 335 26 0 0.88 7.5 45

MC8
9 330 34 0 0.85 7.9 26

MC8
4 360 35 0 0.85 8.1 30

MC8
7 365 32 0 0.87 8.4 32

Table 3 The evaluation indicator parameters of candidate services (for
Assembly 2)

Candidate services Evaluation criteria

C DT dt R Cr E

MC3
1 590 38 3 75 8.3 42

MC3
2 630 31 0 83 8.8 43

MC3
3 580 37 2 75 8.4 39

MC3
4 550 35 0 79 8.1 43

MC3
5 565 33 0 85 9.2 42

MC3
6 610 34 0 80 7.9 40

MC3
7 615 31 0 83 8.5 47

Table 5 The production schedule of PT41

Process

P411 P412 P413 P414 P415 P416

4 5 3 4 4 5
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grained task (e.g., part-level or even process-level) which can
be executed by MMCSs in public cloud, the services optimi-
zation process can refer to “Phase 2: MMCS optimal config-
uration” section.

7 Conclusion and future work

In CMfg, reasonable and systematic manufacturing resource
modeling, and accurate and efficient service discovery, along
with service optimization configuration, are the key tech-
niques for developing CMfg.

In this paper, the framework of MCS proactive discovery
and optimal configuration method is presented to realize the
on-demand use and optimization allocation of resources. By
applying IoT technologies to traditional manufacturing re-
sources, real-time manufacturing information can be sensed
and captured, which makes production activities more dynam-
ically visible, traceable, and controllable. The information
models for two kinds of common manufacturing resources
(including machines and cells) are constructed, which lay a
sound foundation for distributed resource seamless access to
manufacturing cloud pool. The proposed task-driven MCS
discovery approach enables services to make quick response
for task requirements proactively, and then service candidate
sets for manufacturing tasks with different granularities are
formed. A scientific multi-objective evaluation system is

established to achieve comprehensive assessment of MCSs
through the evaluation method based on GRA and to realize
the service optimization configuration eventually. The pre-
sented models and methods will provide support for MCS
transparent, high-quality configuration and highly efficient
production, which facilitates the implementation of CMfg.

Further research works will focus on the real-time
manufacturing information processing mechanism between
bottom-level manufacturing machines and up-level cells. In
addition, the batch volume of manufacturing tasks should be
taken into account in the optimal selection of service
compositions.
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