
ORIGINAL ARTICLE

The reconstruction of a semi-discretization method for milling
stability prediction based on Shannon standard orthogonal basis

Xinfeng Dong1,2 & Weimin Zhang2,3 & Song Deng2

Received: 26 December 2014 /Accepted: 13 August 2015 /Published online: 10 November 2015
# Springer-Verlag London 2015

Abstract In order to increase the calculation speed of the
semi-discretization method (SDM) without accuracy loss, this
paper reconstructs the SDM for predicting the stability lobes of
the dynamic milling process, mainly considering the regenera-
tive effect. The model of the dynamic milling process is
expressed as the linear delay-differential equations (DDE).
The fast calculation method is established by reconstructing
the SDM based on the Shannon standard orthogonal basis
(SSOB). First, the delay term of DDE is constructed without
information loss based on Shannon interpolation functions, and
SSOB is derived. Secondly, the closed form expression for the
transition matrix of the system is constructed based on the
SSOB, and the stability limit is predicted based on the
Floquet theory. The transition matrix-based SDM and SSOB
are theoretically compared, and it shows that the SDM is a
special case of the method based on SSOB when the SSOB
is regarded as the average in the sampling interval. The fast
calculation method is established by using the variable sam-
pling numbers during the period of the delay time in which the
variable sampling numbers are determined by the condition
which is used to construct the SSOB. Finally, this proposed fast
method is used to the one and two degrees of freedom milling
model, and the results show that the calculation accuracy is not

reduced, and the calculation speed based on the proposedmeth-
od can be improved nearly five times on the one degree of
freedom model and 2.6 times on the two degrees of freedom
model, compared to the semi-discretization method.

Keywords Milling stability . Shannon standard orthogonal
basis . Sampling interval . Time delay

1 Introduction

Chatter in the cutting process is an undesirable phenomenon
which leads to many negative effects such as the reduction of
surface finish quality and life of cutters, poor dimensional
inaccuracy, the limitation to machine productivity, etc. [1–6].
Ever since the 1950s, the different types of chatter were found,
such as regenerative effects, mode coupling effects, frictional
effects, thermo-mechanical effects, etc. [7]. Regenerative ef-
fects are considered as the most common cause of chatter in
milling operation. For this reason, many researchers studied
the milling stability based on the regenerative effects. In gen-
eral, these methods of the milling stability analysis are divided
into five types:

(1) Time response simulation (TRS) method. Its essence is
to obtain the dynamic time response of delay-differential
equations (DDEs) and to determine the milling stability
according to the convergence of vibration amplitude,
such as the studies of Tlusty [8, 9], Smith and Tlusty
[10], Campomanes and Altintas [11], and Davies [12,
13]. The TRS method can consider the nonlinear influ-
ence of the machining process, such as out of the cutting
for the cutter, etc.

(2) Frequency domain analysis (FDA) method. Its essence is
to transform the delay-differential equations to the
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Laplace domain and let the real part of the root of the
characteristic equation be zero to obtained the stability
limit based on cutting parameters, such as the studies of
Altintas and Budak [14] (zero-order solution method)
and Merdol and Altintas [15, 16] (multi-frequency solu-
tion method). In the FDA method, the zero-order solu-
tion has a high calculation speed; the multi-frequency
solution has a high calculation precision.

(3) Semi-discretization method (SDM). Its essence is to dis-
crete the delay term of delay-differential equations and
use the Floquet theory to determine the stability under
different cutting parameters, such as the studies of
Insperger and Stepan [17, 18], Dombovari and Altintas
[19], K. Ahmadi, and F. Ismail [20]. The semi-
discretization method has a high calculation precision
which is the same as the multi-frequency solution
method.

(4) Full-discretization method (FDM). Its essence is that the
response of the system is calculated via the direct inte-
gration scheme with the help of discretizing the time
period [15]. The method has a high calculation speed,
such the studies of Ye Ding [21, 22], T. Insperger [23],
and Yilong Liu [24].

(5) Temporal finite element analysis (TFEA). Its essence is
that the discrete-time equations are obtained by the use of
temporal finite elements while the tool is in the cut. The
approximate solution during the cut is required to match
the exact solution for free vibration of the tool at the
beginning and end of each cut, such as the studies of
P.V. Bayly [25] and B.P. Mann [26]. The TFEA method
has a high calculation speed and precision for a small
radial depth of cut.

The above methods play a very vital role in prompting the
development of milling stability analysis. In this paper, a fast
calculation for predicting milling stability is proposed by
reconstructing the semi-discretization method based on the
Shannon standard orthogonal basis, and the benchmark exam-
ples for the one and two degrees of freedom milling model are
used to verify the validity of the proposed method. The pro-
posed method is an impetus for the further development of the
semi-discretization method.

2 Theoretical basic and reconstruction
of the semi-discretization method

2.1 Shannon sampling theorem

The sampling theorem was first proposed in 1928 by Harry
Nyquist, and Claude Elwood Shannon, the founder of the
information theory, described in detail the theorem in 1948.

The derivation process of the theorem is not described here;
the main contents are as follows:

Assuming continuous function f(t)∈L2(R) ((where
L2(R) is the square integrable functions space in which
functions satisfy the requirement: ∫− ∞+∞|f(t) |2dx<+∞), when
the Fourier transform of continuous function f(t) has the
following property: F(ω)=0, |ω| >L (where L is a real that
L is called cut-off frequency) and the sampling interval
satisfies Δ≤π/L, f(t) can be reconstructed without any
loss of information through the following reconstruction
formula:

f tð Þ ¼
X
n∈Z

f nΔð Þ sinΔ
−1 π t−nΔð Þ

Δ−1 π t−nΔð Þ ð1Þ

where sinΔ−1 π t−nΔð Þ
Δ−1 π t−nΔð Þ is called the Shannon interpolation func-

tion; the reconstruction process of f(t) is shown in Fig. 1.

2.2 Existing problem of the semi-discretization method

The delayed term of the delay-differential equations in the
SDM is approximated by the average value of the adjacent
sampling values as shown in Fig. 2. The approximation is as
follows:

x t−Tð Þ≈ x ti−T þΔð Þ þ y ti−Tð Þ
2

¼ xi−mþ1 þ xi−mð Þ
2

t∈ ti; tiþ1½ �ð Þ

As can be seen from Fig. 2, when t=ti−m+ς (ς∈[0,1]), there
exists a large error ES compared to the actual value xi−m+ς of
the delayed term x(v).

In general, the semi-discretization method has the follow-
ing problems:

& When the sampling interval [ti,ti+1] is large, the approxi-
mation of the delayed term exist large information loss.

& The numbers of sampling in a delay time are arbitrarily
defined; there are no rules to determine the sampling
numbers.

& When the sampling numbers increase, it will produce larg-
er information redundancy, resulting in the increase of the
computing time.

Based on the above reasons, this paper reconstructs the
SDM without loss of information based on the Shannon stan-
dard orthogonal basis. The reconstruction process determines
the minimum sampling intervals which do not exist informa-
tion loss and redundancy of the delayed term from the view of
the theoretical analysis, and the sampling interval can change
with the change of the delay term. This leads to a big improve-
ment of the computing efficiency. In the following section, the
reconstruction process is introduced in detail.
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2.3 The reconstruction of the semi-discretization method
based on the Shannon orthogonal basis

The dynamic model of the milling process can be described as
delay-differential equations; the state-space form is as follows:

dx tð Þ=dt ¼ A tð Þx tð Þ þ B tð Þx t−Tð Þ ð2Þ

where t∈R (R denotes all real), A(t) and B(t) are periodic
functions, i.e., A(t)=A(t+T), B(t)=B(t+T), and T is the delay
time.

2.3.1 Approximation of the delay term based on the Shannon
interpolation function

The delay time T is divided into m equal parts, and the length
of the time interval [ti,ti+1] is Δ; the delay term x(t−T) is
reconstructed in the time interval [ti,ti+1] based on Eq. (1),
as follows:

x t−Tð Þ ¼
Xi−m
i−mþ1

x tið Þ � sinΔ−1π t−i�Δð Þ
Δ−1π t−i�Δð Þ

¼ xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ
Δ−1π t− i−mþ 1ð Þ �Δð Þ þ xi−m � sinΔ−1π t− i−mð Þ �Δð Þ

Δ−1π t− i−mð Þ �Δð Þ ;

t∈ ti; tiþ1½ �; i∈R

ð3Þ

Note: Equation (3) only considers the waveforms of sam-
pling point ti and ti+1, without taking into consideration the

response of interpolation functions at other sampling points.
The influence at other sampling points on the interval [ti,ti+1]
will be explained in Section 4.

2.3.2 The solution of delay-differential equations

In the time interval [ti,ti+1], the solutions of Eq. (2) consist of
homogenous xih and particular xip solutions.

The derivation of homogenous solution xih:

dx

x
¼ A� dt ð4Þ

Zt
ti

dx

x
¼

Zt
ti

A� dt ð5Þ

In xj jtti ¼ A� t−tið Þ ð6Þ
In x tð Þj j−In x tið Þj j ¼ A� t−tið Þ ð7Þ
In x tð Þj j ¼ A� t−tið Þ þ In x tið Þj j ð8Þ
x tð Þj j ¼ eA� t−tið ÞþIn x tið Þj j ð9Þ
x tð Þ ¼ � eA� t−tið Þ � e�Inx tið Þ

� �
ð10Þ

x tð Þ ¼ x tið Þ � eA� t−tið Þ; i:e:; xih ¼ x tið Þ � eA� t−tið Þ ð11Þ

The derivation of particular solution xip:

Fig. 1 Function reconstruction
process based on the Shannon
interpolation function: a
interpolation function, b the
reconstruction of function f(t); the
values −1, 0, 1, 2, 3 respectively
represent the waveform in interval
[−Δ, 0] of the interpolation
function respectively in the
sampling point −Δ, 0, Δ, 2Δ,
3Δ.
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Assuming that eA� t−tið Þ � u1 tð Þ is the solution of Eq. (2),
its derivation can be obtained, as follows:

A� eA� t−tið Þ � u1 tð Þ þ eA� t−tið Þ � du1 tð Þ
dt

; t∈ ti; tiþ1½ �; i∈R ð12Þ

By substituting xip into Eq. (2), it yields:

eA� t−tið Þ � du1 tð Þ
dt

þ A � eA� t−tið Þ � u1 tð Þ
¼ A� eA� t−tið Þ � u1 tð Þ þ B� x t−Tð Þ; t∈ ti; tiþ1½ �; i∈R

ð13Þ

eA� t−tið Þ � du1 tð Þ
dt

¼ B� x t−Tð Þ; t∈ ti; tiþ1½ �; i∈R ð14Þ

du1 tð Þ
dt

¼ e− A� t−tið Þð Þ � B� x t−Tð Þ; t∈ ti; tiþ1½ �; i∈R ð15Þ

Substituting Eq. (3) into Eq. (15) yields:

du1 tð Þ
dt

¼ e− A� t−tið Þð Þ � B�
�
xi−mþ1 �

sinΔ−1π t−
�
i−mþ 1

� �
�Δ

� �
Δ−1π t− i−mþ 1ð Þ �Δð Þ

þxi−m � sinΔ−1π t− i−mð Þ �Δð Þ
Δ−1π t− i−mð Þ �Δð Þ

� ð16Þ

Zt
ti

du1 tð Þ
dt

dt ¼
Zt
ti

e− A� t−tið Þð Þ � B�
�
xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ

Δ−1π t− i−mþ 1ð Þ �Δð Þ

þxi−m � sinΔ−1π t− i−mð Þ �Δð Þ
Δ−1π t− i−mð Þ �Δð Þ

�

2
66664

3
77775dt

ð17Þ

u1 tð Þ−u1 tið Þ ¼
Zt
ti

e− A� t−tið Þð Þ � B�
�
xi−mþ1 � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ

Δ−1π t− i−mþ 1ð Þ �Δð Þ
þxi−m � sinΔ−1π t− i−mþ 1ð Þ �Δð Þ

Δ−1π t− i−mþ 1ð Þ �Δð Þ
�

2
6664

3
7775dt

ð18Þ

Zt
ti

e− A� τ−tið Þð Þ � B�
�
xi−mþ1 � sinΔ−1π τ− i−mþ 1ð Þ �Δð Þ

Δ−1π τ− i−mþ 1ð Þ �Δð Þ

þ xi−m � sinΔ−1π τ− i−mð Þ �Δð Þ
Δ−1π τ− i−mð Þ �Δð Þ

�

2
66664

3
77775

τ∈ ti; t½ �

dτ

ð19Þ
Denoting sinΔ−1π τ− i−mþ1ð Þ�Δð Þ

Δ−1π τ− i−mþ1ð Þ�Δð Þ as ϕ(τ−(i−m+1)),

sinΔ−1π τ− i−mð Þ�Δð Þ
Δ−1π τ− i−mð Þ�Δð Þ as ϕ(τ−(i−m))

Fig. 2 The approximation of the
delayed term x(t−T) (t∈[ti,ti+1])
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The equivalent transformation of Eq. (19) is as follows:

Zt
ti

e− A� τ−tið Þð Þ � B� xi−mþ1 � ϕ
�
τ i−mþ 1ð Þ

� �
þxi−m � ϕ τ− i−mð Þð Þ

�
2
4

3
5dτ

¼ xi−mþ1 �
Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mþ 1ð Þð Þdτ

þxi−m �
Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mð Þð Þdτ

ð20Þ

The equivalent transformation of Eq. (18) is as follows:

u1 tð Þ ¼ xi−mþ1 �
Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mþ 1ð Þð Þdτ

þxi−m �
Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mð Þð Þdτ þ C

ð21Þ
where C=u1(ti).

Depending on Eq. (21), xip is expressed as follows:

xip ¼ eA� t−tið Þ �
h
xi−mþ1 �

Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mþ 1ð Þð Þdτ

þxi−m �
Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mð Þð Þdτ
i

ð22Þ

Finally, the solution of Eq. (2) in the time interval [ti,ti+1]
can be expressed as

x tð Þ ¼ xih þ xip

¼ x tið Þ � eA� t−tið Þ þ eA� t−tið Þ �
h
xi−mþ1 �

Zt
ti

e− A� τ−tið Þð Þ � B�
ϕ τ− i−mþ 1ð Þð Þdτ

� �

þxi−m �
Zt
ti

e− A� τ−tið Þð Þ � B� ϕ τ− i−mð Þð Þdτ
i
; t∈ ti; tiþ1½ �; i∈R

ð23Þ

When t=ti+1, Eq. (23) yields

x tiþ1ð Þ ¼ xiþ1 ¼ x tið Þ � eA� Δð Þ þ eA� Δð Þ�

h
xi−mþ1 �

Z
ti

tiþ1

e− A� τ−tið Þð Þ � B� ϕ τ− i−mþ 1ð Þð Þdτ þ xi−m

�
Z
ti

tiþ1

e− A� τ−tið Þð Þ � B� ϕ τ− i−mð Þð Þdτ
i

ð24Þ

where

ϕ τ− i−mþ 1ð Þð Þ ¼
sin

1

Δ
π τ− i−mþ 1ð Þ �Δð Þ

1

Δ
π τ− i−mþ 1ð Þ �Δð Þ

; τ∈ ti; tiþ1½ �:

Denoting τ=μ+ti,,Eq. (24) can be rearranged as follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δð Þ þ eA� Δð Þ

�
h
xi−mþ1 �

ZΔ
0

e− A�μð Þ � B� ϕ μ− i−mþ 1ð Þð Þdμ;0≤μ≤Δ

þxi−m �
ZΔ
0

e− A�μð Þ � B� ϕ μ− i−mð Þð Þdμ
i

ð25Þ

where ∫
Δ

0
e− A�μð Þ � B� ϕ μ− i−mþ 1ð Þð Þdμ is equal to

ZΔ
0

e− A�μð Þ � B� ϕ μð Þ
� �

dμ;

∫
Δ

0
e− A�μð Þ � B� ϕ ti þ μð Þ− i−mð Þð Þdμ is equal to

∫
Δ

0
e− A�μð Þ � B� ϕ μð Þ

� �
dμ.

The equivalent transformation of Eq. (18) is as follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δð Þ þ eA� Δð Þ

� xi−mþ1 �
ZΔ
0

e− A�μð Þ � B� ϕ μð Þdμþ xi−m �
ZΔ
0

e− A�μð Þ � B� ϕ μð Þdμ
2
4

3
5

ð26Þ

2.3.3 State expression-based orthogonal basis function

From Section 2.1, we can know that when the sampling inter-
val satisfies Δ≤π/L, the functions f(t) can be reconstructed
without any loss of information through Eq. (1). When L=π,
that is, the sampling frequency is equal to two times the
highest frequency of the signal,, the sampling interval Δ is
equal to one, and Eq (1) can be transformed as follows:

f tð Þ ¼
X
n∈Z

f nð Þ sin π t−nð Þ
π t−nð Þ ; n∈Z ð27Þ
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Denoting ϕ1 μð Þ ¼ sinπμ
πμ , by using the Parseval theorem

forfunction ϕ1(μ), yields:

< ϕ1 μ−nð Þ;ϕ1 μ−mð Þ >¼
Zþ∞

−∞

ϕ1 μ−nð Þϕ1 μ−mð Þdu

¼ 1

2 π

Zþ∞

−∞

Φ1 ωð Þj j2e−iω n−lð Þ dx ¼ δ n−lð Þ
ð28Þ

where δ(n) are unit impulse sequences,

δ nð Þ ¼ 1 n ¼ 0
0 n≠0

�
ð29Þ

According to Eqs. (27) and (28), we can know that{ϕ1(μ−
n); n∈Z} are the standard orthogonal basis in the functions
space { f(x) ; F(ω)=0, | ω| >π}.

Equation (26) can be transformed into

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� 1ð Þþ

eA� 1ð Þ �
h
xi−mþ1 �

Z1
0

e− A�μð Þ�B� ϕ1 μð Þdμ

þxi−m �
Z1
0

e− A�μð Þ � B� ϕ1 μð Þdμ
i ð30Þ

The sampling interval Δ=1 means that the delay time T is
sampled by 1/(2f0) time interval, and the sampling numbers
are T×(2f0) during the period of the delay time (where f0 is the
chatter frequency, T is inversely proportional to the spindle
speed,,i.e., T=60/Ω/N,Ω is the spindle speed,N is the number
of teeth). “Δ=1” is the normalized sampling interval, the ac-
tual sampling interval can be expressed as Δ1=1/(2f0).

In the actual sampling process, Eq. (30) is expressed as
follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δ1ð Þþ

eA� Δ1ð Þ �
h
xi−mþ1 �

Z
0

Δ1

e− A�μð Þ�B� ϕ1 μð Þdμ

þxi−m �
Z
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμ
i ð31Þ

3 The calculation of milling stability lobes

Let eA� Δ1ð Þ � ∫
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμ ¼ Ν ; Eq. (31) can be

transformed as follows:

x tiþ1ð Þ ¼ xiþ1 ¼ xi � eA� Δð Þ þ xi−mþ1Ν þ xi−m � Ν ð32Þ

The discrete-time values of the states can be expressed in
matrix form as

xiþ1

xiþ2

xiþ3

⋮
xi−mþ2

xi−mþ1

2
6666664

3
7777775
¼

eA� Δð Þ 0 0 ⋯ 0 eA� Δð Þ � Ν eA� Δð Þ � Ν
I 0 0 ⋯ 0 0 0
0 I 0 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋱ 0 0 0
0 0 0 ⋯ I 0 0
0 0 0 ⋯ 0 I 0

2
666666664

3
777777775
�

xi
xiþ1

xiþ2

⋮
xi−mþ1

xi−m

2
6666664

3
7777775

X iþ1 ¼ Μ i � X i

ð33Þ
To determine the transition matrix Ρ over the delay time T,,

yield,

Xm ¼ Μm−1 �⋯�Μ2 �Μ1 �Μ0½ � � X 0 ¼ Ρ � X 0 ð34Þ

The stability lobes can be determined by scanning the spin-
dle speed at the different axial depth, depending on Eq. (35)
(Floquet theory)

max λj jð Þ ¼
< 1; stable

¼ 1; critical stable
> 1; unstable

8<
: ð35Þ

max(|λ|) indicates the biggest modulus in all modulus of ei-
genvalues of the transition matrix Ρ.

4 Theoretical comparison of the SDM
and the proposed method

The discrete-time values of the states based on SDM can be
expressed in matrix form as

xiþ1

xiþ2

xiþ3

⋮
xi−mþ2

xi−mþ1

2
6666664

3
7777775
¼

eA� Δð Þ 0 0 ⋯ 0 N1 N1

I 0 0 ⋯ 0 0 0
0 I 0 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋱ 0 0 0
0 0 0 ⋯ I 0 0
0 0 0 ⋯ 0 I 0

2
666666664

3
777777775
�

xi
xiþ1

xiþ2

⋮
xi−mþ1

xi−m

2
6666664

3
7777775

N 1 ¼ 1

2
eA Δð Þ−I

� �
A−1B

Ν ¼ eA� Δ1ð Þ �
Z
0

Δ1

e− A�μð Þ � B� ϕ1 μð Þdμ;
Z
0

Δ1

ϕ1 μð Þdμ ¼ 0:59;

ð36Þ
When considering the influence at other sampling points on
the interval [ti, ti+1], the interpolation function can be
expressed as

Z
0

Δ1

…þ ϕ1 μ−Δ1ð Þ þ ϕ1 μð Þ þ ϕ1 μþΔ1ð Þ þ…½ �dμ

¼
Z
0

Δ1

~ϕ μð Þ
h i

dμ ¼
Z∞
0

ϕ1 μð Þdμ≈0:5
ð37Þ
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Table 1 Comparison of different methods for the single DOFmilling model (the horizontal and vertical coordinates for figures are separately “r/min”
and “m”)

Radial depth of 

cut ra�os
Semi-discre�za�on method[12] The proposed method

0.05

Computa�onal 

�me(s)
547.046 107.39

0.1

Computa�onal 

�me(s) 545.97 106.112

0.3

Computa�onal 

�me(s)
553.255 108.389
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Ν ¼ eA� Δ1ð Þ �
Z
0

Δ1

e− A�μð Þ � B� ~ϕ μð Þdμ ð38Þ

Equation (37) is the approximation without the loss of infor-
mation in the interval [ti,ti+1]. The general approximate can be
obtain depending on Eq. (37)

Ν ¼ eA� Δ1ð Þ �
Z
0

Δ1

e− A�μð Þ � B � ~ϕ μð Þdμ

≈ 0:5 eA� Δð Þ �
ZΔ
0

e− A�μð Þdμ

0
@

1
A � B

¼ 0:5 eA� Δð Þ � e− A�μð Þ Δ
0

−A−1 � B
� �				

¼ 0:5eA� Δð Þ � e− A�μð Þ−I
� �

� −A−1 � B
� �
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Equation (38) is approximately equal to Eq. (36); this
shows that the semi-discretization method is a special
case of the reconstructed method proposed in this paper.

If the proposed method is approximated by using
Eq. (39), the biggest advantage of the reconstruction
process compared with SDM is that the sampling num-
bers (60/Ω/N)×(2f0) are changed with the change of the
spindle speed. When the spindle speed increases, the

delay time T decreases and the sampling number de-
creases, and vice versa.

5 Verification

In this section, two examples for one and two degrees of
freedom milling models from reference [27] are utilized.
Computer programs of the proposed approach are all written
in Matlab 7.0 and implemented on the same computer.

Section 2.3 proposes the reconstruction process of SDM in
which the essential is to determine the minimum sampling
interval in the delay time, and the sampling numbers will
change when the spindle speed changes, and determines the
accurate approximation without information less of the delay
term x(t−T).

Note: In order to highlight the advantages of the variation
of the sampling number during the delay time, the general
approximation of the proposed method is used, i.e.,
Eq. (39), and is compared to the SDM.

5.1 Single DOF milling model

The state equation of the single DOF milling model is the
same as Eq.(2), where A(t) and B(t) can be expressed in the
interval [ti,ti+1] as follows:

Ai tð Þ ¼
0 1

− ω2
n þ

whi
mt


 �
−2ζwn

" #
; Bi tð Þ ¼

0 0

whi
mt

0

2
4

3
5; u tð Þ ¼ x tð Þ

x
�
tð Þ


 �

where ωn is the angular natural frequency, hi is the specific

Table 1 (continued)

0.5

Computa�onal 

�me(s)
561.944 111.49
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cutting force coefficient that has been determined in reference
[27], mt is the modal mass, w is the depth of cut, and ζ is the
relative damping. In this case, the detailed parameters are as
follows:ωn=5793rad/s, mt=0.03993kg, ζ=0.011, Kt=6×
108N/m2,Kn=2×10

8N/m2, the number of teethN=2, the sam-
pling number is 40, and the radial depth of cut ratios are
respectively 0.05, 0.1, 0.3, and 0.5.

The stability lobes for various radial depth of cut ratios at
the SDM and the proposed method are shown in Table 1. It
can be seen from Table 1 that the calculation time of the
proposed method can be reduced nearly five times, and the

calculation accuracy is not reduced, and the waveforms-based
proposed method and SDM are in good agreement.

5.2 Two DOF milling model

The state equation of the two DOF milling model is the
same as Eq. (2). These parameters of the following ma-
trix are equal to Section 5.1; the stability charts for
various radial depth of cut ratios at the SDM and the
proposed method are shown in Table 2.

Table 2 Comparison of different methods for the two DOF milling model (the horizontal and vertical coordinates for figures are separately “r/min”
and “m”)

Radial depth 
of cut ra�os

Semi-discre�za�on method[12] The proposed method

0.05

Computa�onal 

�me(s)
1749.715 671.472

0.1

Computa�onal 

�me(s) 1765.681 657.854

Int J Adv Manuf Technol (2016) 85:1501–1511 1509



Ai tð Þ ¼

0 0
0 0

1 0
0 1
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whxxi
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−
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−
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− ω2
n þ

whyyi
mt


 � −2ζw 0
0 −2ζwn

2
6666664

3
7777775
; Bi tð Þ ¼

0 0
0 0

0 0
0 0

whxxi
mt

whxyi
mt

whyxi
mt

whyyi
mt

0 0
0 0

2
666664

3
777775; u tð Þ ¼

x tð Þ
y tð Þ
x
�
tð Þ

y
�
tð Þ

0
BB@

1
CCA

It can be seen from Table 2 that the calculation time of
the proposed method can be reduced nearly 2.6 times, and
the calculation accuracy also is not reduced, and the
waveforms-based proposed method and SDM are in good
agreement.

6 Conclusion

In this work, fast calculationwithout accuracy loss is proposed
for predicting the milling stability which is obtained by
reconstructing the semi-discretization method based on the

Table 2 (continued)

0.3

Computa�onal 

�me(s)
1814.905 671.44

0.5

Computa�onal 

�me(s)
1849.748 686.744
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Shannon standard orthogonal basis. The fast calculation pro-
cess is established by using the variable sampling numbers
during the period of the delay time in which the variable sam-
pling numbers are determined by the condition that is used to
construct the Shannon standard orthogonal basis. Finally, the
validity of the proposed method is verified by two benchmark
examples for the one and two degrees of freedom milling
model; the results show that the proposed method has high
calculation and does not have accuracy loss compared to the
SDM. This research is an impetus for the further development
of the semi-discretization method.
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