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Abstract Flexible manufacturing system is the inception of
an innovative manufacturing revolution that will credibly lead
the manufacturing trade to levels of automation which is to be
taken granted currently in the process-related industries. This
paper speaks about multi-objective optimization related to
flexible manufacturing systems (FMS) scheduling which act
as a constraint in configuring the loop layout in optimum
manner by various algorithms, i.e., meta-heuristics like genet-
ic algorithm (GA), simulated annealing (SA), etc. The various
loop layout problems are tested for enactment of objective
function with respect to computational time and number of
iterations involved in GA and SA. A simulation code is gen-
erated using programming language and executed using inte-
grated development environment (IDE) tool. A comparative
analysis of simulation results of different meta-heuristics with
literature results has been done. The performance of this GA is
proved to be the best among all the algorithms considered for
this work.
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1 Introduction

In the current scenario, automated manufacturing indus-
tries are under great pressure caused by the rising cost of
energy, materials, labors, capital, and intensifying world-
wide competition. While these trends will remain for a
long time, the problem fronting manufacturing today run
much yawning. In many cases, they stem from the very
nature of the manufacturing process itself. In order to
overcome that, flexible manufacturing systems (FMSs)
are regarded as one of the most efficient methods to
use in reducing or eliminating manufacturing problems.
FMS is more than a technical solution; it is a business-
driven solution leading to improve profitability through
reducing lead times and inventory levels and improved
manufacturing effectiveness through increased operation-
al flexibility, predictability, and control. Flexible
manufacturing system [1] combines collection of ma-
chine tools which are termed as numerical control ma-
chines that can arbitrarily process a cluster of jobs, tak-
ing automated material management and workstation
control to balance resource exploitation over which the
system can accept automatically to variation in jobs man-
ufacture, amalgams, and stages of yield. The objective of
FMS is flexibility in production without compromising
the quality of products. Flexibility can mean future cost
avoidance. This type of flexibility would be common
among automotive and manufacturers, where high part
volumes are common but future change in market de-
mand are expected and anticipated.

Material handling is important, yet sometimes it is an
overlooked aspect of automation. The main function of an
MHS is to supply the true materials at the exact locations
and at the right time; the cost of material handling has
high priority in total cost of production. It means handling
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cost is equal to two-thirds of the total manufacturing cost
[2]. This fraction varies depending on type and quantity of
production and the degree of automation in the material
handling function. Finally, material handling plays an im-
portant role in FMS.

The FMS layout involves allocating diverse reserve for
attaining full competence. The arrangement has an influ-
ence on the make span and cost [3] which should be
determined in the inception of the FMS [4]. In practice,
the most commonly used type of FMS layouts [5] are as
follows:

1. Line or single row layout
2. Loop layout
3. Stepladder layout
4. U-shaped layout

Among the above layouts, this paper focus on loop layout
design with integrated scheduling using genetic algorithm
(GA) and simulated annealing (SA).

2 Literature survey

During former epoch, FMS layout design with integrate
scheduling has got extra emphasis since of its prominence
from both hypothetical and real-world points of sight.
Early investigation was intense, mainly on the origination
and explanation of the problem as the mathematical mod-
el, such as branch and bound method and dynamic pro-
graming [6], but these approaches can only be useful for
small problems. Heuristic methods can solve the small
problem and also combinatorial optimization problems.
The heuristic methods are usually computationally effi-
cient, but easily trap into local optimal solution and no
assurance that they will catch optimal solutions. Recently,
meta-heuristic has been applied, such as tabu search, sim-
ulated annealing, genetic algorithm, and ant colony opti-
mization. Wei-jun Xia and Zhi-ming Wu [7] developed a
new approximation algorithm for the problem of finding
the minimum makespan in the job-shop scheduling envi-
ronment. They combine the two existing algorithm and
developed new algorithm which is known as hybrid opti-
mization algorithm. Kumar et al. [4] introduced an ant
colony optimization (ACO) algorithm for the layout de-
sign with integrated scheduling by applying priority
dispatching rules using Giffler and Thompson algorithm.
Tiwari and Chang [8] proposed the pareto-optimal block-
based EDA using bivariate model for multi-objective flow
shop scheduling problem. They apply a bivariate probabi-
listic model to generate block which have the better di-
versity along with the non-dominated sorting technique to
filter the solutions.

Muthuswamy and Vélez-Gallego [9] propose a mathe-
matical formulation and present a particle swarm optimi-
zation (PSO) algorithm. Their objective is to batch the
jobs and sequence the batches such that the makespan is
minimized. Ayough and Zandieh [10] present a new mod-
el dealing with the job rotation scheduling problem. They
used new software called Lingo software for simulating
two search algorithms, GA and imperialist competitive
algorithm (ICA), designed to conquer the algorithmic
complexity of model, and their parameters adjusted using
Taguchi’s method were used. Filho and Barco [11] pro-
posed that a classification system encompasses six main
dimensions: FMS type, types of resource constraints, job
description, scheduling problem, measure of performance,
and solution approach. They analyzed literature using the
proposed classification system, which provides the fol-
lowing results regarding the application of GAs to FMS
scheduling:

1. Combinations of GAs and other methods were relatively
important in the reviewed papers.

2. Although most studies deal with complex environments
concerning both the routing flexibility and the job com-
plexity, only a minority of papers simultaneously consider
the variety of possible capacity constraints on an FMS
environment, including pallets and automated guided
vehicles.

Udhayakumar and Kumanan [12] generated an active
schedules and optimal sequence of job and tool that can
meet minimum makespan schedule for the flexible
manufacturing system. They proposed ACO algorithm
to derive near optimal solutions which adopt the Extend-
ed Giffler and Thompson algorithm for active feasible
schedule generation. They used this proposed algorithm
to solve the number of problems taken from the litera-
ture. Costa and Cappadonna [13] focused on skilled
workforce assignment (SWA) to machines of a given
shop floor may represent a key issue for enhancing the
performance of a manufacturing system. Their literature
addressed about the group scheduling problems and iden-
tified the effect of human factor on the performance of
serial manufacturing systems which was ignored by
researchers.

Javadian and Fattahi [14] addressed the hybrid flow
shop scheduling problems considering time lags and
sequence-dependent setup times. They presented a math-
ematical model which is capable of solving the small
size of the considered problem in a reasonable time.
Ranjbar and Razavi [15] proposed a new method to syn-
chronously make the arrangement and planning decisions
in a job shop situation. Wangta and Pongcharoen [16]
presented the application of SA and TS for minimizing
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the material handling distance associated with the layout
required for manufacturing process of multiple products.
They developed a computer-based machine layout de-
signed tool and tested using five datasets from literature.
Khamseh and Jolai [17] integrates flexible flow shop
group scheduling problem with sequence-dependent
setups and preventive maintenance activities in order to
minimize the total completion time (makespan). They
exploited the Taguchi robust parameter design method.
Karthikeyan and Asokan [18] presented a hybrid discrete
firefly algorithm to solve the multi-objective flexible job
shop scheduling problem with limited resource con-
straints. They considered the minimization of makespan,
maximal workload, and total workload of machines as
three different objectives and instead of applying the
standard firefly algorithm. Pooranian and Shojafar [19]
developed a new hybrid scheduling algorithm GGA that
combines GA and the gravitational emulation local
search (GELS) algorithm.

3 Problem description

– The problem formulation procedure adopted by Liu and
Abraham [20] has been used in this research work. We
focus on design of loop layout in flexible manufacturing
system with flexible batch scheduling problem (FBSP) as
constraint with the following parameters.

– JobsJ={j1,j2,…………jn}
– Batches B={B1,B2,…………….Bn} is a set of n jobs /n

batches to be scheduled respectively. Each job Ji consists
of a predetermined sequence of operations. Oi,j is the
operation j of Ji.

– Machines M={M1,M2,……………..Mm} is a set of m
machines.

– Slots S={S1,S2,S3………Sm} is a set of N fixed slots
– Flexible FSP usually is classified into two types as

follows:

& Total FBSP {T-FBSP}; every operation can be managed
on any machine of M.

& Fractional FBSP {P-FBSP}; every operation can be han-
dled on one machine of set of M.

& Authors adopted P-FBSP integrated with facility layout
problems for our research work.

3.1 Multi objective mathematical models

In this section, we introduce the multi-objective function and
use it to solve the flexible batch scheduling problems which
are integrated with loop layout pattern design leads to mini-
mize the make span and to obtain an optimal layout plan for

the machines by minimizing the total transportation cost in-
creased in the system.

3.1.1 Notations

The notations [21] which are used to develop a mathematical
model of the design of line layout are defined and interpreted
as follows.

i Part type index i, i’=1,2,3,……,n
j Process index j=1,2,3,…..,p
k Machine index k, k’=1,2,3,……,m
n Number of batches / job
m Number of machines
Smaxi Make span of system maximum completion time
sn,m Make span of system
Si,j,k Partial make span without predecessors
si,j+1,k Enhanced make span with predecessors
T i,j The duration (processing time ) of operation j of

job i
T i,j+1 The duration of operation j=1 of job i
O i, k Operation of job on corresponding machine
B i, k Batch processing on corresponding machine
f (i,j,k) Vector representing corresponding operation of

job on specified machine
X Corresponding layout
M Total number of machines contained in the

manufacturing system
mi Machine in slot n1
mj Machine in slot nN
N Number of slots
MHm1,m2 Material handling cost between machines m1 and

m2 (m1 m2=1,2,3,…….,M)
RDn1,n2 Rectangular distance between machinery

locations n1 and n2 (n1 n2=1,2,3,……N)
MFm1,m2 Amount of material flow among machinesm1 and

m2 (m1 m2=1,2,3,….M)
LOCmi Loading cost from loading station to machines
ULOCmi Unloading cost from unloading station to

machines

3.2 Objective functions

(I) Minimize make span F (Smaxi)
Minimize, F(Smax)=Sn,m

Sub to

1. conjunctive constraints
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Si; j;k ≤ Si; jþ1;k− Ti; jþ1; f o r j ¼ 1 ; 2 ; 3… p
Si; j;k ≥0; for j ¼ 1; 2; 3 …p

2. Resource constraints

O I ,j k=1 if job i scheduled before job i’ on machine k=0,
otherwise for O € S (i,j,k)

for j=1, 2, 3…p

3. Disjunctive constraints

B i, k=1 if job i processed only once on machine k=0,
otherwise for B € S (i,j,k)

for i, i’=1, 2, 3….. n
k, k’=1, 2, 3 …m

(II) Minimize total transportation cost (Z) =

XM

mi¼1

XM

mj¼1

MF
m1m2

*MH
m1m2

*RD
n1n2

� �
þLOCmi þ ULOCmj

2
4

3
5

Sub to

∑
M

mi¼1
X

mimj
¼ 1; if machine mi is at assigned to slot

N=0, otherwise

∑
M

mj¼1
X

mimj
¼ 1; if machine mj is at assigned to slot

N=0, otherwise

X
mimj

Èo 0; 1f g; mi; mj ¼ 1; 2;…………::N

3.2.1 Configuration of loop layout

Figures 1, 2, and 3 shows the loop layout configurations of
FMS of six, seven and nine machines respectively.

3.2.2 Procedure for neighborhood creation

The vicinity may be created by any one of the following
methods.

– Couple wise interchange of neighboring jobs
– Random exchange of operation sequence with repair

function

Out of two methods, we used random exchange of opera-
tions sequence with repair function which is considered for
neighborhood creation.

3.2.3 Procedure for batch scheduling methodology
with repair function

Example: A scheduling comprises 3 machines and 3 batches
(each batch contains 100 jobs) and 3 operations are consid-
ered. The total there are 9 operations, and the chromosome
consists of 9 genes

No. of batches 1 2 3

No of jobs per batch 100 100 100 100

No. of Operations 1 2 3 1 2 3 1 2

Machines M1 M2 M3 M2 M1 M3 M1 M3 M2

Representation 1 2 3 4 5 6 7 8 9

Unfeasible chromosome 5 2 1 6 3 8 4 7 9

Feasible chromosome 1 4 7 2 3 5 8 6 9

AGV LOADING

      UN
LOADING

S2

S5 S6

S1
4 units

4units

S3

S4

JOB

2u
ni

ts

2u
ni

ts

Fig. 1 Loop layout arrangements of FMS for six machines

AGV

S3

S4

S5 S7

S1

S6

4 units

2units

2units

S2

LOADING

      UN
LOADING

2units

4 units

Fig. 2 Loop Layout Arrangements of FMS for 7 machines
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Fig. 3 Loop layout arrangements of FMS for nine machines
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Batch scheduling methodology Batches are scheduled based
on the batch permutation sequence derived by the priority
dispatch rule based on precedence constraint. Initially, jobs
are carried from the load/unload station to the respective
workstations where the operations of all jobs are scheduled
as per priority dispatch rule within the precedence relations.
Finally, optimummakespan is determined. This type of sched-
uling methodology helps in reducing the waiting times and
thus helps in improving the resource utilization and the
throughput. As mentioned in above table, there are two types
of chromosomes, one is unfeasible and the other is feasible.
There is a procedure to convert unfeasible to feasible chromo-
somes by repair function.

Repair function A repair function [22] is used to repair the
unfeasible chromosome which violate the precedence con-
straints and convert into feasible one

Step 1: Find the position of the batch operations, which vi-
olate the precedence relations.

Step 2: Compute the inter slot distance between the ma-
chines of violating operations.

Step 3: If the inter slot distance between them is less than
half the chromosome length then swap the
operations.

Step 4: Otherwise, randomly pick any one operation and
insert it before or after the other depending on the
precedence.

4 Proposed methodology

The general explanation of the suggested procedures is shared
out as follows.

4.1 Genetic algorithm

Genetic algorithms are population-based optimization al-
gorithms centered on the procedure of regular inheri-
tances and expected choice. It is also called as a sto-
chastic search procedure for combinational optimization
problems. These search technique is commonly used to
generate fruitful solutions to optimization and search
problems by using the principle of Charles Darwin of
“survival of the fittest,” where weak individuals die be-
fore reproducing, while healthier ones breath longer and
bear many offspring and breed children, who often in-
herit the qualities that enabled their parents to survive
the reproduced children are in most cases stronger than
their parents. The element and mechanism of genetic
algorithm are representation, population, evaluation, se-
lection operator, and parameter.

4.1.1 GA parameters

Description Parameters Values

Population size Pop Multiple

Crossover probability pc 0.95

Mutation probability pm 0.05

Stopping criteria T.C 100 generation

4.2 Simulated annealing algorithm

Simulated annealing (SA) is a meta-heuristic for the over-
all optimization problem of applied mathematics, namely
locating a good estimation to the global minimum of a
given function in large search space. Simulated annealing
was first introduced by Kirkpatrick. Gelett, and Beechi in

Table 1 Outline of production system

Layout
pattern

No. of
machines

No. of
batches

No of
operations

Load/unload
stations

No of
AGV

Loop 6 6 6 2 1

Table 2 Outline of production system

Layout
pattern

No. of
machines

No. of
batches

No of
operations

Load/unload
stations

No of
AGV

Loop 7 7 7 2 1

Table 3 Outline of production system

Layout
pattern

No. of
machines

No. of
batches

No of
operations

Load/unload
stations

No of
AGV

Loop 9 9 9 2 1

Table 4 Batch varieties with batch sizes of the loop layout with six
machines with six jobs

Batch number B1 B2 B3 B4 B5 B6

Batch varieties CBS 100 100 100 100 100 100

VBS 50 40 60 30 10 25
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1983 and Cerny in 1985 to solve optimization problem. It
is based on the comparison between finding an optimal
solution in solving optimization problems and finding a
low-energy state in the annealing process of solids. An-
nealing is a physical process for obtaining a low-energy
state of a solid in two steps:

1. The metal is heated up to the recrystallization point.
2. The temperature of the metal is reduced slowly by

cooling, allowing it to attain thermal balance at each
temperature.

The integral part of an annealing algorithm is its neighbor-
hood generation scheme, on the basis of which different an-
nealing algorithms are developed.

4.2.1 SA parameters

Description Parameter Values

Population size Pop Single

Initial temperature T 100c

Final temperature T Depends on termination criteria

Cooling rate K 0.95

Probability of acceptance P 0.95

Neighborhood exchanges N E R E O S W R F

Stopping criteria S.C 200

REOSWRF random exchange of operation sequence with
repair function

4.2.2 SA algorithm

The procedure as follows:

Step 1: Choose an initial point a(0), a stop criterion
(S.C). Set T a sufficiently high valve, number
of iterations to be performed at a particular
temperature.

Step 2: Calculate a neighboring point a(t+1)=N(a(t)) usu-
ally, a random point in the neighborhood is
created.

Step 3: If ΔHE=HE[a(t+1))]-HE(a(t)) <0,
Step 4: Set t=t+1, else create a random number (¥) in the

range (0,1). If r≤exp(ΔHE/T), set t=t+1; else go to
step 2.

Step 5: If ∫a(t+1)-a(t)/ <(S.C) and T is small terminate, else if
(t mode n)=0, then lower T according to a cooling
schedule, else go to step 2.

Table 5 Batch varieties with batch sizes of the loop layout with seven
machines with seven jobs

Batch number B1 B2 B3 B4 B5 B6 B7

Batch varieties CBS 100 100 100 100 100 100 100

VBS 50 40 60 30 10 25 90

Table 6 Batch varieties with batch sizes of the loop layout with nine
machines with nine jobs

Batch number B1 B2 B3 B4 B5 B6 B7 B8 B9

Batch varieties CBS 100 100 100 100 100 100 100 100 100

VBS 50 40 60 30 10 25 90 15 70

Table 7 Processing time and process routing matrices for
configurations of loop layout with seven machines and seven jobs or
batches

Batch O1 O2 O3 O4 O5 O6 O7

M T M T M T M T M T M T M T

B1 2 10 4 12 6 11 5 9 7 7 1 7 3 5

B2 5 4 4 2 7 4 3 6 1 6 6 5 2 3

B3 3 7 5 6 1 4 6 9 7 10 2 4 4 3

B4 2 9 4 2 7 9 6 1 5 9 3 4 1 3

B5 7 4 6 7 5 6 7 2 6 1 10 3 6

B6 2 9 1 3 6 4 7 3 5 6 4 6 3 6

B7 4 5 2 4 7 3 6 2 5 7 1 7 3 6

Table 8 Processing time and process routing matrices for
configurations of loop layout with six machines and six jobs

Batch O1 O2 O3 O4 O5 O6

M T M T M T M T M T M T

B1 1 8 2 7 3 14 4 9 5 3 6 4

B2 2 10 3 17 6 6 4 13 1 4 5 3

B3 5 18 1 16 4 11 2 12 6 3 3 3

B4 1 16 6 7 3 11 5 4 4 4 2 13

B5 4 12 2 15 5 9 6 11 3 3 1 4

B6 3 8 2 7 6 9 1 6 5 11 4 12
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4.3 Arithmetical illustrations

An attempt is made to apply the GA and SA algorithms
on FMS scheduling to determine best solution in terms of
minimum completion time and obtaining the batch se-
quence on each machine which facilitates in arranging
machines in optimum manner in loop layout to determine
non intersecting arrangement of machine owing to that
total transportation cost of making necessary mobility of
parts are reduced.

4.3.1 The arithmetical illustration of suggested genetic
algorithm for case problem (2) is styled below

1. Choose a feasible chromosomes based on number of op-
erations in case FMS scheduling and based on the number
of machines in single row layout of as shown below

– GA applied to loop layout
– Chromosomes 1 and 2 are randomly selected

Feasible chromosome 1 2 4 1 5 6 3

total transportation cost=f ( x )=84 Rs

chromosome 2 4 6 3 1 5 2

total transportation cost=f ( x )=154 Rs

2. Roulette wheel selection procedure

– Calculate raw fitness for above chromosomes
– Develop the mating pool

Feasible chromosome 1 2 4 1 5 6 3

raw fitness=F(x )=1 /( 1+f ( x ))
=1/(1+84)=0.0117

chromosome 2 4 6 3 1 5 2

raw fitness=F(x )=1 /( 1+f ( x ))
=1/(1+154)=0.00645
Finally in mating pool, we got different chromosomes than

previous due to reproduction, suppose we got

Table 9 Processing time and process routing matrices for configurations of loop layout with nine machines and nine jobs

Batch O1 O2 O3 O4 O5 O6 O7 O8 O9

M T M T M T M T M T M T M T M T M T

B1 2 11 4 10 6 7 5 19 7 8 1 7 9 9 3 10 8 13

B2 5 4 4 12 9 14 3 6 1 2 6 4 8 3 2 8 7 9

B3 3 13 5 16 1 4 6 9 7 10 2 4 8 3 4 7 9 2

B4 2 9 4 12 7 8 6 1 5 9 3 4 9 3 8 9 1 7

B5 8 14 6 7 5 16 4 7 2 6 9 10 7 4 1 5 3 6

B6 9 9 8 13 6 4 7 2 5 6 4 6 3 4 1 7 2 3

B7 4 5 2 14 7 3 9 12 5 17 8 7 3 16 6 5 1 6

B8 1 6 2 4 6 3 7 2 8 7 5 5 3 6 4 5 9 9

B9 4 15 1 14 8 6 9 12 5 7 7 2 3 16 6 2 2 6

Table 10 Inter-slot
distance matrix for loop
layout with six machines

Slots S1 S2 S3 S4 S5 S6

S1 0 4 8 10 14 10

S2 4 0 4 8 10 14

S3 8 4 0 4 8 10

S4 10 8 4 0 4 8

S5 14 10 8 4 0 4

S6 10 14 10 8 4 0

Table 11 Inter-slot distance matrix for loop layout with seven
machines

Slots S1 S2 S3 S4 S5 S6 S7

S1 0 2 4 8 12 12 10

S2 2 0 2 4 8 12 12

S3 4 2 0 2 4 8 12

S4 8 4 2 0 2 4 8

S5 12 8 4 2 0 2 4

S6 12 12 8 4 2 0 2

S7 10 12 12 8 4 2 0
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chromosome 1: 3 5 4 6 1 2

chromosome 2: 2 4 1 5 6 3

- Cross over Here, we choose single point cross over with two point
crossing site given below

chromosome 1: 3 5 4 6 1 2

(here, condition is machine numbers should not be repeated while
crossing)

chromosome 2: 2 4 1 5 6 3

offspring 1: 3 5 1 4 6 2

offspring 2: 2 4 5 6 1 3

- Mutation swap mutation is used, which chooses two random positions
on offspring chosen and change the machine associated with those
position

offspring 1: 3 5 1 4 6 2

offspring 2: 3 6 1 4 5 2

(New chromosome)

Likewise, the new chromosome is replaced with older one;
go for next generation for evaluating objective function.

4.3.2 The arithmetical illustration of suggested simulated
annealing for case problem (10) is styled below

Let TTC=84 Rs

– set HE(1)=84 at T=1000c
– best solution so for is E(1)=84

At next iteration,

– If neighboring valve (TTC)=85 Rs
– set HE(2)=85 at T=1000c
– calculate the difference b/n two energy levels, i.e.,
– H HE(2)-HE(1)
– Now H f H Then Calculate the probability of

acceptance (R)=exp(-ΔHE/T)
– If R<exp(-ΔHE/T), Then reject the current solution and

do not change the best solution

5 Data set details for loop layout with FBSP

The combination of the scheduling of parts into a flexible
manufacturing system layout, succeeded by the automated
material handling and by means of computer control, can ef-
fect in manufacturing systems described by flexibility, great
productivity, and little cost per unit formed. The response to
the FMS schedule is a best routing of parts acquired from the
production schedule that let off the transfer activities of the
FMS. Here, the transfer activity is included. The transporta-
tion cost depends on the inter slot distance between machines,
incidence of trips of parts from machine to machine and
loading/unloading station, and material handling cost. The
AGV moves in forward and reverse direction, i.e., loading
station-machines-unloading station vice versa.

A production systemwith the summary and batch sizes and
the layout of FMS are shown in Tables 1, 2, and 3. The data set
details of batch varieties and sizes are given in Tables 4, 5, and
6. Let there be parts to be processed on machine for various
operations which requires the processing time and part routing
with the operation sequence of parts which steers the parts on
various machines are depicted in Tables 7, 8, and 9.

Table 12 Inter-slot distance matrix for loop layout with nine machines

Slots S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 0 2 4 6 8 10 12 10 8

S2 2 0 2 4 6 8 10 12 10

S3 4 2 0 2 4 6 8 10 12

S4 6 4 2 0 2 4 6 8 10

S5 8 6 4 2 0 2 4 6 8

S6 10 8 6 4 2 0 2 4 6

S7 12 10 8 6 4 2 0 2 4

S8 10 12 10 8 6 4 2 0 2

S9 8 10 12 10 8 6 4 2 0

Table 13 Load and unload matrices for loop layout with six machines

Slots S1 S2 S3 S4 S5 S6

Load station 4 8 12 14 10 6

Unload station 6 10 14 12 8 4

Table 14 Load and unload matrices for loop layout with seven
machines

Slots S1 S2 S3 S4 S5 S6 S7

Load station 4 6 8 12 10 8 6

Unload station 6 8 10 12 8 6 4

Table 15 Load and unloadmatrices for loop layout with nine machines

Slots S1 S2 S3 S4 S5 S6 S7 S8 S9

Load station 4 6 8 10 12 12 10 8 6

Unload station 6 8 10 12 12 10 8 6 4

Transportation cost per unit distance=1 Rs

Load and unload cost per unit distance=1 Rs
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6 Data set details of batch varieties and sizes

(CBS = constant batch size, VBS = variable batch size)
The way of part/batch moves over the machines is given in

the same Tables 7, 8, and 9 as an input for FMS scheduling,
where the objective is to arrive at a layout, which determines

non-intersecting best arrangement of machines such that total
transportation cost of making necessary mobility of parts are
reduced.

Table 16 Comparison of
arithmetical results of the
proposed evolutionary algorithms
(for CBS=100 numbers in a batch
and same quantity in all batches
with number of iterations=100)

Instan-M/c×J/B×Oper GA SA

MAKSP (min) TTC (Rs) CPU (s) MAKSP (min) TTC (Rs) CPU (s)

KMN 1-(6×5×5) 7100 9400 14 7400 10,000 0

KMN 2-(6×6×6) 7400 13,000 14 8100 13,200 0

KMN 3-(7×7×7) 6900 9600 16 7300 9800 0

KMN 4-(7×6×6) 6300 8400 14 6700 8800 0

KMN 5-(7×7×4) 4300 9600 14 4300 11,400 0

KMN 6-(7×7×5) 7500 9200 31 7500 9600 0

KMN 7-(7×7×6) 7300 10,600 14 8200 11,000 0

KMN 8-(9×5×5) 5600 8000 13 5800 8200 0

KMN 9-(9×6×5) 6200 9800 14 6300 10,200 0

KMN 10-(9×7×5) 5100 9600 14 5100 12,000 0

KMN 11-(9×7×6) 6200 10,600 15 6500 12,200 0

KMN 12-(9×7×7) 8300 11,000 15 8800 12,000 0

KMN 13-(9×8×5) 7300 12,600 14 7200 12,800 0

KMN 14-(9×8×6) 9700 13,800 15 9800 14,200 0

KMN 15-(9×8×7) 10,200 13,400 15 10,500 13,800 0

KMN 16-(9×8×8) 9500 13,800 16 9700 13,000 0

KMN 17-(9×9×5) 6600 13,400 15 6600 15,000 0

KMN 18-(9×9×6) 6000 15,200 15 6200 14,600 0

KMN 19-(9×9×7) 8800 15,600 16 9000 15,600 0

KMN 20-(9×9×8) 8400 15,000 17 8900 15,400 0

KMN 21-(9×9×8) 11,200 15,600 18 11,200 16,400 0
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Fig. 4 Comparison of proposed algorithm for makespan with constant
batch size for loop layout
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Table 17 Comparison of arithmetical results of the proposed evolutionary algorithms for CBS=100 numbers in a batch and same quantity in all
batches

Instance (M×J/B×O) GA SA

BWT (min) MASEQ MWT (min) BWT (min) MASEQ MWT (min)

KMN 1
(6×5×5)

B1: 3000
B2: 2100
B3: 1100
B4: 2900
B5: 2100

6, 2, 5, 4, 3, 1 M1: 3300
M2: 2800
M3: 800
M4: 1500
M5: 5500
M6: 4400

B1: 3300
B2: 2400
B3: 1400
B4: 3200
B5: 2400

6, 2, 5, 4, 3, 1 M1: 3600
M2: 3100
M3: 1100
M4: 1800
M5: 5800
M6: 4700

KMN 2
(6×6×6)

B1: 2900
B2: 2100
B3: 1200
B4: 1900
B5: 2000
B6: 2100

5, 6, 4, 3, 1, 2 M1: 2000
M2: 1000
M3: 1900
M4: 1300
M5: 2600
M6: 3400

B1: 3600
B2: 2800
B3: 1900
B4: 2600
B5: 2700
B6: 2800

1, 2, 3, 4, 5, 6 M1: 2700
M2: 1700
M3: 2600
M4: 2000
M5: 3300
M6: 4100

KMN 3
(7×7×7)

B1: 800
B2: 3900
B3: 2600
B4: 3200
B5: 2300
B6: 3200
B7: 3500

7,5,2,1,4,6,3 M1: 2900
M2: 2400
M3: 2900
M4: 3200
M5: 2200
M6: 3000
M7: 2900

B1: 1200
B2: 4300
B3: 3000
B4: 3600
B5: 2700
B6: 3600
B7: 3900

1, 4, 6, 7, 5, 2, 3 M1: 3300
M2: 2800
M3: 3300
M4: 3600
M5: 2600
M6: 3400
M7: 3300

KMN 4
(7×6×6)

B1: 1800
B2: 800
B3: 2700
B4: 2800
B5: 1200
B6: 2700

7,4,6,2, 3, 1, 5 M1: 1500
M2: 3900
M3: 3500
M4: 3400
M5: 1700
M6: 1800
M7: 2500

B1: 2200
B2: 1200
B3: 3100
B4: 3200
B5: 1600
B6: 3100

7, 4, 5, 1, 3, 6, 2 M1: 1900
M2: 4300
M3: 3900
M4: 3800
M5: 2100
M6: 2200
M7: 2900

KMN 5
(7×7×4)

B1: 200
B2: 2700
B3: 1800
B4: 1600
B5: 2600
B6: 2400
B7: 2300

4,6,5,2, 3, 1, 7 M1: 3600
M2: 1500
M3: 1700
M4: 400
M5: 1700
M6: 2900
M7: 1800

B1: 200
B2: 2700
B3: 1800
B4: 1600
B5: 2600
B6: 2400
B7: 2300

4, 6, 5, 2, 3, 1, 7 M1: 3600
M2: 1500
M3: 1700
M4: 400
M5: 1700
M6: 2900
M7: 1800

KMN 6
(7×7×5)

B1: 3600
B2: 3300
B3: 3900
B4: 2600
B5: 4500
B6: 3300
B7: 4600

3,6,2, 5, 4, 1, 7 M1: 5800
M2: 3200
M3: 5500
M4: 6000
M5: 200
M6: 1800
M7: 3300

B1: 3600
B2: 3300
B3: 3900
B4: 2600
B5: 4500
B6: 3300
B7: 4600

7, 1, 2, 6, 3, 4, 5 M1: 5800
M2: 3200
M3: 5500
M4: 6000
M5: 200
M6: 1800
M7: 3300

KMN 7
(7×7×6)

B1: 1700
B2: 2800
B3: 3100
B4: 4500
B5: 600
B6: 4900
B7: 1500

3,4,2, 6, 1, 5, 7 M1: 3600
M2: 4100
M3: 1400
M4: 2400
M5: 3400
M6: 2900
M7: 1300

B1: 2600
B2: 3700
B3: 4000
B4: 5400
B5: 1500
B6: 5800
B7: 2400

7, 5, 3, 4, 2, 6, 1 M1: 4500
M2: 5000
M3: 2300
M4: 3300
M5: 4300
M6: 3800
M7: 2200

KMN 8
(9×5×5)

B1: 1500
B2: 2500
B3: 0
B4: 100
B5: 600

1, 6, 7, 3, 5, 4, 2, 8, 9 M1: 3100
M2: 3400
M3: 3400
M4: 2300
M5: 3500
M6: 1700
M7: 2300
M8: 4100
M9: 3300

B1: 1700
B2: 2700
B3: 200
B4: 300
B5: 800

9, 1, 5, 4, 2, 3, 8, 7, 6 M1: 3300
M2: 3600
M3: 3600
M4: 2500
M5: 3700
M6: 1900
M7: 2500
M8: 4300
M9: 3500

KMN 9 B1: 2600 1, 4, 2, 6, 8, 9, 5, 3, 7 M1: 3000 B1: 2500 2, 7, 5, 1, 9, 8, 3, 6, 4 M1: 3700
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Table 17 (continued)

Instance (M×J/B×O) GA SA

BWT (min) MASEQ MWT (min) BWT (min) MASEQ MWT (min)

(9×6×5) B2: 2100
B3: 300
B4: 1000
B5: 2100
B6: 1500

M2: 2900
M3: 4300
M4: 2800
M5: 1800
M6: 2300
M7: 3300
M8: 4700
M9: 3100

B2: 1100
B3: 1000
B4: 2100
B5: 400
B6: 2000

M2: 1100
M3: 2400
M4: 2100
M5: 3100
M6: 3700
M7: 2100
M8: 3200
M9: 3300

KMN10
(9×7×5)

B1: 1200
B2: 1700
B3: 2400
B4: 2200
B5: 1400
B6: 2000
B7: 2600

2, 4, 1, 5, 8, 7, 3, 6, 9 M1: 3400
M2: 2000
M3: 3000
M4: 2600
M5: 3800
M6: 3200
M7: 900
M8: 3900
M9: 900

B1: 1100
B2: 1600
B3: 2300
B4: 2100
B5: 1300
B6: 1900
B7: 2500

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 3300
M2: 1900
M3: 2900
M4: 2500
M5: 3700
M6: 3100
M7: 800
M8: 3800
M9: 800

KMN 11
(9×7×6)

B1: 2500
B2: 1200
B3: 2700
B4: 700
B5: 2600
B6: 2400
B7: 1100

1, 3, 4, 7, 6, 5, 9, 2, 8 M1: 4200
M2: 1300
M3: 200
M4: 2000
M5: 2700
M6: 3000
M7: 5100
M8: 4200
M9: 2900

B1: 2800
B2: 1500
B3: 3000
B4: 1000
B5: 2900
B6: 2700
B7: 1400

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 4500
M2: 1600
M3: 500
M4: 2300
M5: 3000
M6: 3300
M7: 5400
M8: 4500
M9: 3200

KMN 12
(9×7×7)

B1: 400
B2: 2200
B3: 1300
B4: 2200
B5: 2500
B6: 4000
B7: 3600

1, 9, 5, 8, 2, 4, 3, 7, 6 M1: 4600
M2: 4600
M3: 4400
M4: 2500
M5: 2300
M6: 1000
M7: 3600
M8: 6800
M9: 3000

B1: 900
B2: 2700
B3: 1800
B4: 2700
B5: 3000
B6: 4500
B7: 4100

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 5100
M2: 5100
M3: 4900
M4: 3000
M5: 2800
M6: 1500
M7: 4100
M8: 7300
M9: 3500

KMN 13
(9×8×5)

B1: 1100
B2: 2700
B3: 2500
B4: 2900
B5: 3400
B6: 1400
B7: 2900
B8: 3600

8, 2, 4, 3, 7, 6, 5, 1, 9 M1: 3100
M2: 4600
M3: 4800
M4: 1000
M5: 3000
M6: 3500
M7: 3000
M8: 4400
M9: 400

B1: 1000
B2: 2600
B3: 2400
B4: 2800
B5: 3300
B6: 1300
B7: 2800
B8: 3500

5, 1, 6, 7, 9, 8, 2, 4, 3 M1: 3000
M2: 4500
M3: 4700
M4: 900
M5: 2900
M6: 3400
M7: 2900
M8: 4300
M9: 300

KMN 14
(9×8×6)

B1: 3700
B2: 3500
B3: 4300
B4: 3000
B5: 3000
B6: 1900
B7: 2300
B8: 2800

9, 1, 7, 6, 8, 3, 2, 4, 5 M1: 6400
M2: 3300
M3: 2300
M4: 3900
M5: 5700
M6: 2100
M7: 3900
M8: 5300
M9: 1300

B1: 3800
B2: 3600
B3: 4400
B4: 3100
B5: 3100
B6: 2000
B7: 2400
B8: 2900

1, 4, 2, 7, 6, 5, 3, 8, 9 M1: 6500
M2: 3400
M3: 2400
M4: 4000
M5: 5800
M6: 2200
M7: 4000
M8: 5400
M9: 1400

KMN 15
(9×8×7)

B1: 2200
B2: 3200
B3: 4400
B4: 2600
B5: 1700

2, 3, 9, 6, 8, 5, 1, 4, 7 M1: 5300
M2: 700
M3: 2300
M4: 2500
M5: 3800

B1: 2500
B2: 3500
B3: 4700
B4: 2900
B5: 2000

9, 6, 8, 5, 1, 4, 7, 3, 2 M1: 5600
M2: 1000
M3: 2600
M4: 2800
M5: 4100
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Table 17 (continued)

Instance (M×J/B×O) GA SA

BWT (min) MASEQ MWT (min) BWT (min) MASEQ MWT (min)

B6: 4300
B7: 2000
B8: 3400

M6: 5300
M7: 6200
M8: 5400
M9: 2500

B6: 4600
B7: 2300
B8: 3700

M6: 5600
M7: 6500
M8: 5700
M9: 2800

KMN 16
(9×8×8)

B1: 400
B2: 3900
B3: 4700
B4: 3000
B5: 4000
B6: 3800
B7: 5400
B8: 2700

5, 8, 7, 9, 6, 4, 1, 2, 3 M1: 4700
M2: 3700
M3: 3700
M4: 4600
M5: 2900
M6: 3500
M7: 5700
M8: 6400
M9: 2200

B1: 600
B2: 4100
B3: 4900
B4: 3200
B5: 4200
B6: 4000
B7: 5600
B8: 2900

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 4900
M2: 3900
M3: 3900
M4: 4800
M5: 3100
M6: 3700
M7: 5900 M8: 6600
M9: 2400

KMN 17
(9×9×5)

B1: 1300
B2: 1900
B3: 3000
B4: 2400
B5: 3900
B6: 3300
B7: 2900
B8: 3700
B9: 2600

4, 1, 5, 2, 9, 3, 8, 6, 7 M1: 3900
M2: 500
M3: 4000
M4: 2300
M5: 4900
M6: 3300
M7: 1600
M8: 1500
M9: 3000

B1: 1300
B2: 1900
B3: 3000
B4: 2400
B5: 3900
B6: 3300
B7: 2900
B8: 3700
B9: 2600

4, 1, 5, 2, 6, 9, 3, 8, 7 M1: 3900
M2: 500
M3: 4000
M4: 2300
M5: 4900
M6: 3300
M7: 1600
M8: 1500
M9: 3000

KMN 18
(9×9×6)

B1: 0000
B2: 2800
B3: 2000
B4: 2800
B5: 1800
B6: 3200
B7: 2200
B8: 3000
B9: 1500

6, 7, 8, 9, 1, 2, 3, 4, 5 M1: 3000
M2: 1800
M3: 2000
M4: 1700
M5: 2000
M6: 2500
M7: 3300
M8: 1400
M9: 1600

B1: 200
B2: 3000
B3: 2200
B4: 3000
B5: 2000
B6: 3400
B7: 2400
B8: 3200
B9: 1700

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 3200
M2: 2000
M3: 2200
M4: 1900
M5: 2200
M6: 2700
M7: 3500
M8: 1600
M9: 1800

KMN 19
(9×9×7)

B1: 4400
B2: 3600
B3: 3300
B4: 3500
B5: 3800
B6: 1600
B7: 2200
B8: 4000
B9: 4600

7, 9, 6, 8, 5, 1, 2, 4, 3 M1: 5000
M2: 1800
M3: 2700
M4: 3300
M5: 2000
M6: 3100
M7: 2800
M8: 4300
M9: 6000

B1: 4600
B2: 3800
B3: 3500
B4: 3700
B5: 4000
B6: 1800
B7: 2400
B8: 4200
B9: 4800

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 5200
M2: 2000
M3: 2900
M4: 3500
M5: 2200
M6: 3300
M7: 3000
M8: 4500
M9: 6200

KMN 20
(9×9×8)

B1: 0
B2: 4800
B3: 3600
B4: 4200
B5: 2900
B6: 4900
B7: 2800
B8: 3700
B9: 5000

1, 2, 3, 5, 4, 6, 9, 8, 7 M1: 3600
M2: 1800
M3: 4800
M4: 4500
M5: 1900
M6: 3300
M7: 3200
M8: 4900
M9: 3900

B1: 500
B2: 5300
B3: 4100
B4: 4700
B5: 3400
B6: 5400
B7: 3300
B8: 4200
B9: 5500

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 4100
M2: 2300
M3: 5300
M4: 5000
M5: 2400
M6: 3800
M7: 3700
M8: 5400
M9: 4400

KMN 21
(9×9×9)

B1: 1800
B2: 5000
B3: 4400
B4: 5000
B5: 3700
B6: 5800
B7: 2700
B8: 6500
B9: 3200

7, 6, 9, 8, 5, 2, 3, 1, 4 M1: 5400
M2: 4700
M3: 3100
M4: 3300
M5: 1300
M6: 7000
M7: 6400
M8: 3700
M9: 3200

B1: 1800
B2: 5000
B3: 4400
B4: 5000
B5: 3700
B6: 5800
B7: 2700
B8: 6500
B9: 3200

1 2 3 4 5 6 7 8 9 M1: 5400
M2: 4700
M3: 3100
M4: 3300
M5: 1300
M6: 7000
M7: 6400
M8: 3700
M9: 3200
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7 Data set details of processing time of parts
and processing sequence of machines

The inter slot between machines, i.e., the gap between ma-
chine measures in units are given in Tables 10, 11, and 12.
The loading/unloading distance matrix specifies distance from
machines to load/unload station are shown in Tables 13, 14,
and 15, unit material handling cost per unit, i.e., the carrying
cost of parts between machines is unit cost. With the collected
information from various literature, it is applied that Tables 1,
2, and 3 dataset details are considered as integrated data for
both layout design and FMS scheduling where scheduling is
constraint for layout design. Tables 4, 5, 6, 7, 8, and 9 dataset
details are concern to FMS scheduling which act as important
parameters for optimum allocation of jobs with predefined
processing time and routing for generating minimum
makespan. Tables 10, 11, 12, 13, 14, and 15 dataset details
are used for loop layout design such as interslot distance tables
shows that the predefined clearance between slots over which
machines are assigned by means of permutation rule. Further
load and unload matrix are calculated based on the clearance
between machines and direction of parts. Also, the reason for
integrating the loop layout design with FMS scheduling is the
data set details of Tables 7, 8, and 9 are used for calculating the
frequency of trips between machines as one of the key input
parameter for loop layout design which is not mentioned in
dataset details because it is developed in simulation code.
Though the input data from Tables 1, 2, and 3 as well as
Tables 10 11, 12, 13, 14, and 15 is entered manually in IDE
tool in which simulation code is executed but data of frequen-
cy of trip between machines is calculated by code itself and
taken as additional input for loop layout design. The necessary
pseudo code for calculation of frequency of trips is shown
below.

Pseudo code for frequency of trips permutation for loop
layout design

B E G I N v o i d
Genetic::FromTochatObjfunction(int
RR[MAX_MC][MAX_BAT])

{
for (i=1; i≤no_machines; i++) {
for (j=1; j≤no_machines; j++)
{ FromTochat[i][j]=0;
}
}
for (i=1; i≤no_batchs; i++) {
for (j=1; j<no_operations; j++)
{
if (RR[i][j] !=RR[i][j+1])
FromTochat[RR[i][j]][RR[i][j+1]]+=

(Bsizes[i]);
}
} for (i=1; i≤no_machines; i++) {

for (j=1; j≤no_machines; j++) {
if (FromTochat[i][j]<FromTochat[j][i])
FromTochat[i][j]=FromTochat[j][i];
else
FromTochat[j][i]=FromTochat[i][j];
} END

8 Data set details of inter-slot distance
between machines

Tables 10, 11, and 12 shows details of inter-slot distance be-
tween machines of FSM for six, seven and nine machines.

9 Data set details of load, unload matrices for loop
layout

Tables 13, 14, and 15 shows details of load and unload matri-
ces for loop layout with six, seven and nine machines
respectively.

10 Results and discussions

In the present work, the optimal solution for loop layout with
integrated scheduling uses non-traditional optimization tech-
niques such GA and SA. So far, only non-traditional methods
are used for solving such kind of problems. In traditional
methods to calculate minimum total transportation cost, it is
necessary to check (n!), for example :(6!)(1.393140695 *
1017) sequences in order to find the optimal sequences. The
major advantage of using non-traditional algorithms is that
even though the number of possible sequences is very high,
an optimal solution can be obtained within a fraction of sec-
onds while compiling on a standard PC. These algorithms are
verified through computer simulation for various physical life
problems area found to be very operative.

One anxiety provoked by the investigators in any research
is to compare their approaches with those of other researchers.
If the standard usual test problems are open, the performances
of different algorithms can be compared on closely the same
set of test problems. For this reason, we chose 21 benchmark
problems from Kumanan et al. [18] (KMN) as the test prob-
lems for this study. These benchmark problems are catego-
rized into two groups, i.e., constant batch size (CBS) problems
and variable batch size (VBS) problems. Kumanan has pro-
duced a set of problems with seven and nine machines with
two and four jobs. There are 2 instances for (nxm=6×6) prob-
lem combination and 5 instances for (nxm=7×7)) and 14
instances for (nxm=9×9). Totally, there are 42 problem
instances.
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Table 16 shows the results of test problems for CBS from
KMN1 to KMN21 and is understood that the test problems are
solved through the proposed algorithm, and the results are
compared and found that performance of GA and SA for
calculating total transportation cost (TTC) and make span
(MAKSP) is varying as per the problem size. By relative anal-
ysis, we observed that solutions are optimized for GA and
found that GA can afford the best solution when compared
with SA to all test problems. Furthermore, the computational
time of GA fluctuates as the problem size varies but the com-
putational time of SA is zero for all problems. Comparison of
make span and total transportation cost for CBS by the pro-
posed evolutionary algorithms for different problem sizes is
depicted in Figs. 4 and 5. The plot shown in Figs. 4 and 5 is
styled for instance KMN 1–KMN 21. It is observed that there
are moderate variations in results of TTC andMAKSP against
problem instances shown in the plot for GA and SA. It is
found that TTC and MAKSP are low at small size problems

and reaches to high value as problem size increases. Further-
more, GA curve fluctuates at lower values than SA curve.

Table 17 shows the results of test problems for CBS from
KMN 1 to KMN 21 and is figured out that the test problems
are solved through the proposed algorithm, and the results are
compared and found that performance of GA and SA for
calculating batch waiting time (BWT) and machine waiting
time (MWT) obtained for corresponding problem instances is
varying as per the problem size and based on MAKSP value.
By relative analysis, we observed that GA shows minimum
waiting times when compared with SA to all test problems
(Figs. 6, 7, 8, and 9). Comparison of BWTandMWT for CBS
by the proposed evolutionary algorithms is depicted in Figs. 10
and 11. The plot shown in Figs. 10 and 11 is styled for instance
which has seven batches/jobs. It is observed that BWT and
MWT for constant batch size are less for GAwhen compared
with SA.

Table 18 shows the results of test problems for VBS
from KMN1 to KMN21 and is understood that the test
problems are solved through the proposed algorithm,
and the results are compared and found that performance
of GA and SA for calculating TTC and MAKSP is vary-
ing as per the problem size. By relative analysis, we ob-
served that solutions are optimized for GA and found that
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GA affords best solution when compared with SA to all
test problems. Furthermore, the computational time of ge-
netic algorithm fluctuates as the problem size varies, but
the CPU time of simulated annealing is zero for all prob-
lems. Comparison of make span and total transportation
cost for VBS by the proposed evolutionary algorithms for
different problem sizes is depicted in Figs. 6 and 7. The
plot shown in Figs. 6 and 7 is styled for instance KMN 1–
KMN 21. It is observed that there are moderate variations
in results of TTC and MAKSP against problem instances

shown in the plot for GA and SA. It is found that TTC
and MAKSP are low at small size problems and reaches
to high value as problem size increases and also in Fig. 7.
MAKSP variations are almost closer for both GA and SA.
Furthermore, GA curve fluctuates at lower values than
SA.

Table 19 shows the results of test problems for VBS
from KMN 1–KMN 21 and is understood the test prob-
lems are solved through the proposed algorithm, and the
results are compared and found that performance of GA
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and SA for calculating BWT and MWT obtained for cor-
responding problem instances is varying as per the prob-
lem size and based on MAKSP value (i.e., if make span is
the same for both algorithm, then waiting times will also
be the same, vice-versa). By relative analysis, we ob-
served that GA shows minimum waiting times when com-
pared with SA to all test problems. Furthermore, the re-
quired machine sequences (MASEQ) are depicted in the
same table.

Comparison of computational time (seconds) by the pro-
posed evolutionary algorithm for CBS and for VBS are shown
in Figs. 8 and 9. It is observed that GA requires a fraction of a
second for computing given input to optimum solution, but
SA gives the results with zero time because it is a single
solution method which is well known as trajectory-based heu-
ristic, whereas GA is population-based heuristic which has
many solutions (chromosomes) in a mating pool which can
be reproduced as new offspring’s (new solutions). Actually,
GA is an effective algorithm in searching local optima when
compared with SA. Furthermore, a necessary simulation code
is generated and the code is run by the IDE tool in which C++
compiler used as plug in. This tool has eclipse-based features

which afford the competency to figure, correct, steer, and sort
out the tasks that use C++ as a programming language using
Intel core i3-380 M processor. Furthermore, it is more conve-
nient to user to print and display the results and errors if any in
execution.

11 Conclusion

This paper conveys the modeling of loop layout design with
integrated scheduling in which the frequency of trips between
machines, the clearance between the machines with loading
and unloading distance from loading/unloading station to all
machines, and unit material handling cost (MHD) are estimat-
ed differently. The problem is framed as the quadratic assign-
ment problems (QAP) formulation of facility layout problem.
This is owing to the point that in the QAPmodels, the distance
between the positions of slots is identified well in advance but
it is order-dependent for the instances considered in this paper.

From the results, we conclude that loop layout is optimized
using GA and is better than SAwith constant MHD cost and
frequency of trips between machines. The parameter like

Table 18 Comparison of
arithmetical results of the
proposed evolutionary algorithms
(for VBS with number of
iterations=100)

Instan-M/c×J/B×Oper GA SA

MAKSP (min) TTC (Rs) CPU (s) MAKSP (min) TTC (Rs) CPU (s )

KMN 1-(6×5×5) 3600 3860 13 3600 3980 0

KMN 2-(6×6×6) 3720 3980 14 3720 4300 0

KMN 3-(7×7×7) 3275 4060 15 3390 4960 0

KMN 4-(7×6×6) 2430 2990 15 2670 3010 0

KMN 5-(7×7×4) 2190 5900 14 2190 6000 0

KMN 6-(7×7×5) 3080 4130 14 3040 4390 0

KMN 7-(7×7×6) 5220 4100 15 5220 4940 0

KMN 8-(9×5×5) 3360 3540 13 3360 3760 0

KMN 9-(9×6×5) 3540 3970 14 3540 4550 0

KMN 10-(9×7×5) 2250 4070 15 2250 6470 0

KMN 11-(9×7×6) 4050 5350 15 4050 5660 0

KMN 12-(9×7×7) 4230 5070 16 4270 5150 0

KMN 13-(9×8×5) 3960 6040 15 3960 6260 0

KMN 14-(9x8×6) 6660 5520 15 6660 6390 0

KMN 15-(9×8×7) 7380 5350 16 7380 5580 0

KMN 16-(9×8×8) 4550 5290 16 4585 5730 0

KMN 17-(9×9×5) 3625 6090 15 3335 6850 0

KMN 18-(9×9×6) 3460 6160 16 3480 6250 0

KMN 19-(9×9×7) 5940 6560 16 5940 6560 0

KMN 20-(9×9×8) 5040 6220 17 5040 7210 0

KMN 21-(9×9×9) 7650 6350 17 7750 6960 0
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Table 19 Comparison of arithmetical results of the proposed evolutionary algorithms for VBS

Instance (M×J/B×O) GA SA

BWT (min) MASEQ MWT (min) BWT (min) MASEQ MWT (min)

KMN 1
(6×5×5)

B1: 1550
B2: 1600
B3: 1250
B4: 2340
B5: 3100

1, 3, 4, 5, 2, 6 M1: 2160
M2: 2370
M3: 1020
M4: 1340
M5: 2910
M6: 2390

B1: 1550
B2: 1600
B3: 1250
B4: 2340
B5: 3100

1, 3, 4, 5, 2, 6 M1: 2160
M2: 2370
M3: 1020
M4: 1340
M5: 2910
M6: 2390

KMN 2
(6×6×6)

B1: 1470
B2: 1600
B3: 1000
B4: 2070
B5: 3180
B6: 2395

6, 5, 2, 1, 3, 4 M1: 1530
M2: 1535
M3: 1660
M4: 1550
M5: 1885
M6: 2555

B1: 1470
B2: 1600
B3: 1000
B4: 2070
B5: 3180
B6: 2395

4, 3, 5, 2, 1, 6 M1: 1530
M2: 1535
M3: 1660
M4: 1550
M5: 1885
M6: 2555

KMN 3
(7×7×7)

B1: 225
B2: 2075
B3: 695
B4: 2165
B5: 2815
B6: 2350
B7: 215

7, 5, 2, 1, 4, 3, 6 M1: 1550
M2: 1500
M3: 1495
M4: 1685
M5: 1195
M6: 1605
M7: 1510

B1: 340
B2: 2190
B3: 810
B4: 2280
B5: 2930
B6: 2465
B7: 330

7, 6, 3, 4, 5, 2, 1 M1: 1665
M2: 1615
M3: 1610
M4: 1800
M5: 1310
M6: 1720
M7: 1625

KMN 4
(7×6×6)

B1: 180
B2: 230
B3: 270
B4: 1380
B5: 1920
B6: 1530

4, 7, 5, 1, 3, 6, 2 M1: 805
M2: 1730
M3: 1305
M4: 1375
M5: 940
M6: 835
M7: 950

B1: 420
B2: 470
B3: 510
B4: 1620
B5: 2160
B6: 1770

4, 7, 6, 2, 3, 5, 1 M1: 1045
M2: 1970
M3: 1545
M4: 1615
M5: 1180
M6: 1075
M7: 1190

KMN 5
(7×7×4)

B1: 140
B2: 1550
B3: 690
B4: 1380
B5: 2020
B6: 1715
B7: 390

4, 6, 7, 1, 3, 2, 5 M1: 1875
M2: 975
M3: 960
M4: 210
M5: 1040
M6: 1790
M7: 1035

B1: 140
B2: 1550
B3: 690
B4: 1380
B5: 2020
B6: 1715
B7: 390

4, 3, 1, 7, 6, 2, 5 M1: 1875
M2: 975
M3: 960
M4: 210
M5: 1040
M6: 1790
M7: 1035

KMN 6
(7×7×5)

B1: 1680
B2: 1950
B3: 1470
B4: 2160
B5: 3330
B6: 2580
B7: 1020

5, 2, 6, 3, 4, 1, 7 M1: 3065 M2: 1780
M3: 2900
M4: 2780
M5: 880
M6: 1020
M7: 1765

B1: 1090
B2: 1360
B3: 880
B4: 1570
B5: 2740
B6: 1990
B7: 430

6, 2, 3, 1, 7, 4, 5 M1: 2475
M2: 1190
M3: 2310
M4: 2190
M5: 290
M6: 430
M7: 1175

KMN 7
(7×7×6)

B1: 2420
B2: 3420
B3: 2700
B4: 4380
B5: 4550
B6: 4620
B7:3550

3, 4, 2, 6, 1, 5, 7 M1: 3580
M2: 4065
M3: 2950
M4: 2760
M5: 3745
M6: 2490
M7: 2500

B1: 2420
B2: 3420
B3: 2700
B4: 4380
B5: 4550
B6: 4620
B7: 3550

4, 5, 7, 6, 1, 2, 3 M1: 3580
M2: 4065
M3: 2950
M4: 2760
M5: 3745
M6: 2490
M7: 2500

KMN 8
(9×5×5)

B1: 1310
B2: 2120
B3: 1400
B4: 1710
B5: 2860

7, 3, 5, 8, 4, 2, 9, 1, 6 M1: 2240
M2: 2640
M3: 2430
M4: 2450
M5: 2410
M6: 2260
M7: 1790
M8: 2910
M9: 2310

B1: 1310
B2: 2120
B3: 1400
B4: 1710
B5: 2860

8, 9, 1, 6, 5, 4, 2, 3, 7 M1: 2240
M2: 2640
M3: 2430
M4: 2450
M5: 2410
M6: 2260
M7: 1790
M8: 2910
M9: 2310

KMN 9
(9×6×5)

B1: 1740
B2: 1900
B3: 1600
B4: 1980
B5: 3130

5, 3, 9, 7, 1, 4, 2, 6, 8 M1: 2440
M2: 2865
M3: 2985
M4: 1835
M5: 1860

B1: 1740
B2: 1900
B3: 1600
B4: 1980
B5: 3130

2, 6, 1, 8, 3, 4, 7, 9, 5 M1: 2440
M2: 2865
M3: 2985
M4: 1835
M5: 1860
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Table 19 (continued)

Instance (M×J/B×O) GA SA

BWT (min) MASEQ MWT (min) BWT (min) MASEQ MWT (min)

B6: 2365 M6: 1955
M7: 2255
M8: 3090
M9: 2450

B6: 2365 M6: 1955
M7: 2255
M8: 3090
M9: 2450

KMN 10
(9×7×5)

B1: 300
B2: 890
B3: 630
B4: 1380
B5: 1880
B6: 1475
B7: 400

5, 8, 4, 3, 7, 6, 1, 2, 9 M1: 1770
M2: 985
M3: 1265
M4: 660
M5: 1340
M6: 1650
M7: 1065
M8: 1950
M9: 370

B1: 300
B2: 890
B3: 630
B4: 1380
B5: 1880
B6: 1475
B7: 400

3, 4, 2, 9, 6, 5, 7, 8 M1: 1770
M2: 985
M3: 1265
M4: 660
M5: 1340
M6: 1650
M7: 1065
M8: 1950
M9: 370

KMN 11
(9×7×6)

B1: 2200
B2: 2050
B3: 1950
B4: 2400
B5: 3690
B6: 3100
B7: 1600

5, 6, 4, 7, 8, 2, 9, 3, 1 M1: 2560
M2: 2335
M3: 1525
M4: 2770
M5: 2520
M6: 2125
M7: 3550
M8: 3255
M9: 2850

B1: 2200
B2: 2050
B3: 1950
B4: 2400
B5: 3690
B6: 3100
B7: 1600

8, 5, 6, 7, 9, 2, 4, 3, 1 M1: 2560
M2: 2335
M3: 1525
M4: 2770
M5: 2520
M6: 2125
M7: 3550
M8: 3255
M9: 2850

KMN 12
(9×7×7)

B1: 280
B2: 1790
B3: 30
B4: 2400
B5: 3650
B6: 3155
B7: 50

5, 9, 6, 1, 2, 8, 7, 3, 4 M1: 2575
M2: 2710
M3: 1975
M4: 2110
M5: 1630
M6: 1250
M7: 1670
M8: 3390
M9: 2455

B1: 320
B2: 1830
B3: 70
B4: 2440
B5: 3690
B6: 3195
B7: 40

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 2615
M2: 2750
M3: 2015
M4: 2150
M5: 1670
M6: 1290
M7: 1710
M8: 3430
M9: 2495

KMN 13
(9×8×5)

B1: 860
B2: 2120
B3: 1080
B4: 2640
B5: 3570
B6: 2485
B7: 1020
B8: 3405

6, 7, 9, 1, 5, 8, 3, 4, 2 M1: 2525
M2: 3190
M3: 2980
M4: 1265
M5: 1960
M6: 2040
M7: 2515
M8: 2220
M9: 1425

B1: 860
B2: 2120
B3: 1080
B4: 2640
B5: 3570
B6: 2485
B7: 1020
B8: 3405

2, 3, 4, 5, 6, 7, 8, 9, 1 M1: 2525
M2: 3190
M3: 2980
M4: 1265
M5: 1960
M6: 2040
M7: 2515
M8: 2220
M9: 1425

KMN 14
(9×8×6)

B1: 3660
B2: 4180
B3: 3420
B4: 4650
B5: 5990
B6: 4710
B7: 2550
B8: 5625

6, 3, 8, 5, 1, 4, 2, 7, 9 M1: 5615
M2: 4600
M3: 3700
M4: 3880
M5: 4685
M6: 3250
M7: 4245
M8: 5080
M9: 3840

B1: 3660
B2: 4180
B3: 3420
B4: 4650
B5: 5990
B6: 4710
B7: 2550
B8: 5625

3, 2, 4, 8, 7, 9, 1, 5, 6 M1: 5615
M2: 4600
M3: 3700
M4: 3880
M5: 4685
M6: 3250
M7: 4245
M8: 5080
M9: 3840

KMN 15
(9×8×7)

B1: 3380
B2: 4580
B3: 3900
B4: 5100
B5: 6530
B6: 5905
B7:46 0
B8: 6360

9, 3, 7, 1, 5, 8, 4, 2, 6 M1: 5760
M2: 3400
M3: 4245
M4: 3825
M5: 4845
M6: 5160
M7: 5905
M8: 5880
M9: 4115

B1: 3380
B2: 4580
B3: 3900
B4: 5100
B5: 6530
B6: 5905
B7: 4600
B8: 6360

1, 2, 4, 7, 3, 6, 9, 8, 5 M1: 5760
M2: 3400
M3: 4245
M4: 3825
M5: 4845
M6: 5160
M7: 5905
M8: 5880
M9: 4115

KMN 16
(9×8×8)

B1: 30
B2: 2310
B3: 1670

2, 3, 4, 1, 8, 7, 9, 6, 5 M1: 3180
M2: 2395
M3: 2140

B1: 35
B2: 2345
B3: 1705

2, 3, 6, 9, 7, 8, 5, 4, 1 M1: 3215
M2: 2430
M3: 2175
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transportation cost with machine sequences considering
scheduling parameters as constraints such as MAKSP is de-
termined for loop layout by running the C++ code on eclipse
(IDE) tool for ten test runs. The performance of the proposed

algorithm is tested over a number of problems selected from
the literature and comparison is made between GA and SA.
The experimental results reveal that the proposed genetic al-
gorithm is effective and efficient for loop layout design. From

Table 19 (continued)

Instance (M×J/B×O) GA SA

BWT (min) MASEQ MWT (min) BWT (min) MASEQ MWT (min)

B4: 2600
B5: 4000
B6: 3125
B7: 860
B8: 3530

M4: 2400
M5: 2345
M6: 1940
M7: 2950
M8: 3590
M9: 1705

B4: 2635
B5: 4035
B6: 3160
B7: 895
B8: 3565

M4: 2435
M5: 2380
M6: 1975
M7: 2985
M8: 3625
M9: 1740

KMN 17
(9×9×5)

B1: 975
B2: 1745
B3: 1465
B4: 2365
B5: 3355
B6: 2800
B7: 295
B8: 3190
B9: 825

2, 1, 4, 5, 9, 3, 8, 7, 6 M1: 2665
M2: 345
M3: 2650
M4: 1280
M5: 2810
M6: 2125
M7: 965
M8: 1670
M9: 2505

B: 685
B2: 1455
B3: 1175
B4: 2075
B5: 3065
B6: 2510
B7: 50
B8: 2900
B9: 535

2, 5, 4, 1, 7, 6, 9, 3, 8 M1: 2375
M2: 55
M3: 2360
M4: 990
M5: 2520
M6: 1835
M7: 675
M8: 1380
M9: 2215

KMN 18
(9×9×6)

B1: 460
B2: 2180
B3: 1060
B4: 2500
B5: 3040
B6: 2760
B7: 40
B8: 3010
B9: 310

6, 7, 9, 8, 1, 4, 3, 2, 5 M1: 2075
M2: 1020
M3: 1760
M4: 995
M5: 1850
M6: 1325
M7: 2700
M8: 2190
M9: 1445

B1: 480
B2: 2200
B3: 1080
B4: 2520
B5: 3060
B6: 2780
B7: 60
B8: 3030
B9: 330

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 2095
M2: 1040
M3: 1780
M4: 1015
M5: 1870
M6: 1345
M7: 2720
M8: 2210
M9: 1465

KMN 19
(9×9×7)

B1: 3740
B2: 3860
B3: 2640
B4: 4350
B5: 5440
B6: 4140
B7: 2800
B8: 5220
B9: 3000

8, 6, 7, 4, 2, 3, 5, 1, 9 M1: 4915
M2: 2785
M3: 2665
M4: 3165
M5: 3550
M6: 2850
M7: 3220
M8: 4385
M9: 4855

B1: 3740
B2: 3860
B3: 2640
B4: 4350
B5: 5440
B6: 4140
B7: 2800
B8: 5220
B9: 3000

8, 6, 7, 4, 2, 3, 5, 1, 9 M1: 4915
M2: 2785
M3: 2665
M4: 3165
M5: 3550
M6: 2850
M7: 3220
M8: 4385
M9: 4855

KMN 20
(9×9×8)

B1: 840
B2: 3600
B3: 2160
B4: 3780
B5: 4490
B6: 4165
B7: 3300
B8: 4335
B9: 2660

8, 7, 9, 2, 1, 3, 4, 5, 6 M1: 3065
M2: 1460
M3: 3310
M4: 3000
M5: 2400
M6: 3230
M7: 2490
M8: 3635
M9: 3440

B1: 840
B2: 3600
B3: 2160
B4: 3780
B5: 4490
B6: 4165
B7: 3300
B8: 4335
B9: 2660

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 3065
M2: 1460
M3: 3310
M4: 3000
M5: 2400
M6: 3230
M7: 2490
M8: 3635
M9: 3440

KMN 21
(9×9×9)

B1: 2950
B2: 5170
B3: 3570
B4: 5790
B5: 6900
B6: 6300
B7: 60
B8: 6945

5, 4, 3, 2, 1, 9, 6, 8, 7 M1: 4935
M2: 4395
M3: 3200
M4: 4095
M5: 2905
M6: 5765
M7: 5520
M8: 4810
M9: 4050

B1: 3050
B2: 5270
B3: 3670
B4: 5890
B5: 7000
B6: 6400
B7: 100
B8: 7045
B9: 2150

1, 2, 3, 4, 5, 6, 7, 8, 9 M1: 5035
M2: 4495
M3: 3300
M4: 4195
M5: 3005
M6: 5865
M7: 5620
M8: 4910
M9: 4150

Para parameters, BWT batch waiting time, GA genetic algorithm, TTC total transportation cost, MWT machine waiting time, SA simulated annealing,
MAKSP total make span, CPU computational time, MASEQ machine sequence
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the graph, it is clear that for loop layout, the total transporta-
tion cost is less for lower level problems and reaches to high
value as the problem size enhanced. Furthermore, it is con-
cluded that GA provides optimum solutions than SA, but
computational time is more than SA.
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