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Abstract This paper presents an integrated fuzzy simulation-
fuzzy data envelopment analysis (FDEA)-analytic hierarchy
process (AHP) approach to deal with a flow shop facility layout
design (FSFLD) problem with ambiguous inputs and outputs.
Ambiguous inputs and outputs are defined as noncrisp opera-
tional, qualitative, and dependent indicators. At first, feasible
layout alternatives are generated by a software package. Then,
fuzzy AHP is used for weighting noncrisp qualitative data
(maintainability, accessibility, and flexibility). Fuzzy simulation
is then used to incorporate the ambiguity associated with pro-
cessing times in the flow shop by considering all generated
layout alternatives with uncertain inputs. The outputs of fuzzy
simulation or noncrisp operational indicators are average
waiting time-in queue, average time-in system, and average
machine utilization. Finally, FDEA is used for finding the opti-
mum layout alternative among all feasible generated alternatives
with respect to operational, qualitative, and layout-dependent
indicators (distance, adjacency, and shape ratio). The integrated
approach of this study is more precise and efficient than previ-
ous studies with ambiguous inputs. It also provides a compre-
hensive analysis on the FSFLD problems by using operational
and subjective and fuzzy indicators. The results have been ver-
ified and validated by DEA, principal component analysis, and
numerical taxonomy. The unique features of this study are the
ability of dealing with multiple noncrisp inputs and outputs. It

also uses fuzzy mathematical programming for optimum layout
alternatives. Moreover, it is a practical tool and may be applied
in real cases by considering uncertain and ambiguous aspects of
the manufacturing process within FSFLD problems.

Keywords Facility layout design . Flow shop . Fuzzy
simulation . Fuzzy analytic hierarchy process . Fuzzy data
envelopment analysis . Ambiguous data

1 Motivation and significance

There are usually missing data, incomplete data, or lack of
data with respect to layout problems in general and FSFLD
problems in particular. This means that data could not be col-
lected and analyzed by deterministic or stochastic models and
new approaches for tackling such problems are required. This
gap motivated the authors to develop a unique approach to
handle such gaps in FSFLD problems.

The integrated fuzzy simulation-fuzzy DEA-fuzzy AHP
presents exact solution to the FSFLD problems with ambigu-
ity, whereas previous studies present incomplete and nonexact
alternatives. Also, it provides a comprehensive analysis on the
FSFLD problems with uncertainty by incorporating noncrisp
operational, dependent, and qualitative indicators. Moreover,
it provides complete and exact rankings of the plant layout
alternatives with uncertain and fuzzy inputs. The superiority
and effectiveness of the proposed integrated approach are
compared with previous DEA-simulation-AHP, AHP-DEA,
AHP-principal component analysis (PCA), and numerical tax-
onomy (NT) methodologies through a case study. The unique
features of the proposed integrated approach are the ability of
dealing with multiple fuzzy inputs and outputs (operational,
qualitative, and dependent) and optimization through fuzzy
DEA and applicability in real cases due to considering
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operational aspects of the manufacturing process within
FSFLD problems.

2 Introduction

Facility layout design (FLD) is a crucial task in redesigning,
expanding, or designing the manufacturing systems, e.g., flow
shop systems. The FSFLD problem involves determining the
arrangement and the location of equipments, workstations,
offices, etc. within a flow shop system by considering the
interconnections through sequential facilities as well as walks
and vehicle transportations. The most common objectives of
layout problems in literature are minimization of the transpor-
tation costs of raw material, parts, tools, work-in-process, and
finished products among the facilities [31, 32, 34], facilitating
the traffic flow and minimizing the costs of it [7], maximiza-
tion of the layout performance [47], minimization of the di-
mensional and form errors of products depending on the fix-
ture layout [15, 36], minimization of the total number of loop
traversals for a family of products [39] increasing the employ-
ee morale, and minimization of the risk of injury of personnel
and damage to property, providing supervision and face-to-
face communication [24].

Algorithmic approaches usually simplify both design con-
straints and objectives in reaching a total objective to obtain
the solution of the problems. These approaches lead to gener-
ation of efficient layout alternatives, especially when commer-
cial software (e.g., Spiral®) is available. Nevertheless, the ob-
tained quantitative results of these tools often do not capture
all of the design objectives. On the other hand, procedural
approaches are used in FLD processes which are able to in-
corporate both qualitative and quantitative objectives. To do
so, the FLD process is divided into several steps to be sequen-
tially solved. However, the success of this process strongly
depends on the generation of quality design alternatives pro-
vided by an expert designer. Deb and Bhattacharyya [17] pro-
posed a fuzzy multiple-criteria decision-making methodology
in which flow rates between facilities are ambiguous and
vague. Considering material handling costs as the main objec-
tive, several heuristic and meta-heuristic approaches have
been presented in the literature for various facility layout prob-
lems [19, 26, 27, 42, 45].

Layout generation and evaluation are often a challenging
and time-consuming task due to its inherent multiple objective
natures and its difficult data collection process [29]. Different
methodologies have been presented in the literature to deal
with such problems. The algorithmic approaches have mainly
focused on minimizing flow distance in order to minimize
material handling costs, and the procedural approaches have
heavily relied on the experience and judgment of expert de-
signers. In this regard, Yang et al. [43] showed that neither
algorithmic nor procedural FLD methodology is necessarily

effective in solving FLD problems. Following this idea, dif-
ferent studies have been conducted to cover the existent gap in
the FLD problems [12, 21, 43]. Azadeh et al. [6] proposed an
integrated fuzzy simulation-fuzzy data envelopment analysis
(FSFDEA) algorithm to cope with a special case of single-row
facility layout problem. The proposed FSFDEA algorithm is
capable of modeling and optimizing small-sized SRFLP’s in
stochastic, uncertain, and nonlinear environments.

On the other hand, several studies have attempted to deter-
mine the efficiency of different layout alternatives and rank
these decision-making units (DMUs) in a better fashion. In
order to rank the DMUs, Yang and Kuo [44] and Azadeh
and Izadbakhsh [2] considered three quantitative performance
indicators in an FSFLD problem including distance, adjacen-
cy, and shape ratio, and three qualitative performance indica-
tors including flexibility, accessibility, and maintenance. Nev-
ertheless, neither Yang and Kuo [44] nor Azadeh and
Izadbakhsh [2] provided a comprehensive decision-aiding
tool for FLD problems. Therefore, a more comprehensive ap-
proach should be developed to incorporate all required fea-
tures of manufacturing system to the ranking models and so
provide a thorough and more real decision-aiding tool for
decision-making processes.

Simulation is a tool with the ability to use data to evaluate a
current facility layout, show potential improvement areas, and
objectively evaluate various alternatives, and it is used widely
in the literature [3, 33, 35, 40, 48]. Zhou et al. [48] integrated
general purpose simulation to model the space, logistics, and
resource dynamics with genetic approaches (GAs) for opti-
mizing the layout based on various constraints and rules,
and implementing a site layout optimization system within a
simulation environment. Jithavech and Krishnan [25] present-
ed a simulation-based method for predicting the uncertainty
associated with the layout and validated their simulation ap-
proach against analytical procedures. Braglia et al. [10] pro-
posed the adoption of indices that will help in identifying the
layout design strategy to be preferred.

FDEA is the most important category of literature related to
this work, which has been widely used in different research
works in the literature for operation evaluation and ranking of
DMUs [20, 44]. Andersen and Petersen [1] proposed a proce-
dure called the superefficiency method for ranking DEA-
efficient units. Superefficiency models are used to determine
critical outputs. Different superefficiency DEA models are
introduced in Seiford and Zhu [41]. A complete list of super-
efficiency DEA models is provided, in which the necessary
and sufficient conditions are developed for the infeasibility of
various superefficiency DEA models. Superefficiency models
have been deeply researched in the DEA literature [8, 9, 13,
14, 22, 28, 30]. An integrated multivariate and multiattribute
analysis approach based on AHP and PCAwas proposed by
Azadeh and Izadbakhsh [2] for solving plant FLD problems.
Using the integrated AHP-PCA, they presented exact solution

566 Int J Adv Manuf Technol (2016) 84:565–579



to the FLD problems by providing complete and exact rank-
ings of the plant layout alternatives. However, up to knowl-
edge of the authors, none of the previous studies considered
and presented a unique methodology for FSFLD problems
with noncrisp inputs and outputs. Moreover, there are usually
missing data, incomplete data, or lack of data with respect to
layout problems in general and FSFLD problems in particular.
This means that data could not be collected and analyzed by
deterministic or stochastic models, and new approaches for
tackling such problems are required. This gap motivated the
authors to develop a unique approach to handle such gaps in
FSFLD problems.

Based on this motivation, an integrated fuzzy simulation-
fuzzy DEA multiattribute approach is presented in this paper
to locate the optimum layout through a set of feasible solu-
tions. First, Spiral®, as a well-known computer-aided layout
planning tool, is used to generate different layout alternatives.
Then, discrete-event-simulation, as a robust performance eval-
uation and modeling tool, is used to model the generated lay-
out alternatives, with respect to a set of operational data. Sim-
ulation is a flexible and powerful tool for visualizing and
manipulating the system under study and can be used in dif-
ferent situations to make the company agile in implementing
changes in a swift and effective manner based on a confident
analysis. The results of the simulation model include the av-
erage waiting times in the queues and the average utilization
of each machine (i.e., stage), and the average time-in system
for a given number of products. Thus, having ten stages, we
have 21 additional quantitative performance indicators (ten
average machine utilizations and ten average queue lengths,
and one average time-in system), to the three mentioned ones
(i.e., distance, adjacency, and shape ratio), and three qualita-
tive indicators (flexibility, accessibility and maintainability).
Thus, 27 performance indicators are considered for different
layout alternatives in order to find the best one. AHP is applied
to collect qualitative performance data. All 27 performance
indicators are then imported to DEA in order to determine
the technical efficiency and rank of each layout alternative
(DMU). The results show that the proposed integrated com-
puter simulation-DEA approach yields a more comprehensive
and applicable framework for FSFLD in comparison with the
previous studies. To the best of our knowledge, this is the first
study in literature that presents such integrated approach based
on computer simulation and DEA for FSFLD problems.

3 The approach

3.1 System description

A practical case presented by Yang and Kuo [44] which is in
regard to IC packaging process is used in this study to illus-
trate the efficiency and effectiveness of the proposed

approach. The IC packaging process consists of ten stages.
Figure 1 presents the existing layout of the ten stages [44].

The manager of the plant would like to assure that their
future plant layout is efficient in supporting production activ-
ities. If the current layout is not efficient, the company would
like to know what layout alternatives are efficient. The expe-
rience learned from this study will provide the guidelines for
future FSFLD optimization and planning. The following as-
sumptions are considered in the proposed approach:

& Due to the low inventory cost of IC packaging process, the
most desirable layout is the one that produces the most
quantity of products within a given period of time.

& The manufacturing system is flow shop which consists of
ten sequential stages (i.e., machines).

& The material flow is initiated from each stage.
& The processing times are modeled based on fuzzy logic

and the nature of the manufacturing system such that the
processing times can be obtained by fuzzy probability
theory. Moreover, it is assumed that quantitative data is
not available, and therefore, fuzzy logic is used in com-
puter simulation and multivariant analysis.

& Layout alternatives consist of noncrisp indicators.

Considering the above assumptions, the fuzzy simulation-
fuzzy DEA multiattribute approach can be expressed as
follows.

3.2 The integrated approach

This paper presents an integrated fuzzy simulation-fuzzyDEA
multiattribute approach to deal with the FSFLD problemswith
ambiguous inputs and outputs. Figure 2 presents a schematic
view of the proposed approach. In the following section, the
steps of the proposed approach have been applied to the IC
packaging process. In summary, the proposed approach is
achieved as follows:

Step 1: Collect the required data for designing the layout of
the manufacturing plant such as the total space of the
plant and space of each machine

Step 2: Generate different layout alternatives with respect to
the collected data using a computer-aided layout
planning tool such as Spiral®.
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Fig. 1 The current plant layout for the IC packaging process
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Step 3: Collect the required data for the manufacturing pro-
cess such as processing times and travelling times
between sequential machines, which can be obtained
from expert judgments and history of the
manufacturing plant by fuzzy statistics.

Step 4: Develop the fuzzy simulation network model of each
layout alternative using some additional information
such as machines’ processing times, which can be
obtained from historical data and the experts of
manufacturing plant by fuzzy probability and
statistics.

Step 5: Analyze and retrieve three operational indicators
from fuzzy simulation model to be used for further
analysis in fuzzy DEA.

Step 6: Apply AHP for evaluation of qualitative perfor-
mance indicators including flexibility, accessibili-
ty, and maintainability.

Step 7: Incorporate layout-dependent indicators (distance,
adjacency, and shape ratio), qualitative indicators
(flexibility, accessibility, and maintainability), and
operational indicators (average waiting time in the
queues, average machine utilization, and average
time-in system) to the fuzzy DEA models to rank
the generated layout alternatives and identify the
optimum alternative. The fuzzy operational indica-
tors, shape ratio, and distance are considered as
inputs, while qualitative indicators and adjacency
are considered as outputs of fuzzy DEA models.

Step 8: Compare fuzzy DEA rankings with previous stud-
ies to see if there is a significant difference between
results.

4 Experiments: approach implementation

4.1 Data collection for FSFLD

Data collection should include characteristics of products,
quantities, routing, support, and time considerations in order
to assure the validity of the input data at the design stage. The
outputs of this step are used in generating different layout
alternatives. Table 1 presents the facility sizes of the ten stages.
Also, the available width and length of the plant are 99.25 and
27 m, respectively.

As mentioned, operational indicators are defined as aver-
age waiting time in the queues, average machine utilization,
and average time-in system. They are retrieved as outputs of
fuzzy simulation models. Furthermore, minimizing average

Define the obtained indicators as inputs 
and outputs of fuzzy DEA

Quantitative indicators Quantitative indicators

Apply fuzzy AHP for 
qualitative data evaluation

Collect the data required for layout 
design

Generate layout alternatives with a 
computer-aided layout planning tool

Develop the fuzzy simulation model of 
each layout alternative

Collect the required data for 
manufacturing process 

Operational and fuzzy indicators

Apply fuzzy DEA for ranking and 
optimization of layout alternatives 

Fig. 2 Schematic view of the
integrated fuzzy simulation-fuzzy
DEA-AHP approach

Table 1 Facilities (stages) sizes

No. Name Size (m2)

1 Wafer sawing 89.21

2 Die bond 181.51

3 Wire bond 577.38

4 Molding 599.57

5 De-junk/trimming and curing 183.71

6 Electro de-flash/solder platting 500.13

7 Marking 199.94

8 Forming and singulation 186.40

9 Lead scanning/inspection 110.78

10 Packaging 51.09

568 Int J Adv Manuf Technol (2016) 84:565–579



time-in system essentially would guarantee to produce the
most quantity of products within a given period of time. In
addition, qualitative indicators are weighted and retrieved
from AHP. Hence, the qualitative and quantitative perfor-
mance indicators can be defined as follows:

& Layout-dependent indicators:

– Flow distance: the sum of the products flow volume and
rectilinear distance between the centroids of two facilities

– Adjacency score: the sum of all positive relationships be-
tween adjacent departments

– Shape ratio: the maximum of the depth-to-width and
width-to-depth ratio of the smallest rectangle which can
completely surround the facility

& Qualitative indicators:

– Flexibility: the capability of performing various tasks un-
der various operating conditions and the sufficiency for
future expansions

– Accessibility: the ease of material handling and operator
movement between facilities

– Maintenance: the required space for maintenance actions
and tool movements

4.2 Generating layout alternatives

A computer-aided layout planning tool (i.e., Spiral®) is used to
efficiently investigate a large number of design alternatives to
assure solution quality. The inputs of Spiral® in this problem
are from–to matrix obtained from flow routing and the facil-
ities sizes. Spiral® generates a layout alternative based on its
embedded approach and then improves on the basis of three-
way pair-wise interchange to generate a large number of alter-
natives ranked by flow distance in ascending order, and the
preferred alternatives could be selected [23, 44].

4.3 Multiattribute analysis

The role of AHP in the proposed integrated approach is to
identify the significance of the qualitative indicators. AHP
cannot handle the uncertainty and imprecision of the deci-
sion-maker’s perception to exact numbers [18]. A fuzzy
AHP (FAHP) is capable to tolerate vagueness or ambiguity
associated with fuzziness and vagueness, which are common
characteristics in many decision-making problems. Technical-
ly, FAHP is a multicriteria decision-making (MCDM) method
that allows decision makers to model a complex problem in a
hierarchical structure which consists of the goal, objectives
(criteria), sub-objectives, and alternatives [38]. The process
encounters various options in decision making and gives the

criteria sensitiveness analysis possibility. The decision maker
should determine the weight of all criteria in order to do pair-
wise comparison between them. The main procedure of AHP
is as follows [16]:

1. Determining the objective and evaluation attributes
2. Developing hierarchical structure levels with goals, con-

tracture, criteria, and the alternatives
3. Finding out the importance of different attributes consid-

ering the goals

Fuzzy number can be applied for mapping uncertain com-
parison judgment. A triangular fuzzy number that is the spe-
cial class of fuzzy number is used. Fuzzy membership is de-
fined by three numbers as most optimistic, most pessimistic,
and average values [46].

4.4 Data collection for the manufacturing process

To illustrate the efficiency of the proposed approach in evalu-
ating the generated layout alternatives from operational view-
points, a set of operational data from a case study in Azadeh
et al. [5] are applied to the IC packaging process. The required
data for modeling the IC packaging process are shown in
Table 2. The historical production data are collected from
the company’s shop floor control system. The setup times,
mean time between failures (MTBF), and mean time to repair
(MTTR) are stochastic data analyzed by commercial curve
fitting software, ExpertFit. The resulting distributions for each
machine type are validated by both chi-square and
Kolmogorov-Smirnov tests for their goodness of fit. There
are neither historical data nor robust time studies on process-
ing times.

Moreover, expert judgment is used to derive to processing
times. Therefore, fuzzy theory may be applied for this in-
stance. Triangular-shaped fuzzy numbers with different α-
cuts are used to establish confidence intervals. This is because
of lack of proper documented or quantitative data. Further-
more, expert judgment is used to establish triangular fuzzy
numbers. Thus, all processing times are noncrisp as shown
in Tables 3 and 4. The computed triangular fuzzy numbers
are modeled for α=0.001, 0.01, 0.2, 0.4, 0.6, and 0.8, but only
results of α=0.001 are shown in Tables 3 and 4. The process-
ing time for the stages in Table 3 is dependent on material
type, regardless of product size, while the processing time
for the stages in Table 4 is independent of product type. The
notation for product size and material types is a convention of
the case study company. There are 24 product types as a com-
bination of six material types and four product size.

The sample of MATLAB for generating an exponential
distribution with the parameter λ=1 is shown in Appendix I.
Pessimistic and optimistic values (based of expert judgments)
are used for establishing the confidence intervals. The
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distances between each two sequential stages are calculat-
ed by a computer-aided layout planning tool for all 18
layout alternatives. It is assumed that the flow of work-
in-process (WIP) between sequential stages has approxi-
mately 0.5 m/min velocity (considering all waste times).
Thus, the time taken to transfer WIP between each two
sequential stages can be calculated by dividing the dis-
tance into the flow velocity as shown in Table 5.

4.5 Simulation network modeling

Six product types and ten resources are considered as
entities and servers in this model, respectively. Each prod-
uct type has two attributes identifying its type and starting

time and is emanated in network by a CREATE node, and
also the type and starting time of it are determined by an
ASSIGN node positioned after the CREATE node.

It is assumed that all product types have equal percents
of the overall demand. Hence, the simulation network is
modeled with 50 entities for each product type. A product
(entity) is sent to original network. If the specific machine
processing this product is available, then it is assigned to
the machine for during the processing time. Otherwise,
this material must be awaited in the file number of the
stage. This process is done with ten AWAIT nodes. Pro-
cessing time of each product on each machine in each
step is defined during the activity. After entering all 200
entities to the TERMINATE node, the simulation will be

Table 3 Material-type dependent
fuzzy processing time data (min)
with α=0.001

Stage Material type

A B C D E F

1 OV 1031.1 717.2355 481.1773 1180.9 847.6458 598.7394

PV 453.4489 274.4959 167.7388 458.97 321.0706 222.566

2 OV 27.0933 45.3498 45.3501 49.1857 49.2389 76.4505

PV 8.11 19.8775 19.7741 18.887 18.8881 22.6836

3 OV 524.4302 246.7524 246.7633 316.7419 250.9155 161.8067

PV 176.1557 94.9543 94.8955 126.738 102.403 66.62

4 OV 5217.7 4759.3 5217.8 4068.9 3381.6 4759.3

PV 2050.9 1833.2 2051.7 1223.7 1260.4 1832.2

6 OV 547.477 409.1516 533.6557 700.3589 599.0052 848.9364

PV 213.2199 176.6249 230.3617 272.1089 213.242 289.0328

9 OV 397.6682 397.6682 397.6682 397.6682 397.6682 397.6682

PV 236.2484 236.2484 236.2484 150.6 236.2484 236.2484

10 OV 1199.6 764.9157 764.9157 1144.3 1121.6 1121.6

PV 383.225 269.38 269.38 395.85 347.83 347.83

PV pessimistic value, OVoptimistic value

Table 2 Setup times, MTBF, and
MTTR for machines Stage Number of machines Setup time (min) MTBF (min) MTTR (min)

1 2 Uniform (27, 33)a Exp (300) Exp (130)

2 1 0 0 0

3 1 Uniform (25, 33)b Exp (200) Exp (80)

4 6 0 0 0

5 2 Constant (1440)a 0 0

6 1 0 Exp (540) Exp (150)

7 1 Uniform (29, 35)b Exp (250) Exp (30)

8 1 Constant (1440)a Exp (350) Exp (45)

9 1 Uniform (1, 2)a,b Exp (720) Exp (70)

10 1 Uniform (20, 29)b Exp (200) Exp (60)

a Setup needed for the material change
b Setup needed for the size change
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completed. The fuzzy operational indicators are average
waiting times in the queues, average machine utilization
in each stage, and average time-in system. Fuzzy simula-
tion is performed by considering pessimistic and optimistic
values in addition to central point for the nine indicators.
There are three qualitative, three layout dependent, and
three operational indicators (obtained from fuzzy simula-
tion model). As stated, there are 18 layout alternatives.
This means that fuzzy simulation was run 18 times for
each mode (pessimistic, central, and optimistic), which
would be a total of 54 runs for each α-cut. The reader
should note that the fuzzy simulation was replicated ten
times, and the average of ten runs was used for each
fuzzy DEA model. Triangular fuzzy shape is used to de-
crease the relative error in comparison with the other
models. For the details of fuzzy simulation, readers are
referred to Buckley [11].

4.6 Applied fuzzy DEA model

It is interested to investigate the efficiency of different
layouts. The fuzzy data is inputted to fuzzy DEA model
to obtain the ranking results. In most general decision-
making cases, the decisions are based on concurrent quan-
titative and qualitative data. Fuzzy DEA seems to be con-
venient for problems associated with uncertainty pertinent
to existent of qualitative data set. This is because most
indicators for layout alternatives are judgmental and are
of noncrisp nature. Saati et al. (2002) proposed a new
method for ranking the efficient units based on CCR mod-
el. This was achieved by adding the constraint ∑j = 1

n τj=1
to the CCR model and obtaining the results for the BCC
model. The fuzzy BCC model for ranking the layout al-
ternatives is as follows:

minθ

s:t: ~yrp≤
Xn

j¼1

τ j~yr j ∀r ¼ 1;…; 5

θ~xrp≥
Xn

j¼1

τ j~xi j ∀i ¼ 1;…; 4

Xn

j¼1

τ j ¼ 1 ∀ j ¼ 1;…; 18

ð1:1Þ

Table 4 Single fuzzy processing time data (min) with α=0.001

Stage Pessimistic value Processing time Optimistic value

5 719.5 1593 2055.3

7 48.803 105.02 146.710

8 31.9293 62.28 84.0229

Table 5 The material transfer
time between stages for different
layout alternatives (min)

Layout alternative From–to

1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

1 35.6 36.6 39.4 38.2 91.8 26.8 32.6 37 24

2 13.8 136.4 44.4 61.6 23.2 53.8 32.8 22.4 11.8

3 27.8 54 61.8 41 76.8 54 36.2 42.2 16

4 36 34.6 36.6 41.6 93.2 38.6 17 41.6 24.8

5 27 78.2 37.4 34.6 74.6 72.8 19 52.8 26.2

6 26.6 26.8 129.8 39.6 107 38.8 59 29.6 54.6

7 43.6 51 32.8 99 76.8 74.6 23.4 54.2 30.4

8 43 19.4 27 103.6 37.2 42 23.2 48.6 26

9 26.6 81.2 33.6 39.8 80.2 49.8 18.2 31.4 21.6

10 26.8 19.4 40.8 30.6 73.4 47.4 20.4 33.8 130

11 27.2 27.8 71.2 61.4 55.4 33.2 74.4 39 16.4

12 64 13.2 77.4 15.6 94.2 42.8 25.6 49 43

13 30.8 72 60.2 58.4 65.4 83 43 41.6 17

14 27.4 57.8 58.6 40.8 76.6 54.6 35.6 42.2 17

15 34.6 25.4 49.8 37 77.6 23.8 33.4 34.2 22.2

16 46 94.4 36.4 17.4 77.8 28 43.2 27.6 52

17 32.2 25.6 49.8 34.8 83 52.8 18 36.6 20.8

18 57.2 32.2 50 32.6 37.2 58.8 58.4 11 45.6
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In the above model, indices i, r, and j represent the
inputs, outputs, and layout alternatives, respectively. The
fuzzy input indicators are average waiting time in the
queues, average machine utilization in each stage, average
time-in system, shape ratio, and distance. The fuzzy output
indicators are the three qualitative indicators (accessibility,
flexibility, and maintenance) and adjacency. This is be-
cause inputs should be reduced, while outputs should be
increased in optimization problems. ~xi j and ỹij are respec-
tively input and output variables of FDEA which are
triangular-shaped fuzzy numbers as discussed before, and
~xip and ỹrp are the optimistic value for input variables ~xi j
and pessimistic value for output variables ỹij, respectively.
Substituting fuzzy values ~xi j and ỹ i j with ~xi j ¼
xpi j; x

m
i j; x

o
i j

� �
and ỹij=(yijp,yijm,yijo), respectively, and using

α-cuts method, model (1.1), can be expressed as follows:
minθ
s:t:θ αxmip þ 1−αð Þxpip

� �
≥
X n

j¼1
τ j αxmi j þ 1−αð Þxpr j
� �

∀i ¼ 1;…; 5

αymrp þ 1−αð Þyorp≤
X n

j¼1
τ j αymr j þ 1−αð Þxpr j
� �

∀r ¼ 1;…; 4
X n

j¼1
τ j ¼ 1τ j≥0 ∀ j ¼ 1;…; 18

ð1:2Þ
In model (1.2), α is a parameter belonging to the interval

[0 1]. Model (1.2) is a parametric linear programming model

which can be used for obtaining the optimum solution for
each given value of α (Saati et al. 2002). Since the objective
of this study is to analyze the efficiency of layouts based on
output indicators, the output-oriented BCC model has been
utilized, and the efficiency and rank of each layout are de-
termined based on model (1.2) for different α values. Also,
since α represents the certainty of the given indicators, as α
gets closer to zero, the certainty of the given indicators gets
lower, and the system becomes fuzzier. In contrast, as α
goes to one, the more certainty of the given indicators in-
creases and the fuzzy system goes to the certain system [4].

5 Computational results

In this paper, an integrated computer simulation-DEA ap-
proach is presented to deal with the FSFLD problem in an
IC packaging process. As mentioned previously, Yang and
Kuo [44] and Azadeh and Izadbakhsh [2] considered three
quantitative and three qualitative indicators for evaluating
the performance of feasible layout alternatives provided by
a computer-aided layout planning tool. Consequently, 18
layout alternatives have been generated. The quantitative
measures for those design alternatives are converted to

Table 6 Fuzzy quantitative indicators

Layout alternative PV Distance (m) OV PV Adjacency OV PV Shape ratio OV

DMU 1 72.48 185.95 250.91 3.11 8 8.09 4.47 8.28 15.62

DMU 2 119.8 207.37 325.65 2.31 9 10.18 2.13 3.75 6.01

DMU 3 57.21 206.38 327.29 3.26 8 8.09 3.98 7.85 12.87

DMU 4 106.98 189.66 251.37 3.11 8 8.91 3.64 8.28 10.42

DMU 5 121.86 211.46 333.1 3.11 8 8.09 4.9 7.71 12.73

DMU 6 137.46 264.07 383.07 2.44 5 5.89 1.06 2.07 4.77

DMU 7 145.51 228.00 382.01 3.15 8 8.09 6.01 14.00 17.53

DMU 8 76.91 185.59 283.61 4.78 9 12.12 3.64 6.25 8.03

DMU 9 51.52 185.85 294.74 4.44 9 4.79 4.14 7.85 11.12

DMU 10 164.93 236.15 486.57 3.11 8 8.94 4.14 7.85 11.12

DMU 11 95.35 183.18 265.73 3.11 8 8.09 0.83 2.00 2.83

DMU 12 84.61 204.18 309.84 3.11 8 8.09 6.16 13.30 15.96

DMU 13 99.27 225.26 309.35 3.11 8 8.08 4.42 8.14 11.08

DMU 14 104.13 202.82 279.11 3.11 8 8.09 3.77 8.00 14.62

DMU 15 49.9 170.14 309.05 4.26 9 12.79 3.77 8.28 11.05

DMU 16 118.51 216.38 369.16 5.48 9 13.53 3.62 7.71 11.51

DMU 17 50.29 179.80 338.33 3.11 8 8.09 4.96 10.30 14.21

DMU 18 94 185.75 308.28 9 10 10.11 4.35 10.16 16.62

PV pessimistic value, OVoptimistic value
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fuzzy triangular numbers as shown in Table 6 in which
the noncrisp values of distance and shape ratio are pre-
sented due to the larger-the-better criterion for layout
alternatives. When it is not expected that one point es-
timate is exactly equal to a parameter such as θ, a (1 −
β)100 % confidence interval is often defined for θ,
where β represents the confidence level. Consider X
as a random variable with probability density function
of f(x,θ) for parameter θ. Assume that θ is unknown
estimated from a random sample (X1, …, Xn). Let Y =
u(X1, …, Xn) be a statistic for estimation of θ. Given
the values of these random variables Xi ≤ xi, 1 ≤ i ≤ n,
a point estimate θ* = y = u(x1, …, xn) is obtained for
θ. It is not expected that this point estimate is exactly
equal to θ. Thus, a (1 − β)100 % confidence interval is
often computed for θ. The (1 − β)100 % confidence
intervals can be generated for all 0.001 ≤ β ≤ 1. These
confidence intervals are denoted as [θ1 (β), θ2 (β)] for
0.001 ≤ β ≤ 1. Also, the confidence interval for β = 1
could be represented as [θ*1, θ*2]. Subsequently,
placing these confidence intervals one on top of the
others leads to producing a triangular shaped fuzzy
number q whose α-cuts are the confidence intervals.
As a result, θ [α] = [θ1(α),θ2(α)] for all 0.001 ≤ α
≤ 1. The results are obtained for α-cuts 0.001, 0.2, 0.4,
0.6, 0.8, and 1, but only the results of α=0.001 are
shown for simplici ty. Moreover, due to severe
ambiguity that exists in the manufacturing process, the
results for α=0.001 is more reliable than other α-cuts.
In addition, the experts identified 99.9 % level of
uncertainty for the layout systems due to severe
ambiguity that exists in various activities.

5.1 Fuzzy AHP results

Table 7 shows the weight of final privilege scores of
each qualitative indicator by fuzzy triangular numbers.
After determining the indicators weights using AHP, the
final privilege score can be determined by multiplying
the weights in their privilege scores. Therefore, the in-
dicators will be converted into quantitative forms. Note
that the weight of final privilege score of each indicator
lies between zero and one, and the sum of all final
privilege score value is equal to one. A consistency
ratio (CR) is defined in order to prevent potential com-
parative inconsistency between pairs of categories and
assure the appropriateness of the comparisons. The
obtained CR values for central modes of flexibility,
accessibility, and maintenance are 0.097, 0.088, and
0.098, respectively. Since the obtained CR is smaller

than the critical value of 0.1, it can be concluded that
there is no inconsistency.

5.2 Fuzzy simulation results

The fuzzy operational data for the IC packaging process
have been presented in Tables 2, 3, and 4, in which six
material and ten resources have been considered in
order to test the model. Machines priorities and
processing times for each stage are modeled and
analyzed by fuzzy simulation. Data entering for each
mode (pessimistic, center, and optimistic) is carried out
by suitable control statements. By analyzing the output
of fuzzy simulation, product sequences on each machine
will be determined. The control statements are used to
equalize the variables used in the network in Visual
SLAM. Moreover, the array statements make a table
with seven rows. The required information about the
product type-dependent processing times and stages se-
quencing have to be read from this table. The process-
ing time of products on stages is determined for the
model by array statements. Column number is the same
as the product number.

After defining the control statements, the simulation
model will be ready to run. The simulation network has
been modified based on the flow distances between
each two sequential stages obtained by a computer-
aided layout planning tool for all 18 layout alternatives.
The simulation output shows information given in the
nodes of the model, such as the average waiting time in
the queues, average utilization of resources for each
machine, and the average time-in system. Tables 8, 9,
and 10 present the average waiting times in the queues,
average machine utilization, and average time-in system,
respectively, for all 18 layout alternatives.

5.3 Fuzzy DEA results

FDEA model discussed in previous section is used to
evaluate the efficiency of each layout alternative and
optimize the FSFLD problem with ambiguous inputs
and outputs. As mentioned, 18 layout alternatives and
9 performance indicators including distance, adjacency,
shape ratio, flexibility, accessibility, maintenance,
average waiting time, average machines utilization, and
average time-in system are considered and analyzed by
the fuzzy DEA model. The FDEA model performs a
full ranking on all 18 DMUs. Thus, optimal layout al-
ternative could be obtained. Moreover, the output-
oriented BCC model (1.2) has been utilized, and the
efficiency and rank of each layout are determined based
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on the stated mathematical program. As mentioned
before, in this study, the experts identified 99.9 %
level of uncertainty for the layout systems due to
severe ambiguity that exists in various activities.
Therefore, α=0.001 is used for the FDEA analysis.
The results of FDEA are computed for α=0.001 by
using AutoAssess® (Table 11). In addition, the results
of various α-cuts are shown in Table 12. This table
shows that different α-cuts or different level of uncer-
tainty would result into different decision-making pro-
cess for the layout problems.

The results of FDEA are compared with previous
studies as shown in Table 11. It is observed that by
incorporating the fuzzy and noncrisp indicators to the
FSFLD problem, the ranking results have been consid-
erably changed. For instance, layout alternative 14 is
recognized as the most efficient layout by the proposed
integrated approach, while the obtained ranks by simu-
lation-DEA-AHP, AHP-DEA, AHP-PCA, and NT
methods were 13, 10, 10, and 11, respectively. On the
other hand, layout alternative 15 that took the best rank
among all alternatives using AHP-DEA, AHP-PCA, and
NT methods has been recognized as the fifth ranked
alternative by the proposed integrated approach. It is
concluded that the existent difference between the
results of the integrated fuzzy simulation-fuzzy
DEA-AHP approach and the previous studies is due to
its comprehensive standpoint in fuzzy modeling the

FSFLD problems. The ranking results show that consid-
ering fuzzy operational indicators (waiting times in

Table 8 Fuzzy simulation result for the average time-in system with
α=0.001

Layout Time-in system

Pessimistic value Optimistic value

DMU 1 133,692.498 138,386.209

DMU 2 133,713.382 138,349.082

DMU 3 133,810.202 138,356.949

DMU 4 133,745.716 138,390.501

DMU 5 133,764.759 138,446.515

DMU 6 133,898.811 138,505.243

DMU 7 133,809.294 138,510.757

DMU 8 133,721.920 138,417.509

DMU 9 133,757.368 138,387.553

DMU 10 133,765.389 135,541.384

DMU 11 135,083.628 138,444.844

DMU 12 133,811.162 138,346.222

DMU 13 133,859.483 138,342.205

DMU 14 133,832.735 138,427.163

DMU 15 133,715.288 136,814.254

DMU 16 133,854.942 138,421.959

DMU 17 133,691.261 138,421.959

DMU 18 133,728.682 138,394.664

Table 7 Qualitative indicators

Layout alternative PV Flexibility OV PV Accessibility OV PV Maintenance OV

DMU 1 0.024 0.0494 0.074 0.011 0.0294 0.039 0.006 0.0130 0.016

DMU 2 0.024 0.0494 0.074 0.004 0.0147 0.023 0.015 0.0519 0.094

DMU 3 0.027 0.0370 0.067 0.004 0.0147 0.023 0.021 0.0519 0.066

DMU 4 0.027 0.0370 0.067 0.004 0.0147 0.023 0.032 0.0519 0.100

DMU 5 0.033 0.0617 0.113 0.004 0.0147 0.023 0.031 0.0390 0.091

DMU 6 0.024 0.0494 0.074 0.004 0.0147 0.023 0.015 0.0519 0.094

DMU 7 0.009 0.0247 0.033 0.042 0.0735 0.041 0.032 0.0649 0.107

DMU 8 0.027 0.0370 0.067 0.023 0.0441 0.064 0.031 0.0390 0.091

DMU 9 0.029 0.0741 0.108 0.023 0.0441 0.064 0.015 0.0519 0.094

DMU 10 0.029 0.0741 0.108 0.021 0.0588 0.0.057 0.032 0.0649 0.107

DMU 11 0.037 0.0864 0.102 0.042 0.1029 0.0156 0.031 0.0909 0.091

DMU 12 0.029 0.0370 0.108 0.042 0.0588 0.057 0.012 0.0260 0.03

DMU 13 0.009 0.0247 0.033 0.022 0.0735 1.019 0.015 0.0519 0.066

DMU 14 0.009 0.0247 0.033 0.042 0.0588 0.057 0.015 0.0519 0.066

DMU 15 0.051 0.0864 0.14 0.081 0.1176 0.202 0.062 0.1169 0.157

DMU 16 0.029 0.0741 0.108 0.041 0.0735 0.105 0.015 0.0519 0.094

DMU 17 0.053 0.0988 0.166 0.081 0.1324 0.203 0.044 0.0909 0.149

DMU 18 0.029 0.0741 0.108 0.042 0.0588 0.057 0.31 0.0390 0.091

PV pessimistic value, OVoptimistic value
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queues, machine utilization, and fuzzy time-in system),
noncrisp layout-dependent indicators (distance, adjacen-
cy and shape ratio), and fuzzy qualitative indicators
(flexibility, maintainability, and accessibility) provide
more comprehensive insight to the decision-making pro-
cess in FSFLD problems with ambiguous inputs and
outputs. Moreover, it should be noted that performing
exact ranking among all layout alternatives could help
policy makers and top managers to have precise

understanding and improve existing systems with re-
spect to facility layout performance.

6 Conclusion

There are usually missing data, incomplete data, or lack
of data with respect to layout problems. This means
da ta could not be col lec ted and analyzed by

Table 9 Fuzzy simulation results
for the average waiting times in
the queues (min) with α=0.001

Layout alternative Stage (machine)

1 2 3 4 5 6 7 8 9 10

DMU 1 OV 0 82.824 0 0 0 164,980.253 0 0 0.561 0

PV 0 1.703 0 0 0 160,283.198 5034.897 0.313 4.741 0

DMU 2 OV 0 82.496 0 0 0 164,935.572 0 0.008 0.546 0

PV 0 1.673 0 0 0 160,269.767 4948.159 0.269 4.650 0

DMU 3 OV 0 82.28 0 0 0 165,049.707 0 0.008 0.549 0

PV 0 1.578 0 0 0 160,306.628 4946.666 0.336 4.751 0

DMU 4 OV 0 82.205 0 0 0 165,025.208 0 0.005 0.565 0

PV 0 1.612 0 0 0 160,319.137 5008.000 0.332 4.805 0

DMU 5 OV 0 82.753 0 0 0 165,008.337 0 0.006 0.572 0

PV 0 1.785 0 0 0 160,316.490 5014.767 0.311 4.797 0

DMU 6 OV 0 82.828 0 0 0 165,081.139 0 0.006 0.563 0

PV 0 1.640 0 0 0 160,313.805 5011.175 0.332 4.851 0

DMU 7 OV 0 82.495 0 0 0 164,986.564 0 0.009 0.55 0

PV 0 1.784 0 0 0 160,295.734 5049.965 0.318 4.612 0

DMU 8 OV 0 82.174 0 0 0 165,011.580 0 0.010 0.583 0

PV 0 1.793 0 0 0 160,295.393 5063.576 0.308 4.571 0

DMU 9 OV 0 81.929 0 0 0 165,044.366 0 0.010 0.558 0

PV 0 1.523 0 0 0 160,315.675 4980.267 0.268 4.546 0

DMU 10 OV 0 82.945 0 0 0 165,011.837 0 0.006 0.578 0

PV 0 1.656 0 0 0 160,327.908 4986.918 0.313 4.739 0

DMU 11 OV 0 83.397 0 0 0 164,988.947 0 0.007 0.567 0

PV 0 1.591 0 0 0 160,312.439 5056.540 0.358 4.760 0

DMU 12 OV 0 82.065 0 0 0 165,063.571 0 0.005 0.554 0

PV 0 1.639 0 0 0 160,319.607 4923.127 0.281 4.615 0

DMU 13 OV 0 82.444 0 0 0 165,043.692 0 0.007 0.578 0

PV 0 1.695 0 0 0 160,342.174 4851.984 0.341 4.666 0

DMU 14 OV 0 83.077 0 0 0 165,092.790 0 0.011 0.568 0

PV 0 1.531 0 0 0 160,287.84 5039.161 0.289 4.603 0

DMU 15 OV 0 81.020 0 0 0 165,035.274 0 0.01 0.565 0

PV 0 127.0 0 0 0 165,235.949 2.194 0.114 3.045 0

DMU 16 OV 0 82.569 0 0 0 165,082.130 0 0.008 0.557 0

PV 0 1.788 0 0 0 160,294.037 4963.006 0.313 4.787 0

DMU 17 OV 0 83.108 0 0 0 164,989.952 0 0.004 0.600 0

PV 0 1.788 0 0 0 160,294.037 4963.006 0.313 4.787 0

DMU 18 OV 0 82.851 0 0 0 165,007.080 0 0.014 0.573 0

PV 0 1.665 0 0 0 160,310.659 5037.811 0.295 4.552 0

PV pessimistic value, OVoptimistic value
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deterministic or stochastic models, and new approaches
for tackling such problems are required. This gap moti-
vated the authors to develop a unique approach to han-
dle such gaps in FSFLD problems. This study presented
a unique approach based on fuzzy simulation, fuzzy
DEA, and fuzzy AHP to tackle the FSFLD problems
with data ambiguity in manufacturing systems. More-
over, this study considered operational, qualitative, and

dependent indicators (distance, adjacency, and shape ra-
tio) for evaluating the generated layout alternatives.
Fuzzy AHP was used for weighting the fuzzy qualita-
tive indicators (maintainability, accessibility, and flexi-
bility). An integrated fuzzy simulation approach was
then used to model the IC packaging process with re-
spect to the operational data (average waiting time-in
queue, average time-in system, and average machine

Table 10 Fuzzy simulation results for the average machine utility with α=0.001

Layout alternative Stage (machine)

1 2 3 4 5 6 7 8 9 10

DMU 1 OV 0.947 0.047 0.384 4.374 1.966 0.608 0.196 1.018 0.465 0.744

PV 0.48 0.02 0.213 1.662 1.087 0.368 0.196 1.029 0.26 0.31

DMU 2 OV 0.095 0.047 0.384 4.373 1.966 0.609 0.195 1.018 0.465 0.744

PV 0.48 0.017 0.213 1.662 1.987 0.368 0.196 1.029 0.26 0.315

DMU 3 OV 0.946 0.047 0.384 4.373 1.966 0.608 0.196 1.018 0.466 0.744

PV 0.479 0.017 0.213 1.662 1.987 0.368 0.196 1.029 0.26 0.315

DMU 4 OV 0.946 0.0473 0.384 4.374 1.96 0.608 0.196 1.018 0.465 0.754

PV 0.017 0.479 0.213 1.663 1.987 0.368 0.196 1.029 0.26 0.314

DMU 5 OV 0.946 0.047 0.384 4.374 1.966 0.608 0.195 1.018 0.465 0.754

PV 0.479 0.017 0.213 1.662 1.987 0.368 0.196 1.029 0.26 0.315

DMU 6 OV 0.946 0.047 0.384 4.372 1.966 0.608 0.195 1.018 0.465 0.744

PV 0.479 0.017 0.213 1.662 1.987 0.368 0.196 1.028 0.26 0.315

DMU 7 OV 0.946 0.047 0.384 4.372 1.966 0.607 0.195 1.018 0.465 0.744

PV 0.479 0.017 0.213 1.662 1.987 0.368 0.196 1.028 0.26 0.315

DMU 8 OV 0.946 0.047 0.384 4.374 1.966 0.608 0.195 1.018 0.465 0.754

PV 0.48 0.017 0.213 1.663 1.987 0.368 0.196 1.029 0.26 0.315

DMU 9 OV 0.946 0.047 0.384 4.373 1.966 0.608 0.196 1.018 0.465 0.754

PV 0.479 0.017 0.213 1.662 1.987 0.368 0.196 1.029 0.26 0.315

DMU 10 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 11 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.47 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 12 PV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 13 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.368 0.196 1.029 0.26 0.315

DMU 14 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 15 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 16 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 17 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

DMU 18 OV 0.946 0.047 0.384 4.373 1.967 0.608 0.196 1.018 0.465 0.745

PV 0.479 0.017 0.213 1.662 1.987 0.369 0.196 1.029 0.26 0.314

PV pessimistic value, OVoptimistic value
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utilization). Finally, the BCC output-oriented fuzzy DEA
model was used to find the optimal layout design. In
the proposed DEA, each layout alternative has been
considered as a DMU. The results show that the

proposed integrated approach provides an efficient ap-
proach in solving FSFLD problems with ambiguity and
uncertainty by incorporating a set of fuzzy operational,
qualitative, and dependent indicators. Moreover, the in-
tegrated approach presented in this study yields exact
rankings, whereas previous studies present incomplete
and nonexact plant layout alternatives. The superiority
and effectiveness of the proposed approach were quan-
titatively compared with previous DEA-simulation,
AHP-DEA, AHP-PCA, and NT studies through a case
study. The proposed approach would help policy makers
and top managers to have a more comprehensive and
thorough understanding the layout design aspects with
respect to the operational features of the manufacturing
processes. Although the proposed approach might be
relatively time-consuming, it could be applied in real-
world problem due to its aforementioned advantages.
Furthermore, benefits of facility layout design optimiza-
tion will justify time and work which is used to imple-
ment the proposed approach.

The integrated fuzzy simulation-fuzzy DEA-fuzzy AHP
approach is also compared with some of the relevant studies
and methodologies in the literature. Its features are com-
pared with previous models to show its advantages over
previous models (Table 13). The approach is capable of
dealing with operational indicators as well as fuzzy-
dependent and qualitative indicators. It can handle complex
layout problems in manufacturing systems due to utilization

Table 12 FDEA ranks by different α-cut levels

Layout alternative α=0 α=0.2 α=0.4 α=0.6 α=0.8 α=1

1 11 3 3 3 3 3

2 17 9 6 6 6 6

3 4 13 13 12 13 13

4 8 5 4 4 4 4

5 10 4 5 5 5 5

6 7 1 1 1 1 1

7 3 14 15 15 14 14

8 6 18 18 18 18 17

9 2 11 10 9 8 7

10 15 10 12 14 17 18

11 16 15 14 13 12 12

12 12 7 8 7 7 8

13 18 16 16 16 15 15

14 1 12 11 10 10 10

15 5 6 7 8 9 9

16 9 17 17 17 16 16

17 13 8 9 11 11 11

18 14 2 2 2 2 2

Table 11 Layout alternatives
ranks by the proposed integrated
approach and recent studies

Layout
alternative

Technical
efficiency for
proposing FDEA

FDEA ranks by
the proposed
approach

Simulation-DEA-
AHP
ranks [4]

PCA
ranks
[2]

NT
ranks
[2]

DEA
ranks
([44]

1 118.167 11 3 16 15 8

2 159.218 17 9 8 8 2

3 150.359 4 2 14 14 13

4 156.225 8 6 13 12 9

5 290.194 10 14 11 13 12

6 99.6750 7 16 15 18 4

7 214.389 3 4 17 16 16

8 178.287 6 17 9 9 5

9 232.285 2 1 4 4 6

10 165.264 15 11 6 7 10

11 134.653 16 10 2 2 1

12 111.135 12 18 18 17 15

13 132.041 18 5 12 11 14

14 1413.66 1 13 10 10 11

15 115.983 5 12 1 1 1

16 136.185 9 8 5 5 3

17 141.249 13 7 3 3 7

18 185.513 14 15 7 6 1
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of discrete-event-simulation. Also, it has the ability of opti-
mization layout problems due to utilization of fuzzy DEA
which is able to find the optimal layout solution through
ranking DMUs (i.e., layout alternatives) based on various
inputs and outputs. In addition, it provides a comprehensive
and robust approach in solving real-world FSFLD problems.
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The sample of MATLAB code for generating an exponential
distribution with the parameter λ=1:

i=50
b=[0.001,0.2,0.4,0.6,0.8,1]
for j=1:1:6
z=rand(1,i)
X=−1×reallog(z)
aver=mean(X)
variance=var(X)
standard_deviation=sqrt(variance)
t=tinv(1−b(j)/2,i−1)

U p p e r ( j ) = a v e r + t ×
standard_deviation/sqrt(i)

L o w e r ( j ) = a v e r × t ×
standard_deviation/sqrt(i)

End
Upper
Lower
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