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Abstract It is well known that the presence of cutter run-
out has a significant effect upon the instantaneous uncut chip
thickness through redistributing it and thereby contributes to
the irregular change on the cutting forces in one tooth pe-
riods. In this paper, in order to avoid the numerical oscilla-
tions from differential model and to eliminate the influence
of the ill-posed problem in calibration, a new approach to
calibrate the cutter radial run-out parameters from the con-
tinuous cutting force model with constant cutting coeffi-
cients was proposed. Through analyzing the influence of
the ill-posed problem in calibration of the tangential and
radial cutting force coefficients, the corresponding solution
method was proposed to enhance the calculation stability
and to get a useful and stable solution. The cutting force
coefficient matrix was optimized by incorporating the aver-
age cutting information in x and y directions based on the
least square method. Furthermore, through numerical simu-
lation and experimental results, the validity of the calibration
approach is demonstrated.

Keywords Run-out parameters . Cutting force . Flat-end
milling . Calibration . Cutting force coefficients

1 Introduction

An accurate cutting force prediction model is the key to
calibration of cutting force coefficients, essential for analysis

of machining process, the optimization of federate, the pre-
diction of surface quality, and the control of vibrations. To
ensure accuracy, extensive research efforts are sacrificed to
establish a reliable cutting force prediction model. The ear-
liest cutting force prediction model was provided by
Koenigsberger and Sabberw, and the cutting forces are as-
sumed to be directly proportional to the chip cross-sectional
area, and the proportional coefficients, i.e., cutting force co-
efficients may be assumed to be constants depending on the
cutting conditions and material properties [1]. With this idea
in mind, Kline et al. presented a numerical model for the
prediction of cutting forces in end milling, where the cutting
forces were assumed to be directly proportional to the uncut
chip thickness, and the cutting force coefficients were con-
stants [2].

Actually, the effect of run-out was ignored in some studies,
although the instantaneous uncut chip thickness is
redistributed by the presence of cutter run-out [3, 4]. More
accurate milling force models have been proposed in consid-
eration of the influence of cutter run-out. Liang and Wang
formulated and analyzed the effect of cutter run-out on the
milling force in the frequency domain, and the magnitude
and angular location of cutter run-out were calibrated with
the Fourier series coefficients of cutting forces [5]. Wang pre-
sented an approach for the identification of cutter run-out
through two cutting tests, and the milling force is synthesized
through convolution [6]. The methods mentioned above are
based on the Fourier analysis of these force components re-
vealing the effects of offset geometry.

It is important to note that there are some debates in the
academia about the identification of the cutting force coeffi-
cients. Melkote and Endres assumed that the usage of constant
cutting force coefficients might lose the accuracy of the pre-
diction at peak values of the instantaneous uncut chip thick-
ness, during tool entry and exit periods [7].
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But, some studies showed that the usage of constant coef-
ficients can not only simplify the procedure of the calibration
but make the results precise [8–10]. Cutting forces are predict-
ed by superposing the cutting force of discrete sliced elements
from the bottom of the flute toward the final axial depth of cut
in many studies [11, 12]. And, the numerical oscillations on
the cutting force waveforms can be caused, which maybe lead
to faulty simulation of cutting vibration [3]. This is why the
cutting force model is established based on the integral calcu-
lation method in this paper.

In this paper, we proposed the method to identify the cutter
run-out parameters from the continuous cutting force model
with constant cutting coefficients in the flat-end milling. First-
ly, the calculation formulas for calibrating these values are
deduced based on the least square method. Then, the coeffi-
cient matrixes are reconstructed to obtain the stable solution.
At last, based on simulation and experimental results, the sta-
bility and the accuracy of the calculation method are
demonstrated.

The main features of the approach given in this paper can
be summarized as follows:

1. To avoid the numerical oscillations from differential mod-
el, the run-out parameters were determined from the con-
tinuous cutting force model with constant cutting coeffi-
cients in this paper.

2. To eliminate or reduce the influence of the ill-posed prob-
lem in calibration of the tangential and radial cutting force
coefficients, the causes of this problem was analyzed and
the solution method was proposed to enhance the calcu-
lation stability and to get a useful and stable solution.

2 Milling forces with cutter run-out

2.1 Basic cutting force model

An end milling process is illustrated in Fig. 1, with a helix angle
of β, diameter of RD, N number of tool teeth, the axial cutting
depth of ap, and the radial cutting depth of ae. When the milling
cutter comes into contact with the workpiece, the cutting force
can appear. So the angular position ϕc,i,j (z) for the element of
cutting edge i at axial depth of cut z is expressed as follows:

ϕc;i; j zð Þ ¼ ϕ j � i� 1ð Þ 2π
N

� kβz ð1Þ

where kβ ¼ tan βð Þ
RD

and ϕj is the cutter rotation angle, j =1,

2,⋯,n , n is the number of sampling cutter rotation angle
position.

The cutting forces applied on the element of cutting edge i
at the angular position ϕj with height dz, can be divided into

components: tangential dFt,i,j, radial dFr,i,j, and axial dFa,i,j.
These are expressed similar to Eq. (2) as follows:

dFt;i; j ¼ Ktchi; j zð Þ þ Kte

� �
dz

dFr;i; j ¼ Krchi; j zð Þ þ Kre

� �
dz

dFa;i; j ¼ Kachi; j zð Þ þ Kae

� �
dz

ð2Þ

The hi,j(z) is the instantaneous uncut chip thickness associ-
ated with the element of cutting edge i at the ϕj. Cutting force
is divided into shearing force caused by shearing in the shear
zone, and blade force derived from flank surface friction of the
cutting edge. The shearing force can be expressed as the prod-
uct of tangential force coefficient Ktc, radial force coefficient
Krc, axial force coefficient Kac, and the shear area; the blade
force can be expressed as the product of tangential blade force
coefficient Kte, radial blade force coefficient Kre, axial blade
force coefficient Kae, and cutting width.

The elemental forces are resolved into feed (x), normal (y),
and axial (z) direction using the transformation as follows:

dFx;i; j ¼ −dFt;i; jcos ϕc; j−kβz
� �

−dFr;i; jsin ϕc; j−kβz
� �

dFy;i; j ¼ dFt;i; jsin ϕc; j−kβz
� �

−dFr;i; jcos ϕc; j−kβz
� �

dFz;i; j ¼ dFa;i; j

8<
: ð3Þ

The differential cutting forces are integrated analytically
along the in-cut portion of the cutting edge i to obtain the total
cutting force produced by the blade as follows:

Fx;i ¼
Z z2;i; j

z1;i; j

dFx;i; jdz

Fy;i ¼
Z z2;i; j

z1;i; j

dFy;i; jdz

Fz;i ¼
Z z2;i; j

z1;i; j

d Fz;i; jdz

ð4Þ

where z1,i,j and z2,i,j are the lower and upper axial engagement
limits of the in-cut portion of the blade i at the angular positionϕj.

2.2 Instantaneous uncut chip thickness model with cutter
radial run-out

According to the analysis of the movement of the cutting edge
element, the instantaneous uncut chip thickness should be cal-
culated accurately with cutter radial run-out. Figure 2 shows the
radial run-out of the end milling process. Under the influence of
cutter run-out, the rotation radius of an arbitrary element of
cutting edge iwith respect to axial position z can be expressed as

Ri zð Þ ¼ RD þ ρcos λ−kβz− i−1ð Þ 2π
N

� �
; ⋅i ¼ 1; 2;⋯;N ð5Þ

where ρ is the run-out offset, λ is defined as the location angle
measured clockwise from the offset direction to the nearest tooth
tip that corresponds to tooth 1.
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The instantaneous uncut chip thickness hi(ϕ,z) of an arbi-
trary element of cutting edge i with the circular tooth path
approximation can be given as [2, 13].

hi ¼ mi f zsin ϕ j−kβz
� �þ Ri zð Þ−Ri−mi zð Þ ð6Þ

where the mi means that the current tooth i is removing the
material left by the mith previous tooth with the feed fz per
tooth.

Substituting Eq. (5) into Eqs. (6) and (7) is obtained as
follows.

hi ϕ; zð Þ ¼ mi f zsin ϕ j−kβz
� �þ 2ρsin λ−kβz−

π
N

2i−mi−2ð Þ
� �

sin
miπ
N

� �
ð7Þ

From the preceding discussion, the cutting path of an arbi-
trary element of cutting edge is influenced by the cutter radial
run-out, so that the current cutting surfacemay not be left by the
last cutting edge. So, the solution of themi in the Eq. (8) is very
complex essentially, which depends on the helical angle, the
immersion angle, the run-out parameters and the axial cutting
depth. Obviously, the mi could not be solved if the run-out
parameters are unknown. In order to deal with this paradox
and acquire the results fitting the experimental results well,
themi is commonly assumed to be 1, and thismeans that cutting
surface is supposed to be left by the last cutting edge [12, 14].
So, the instantaneous uncut chip thickness hi(ϕ,z) can be
expressed that it consists of two parts as shown in Eq. (8).

hi ϕc;i; j zð Þ� � ¼ hi;1 ϕc;i; j zð Þ� �þ hi;2 ϕc;i; j zð Þ� � ð8Þ

where

hi;1 ϕc;i; j zð Þ� � ¼ f tsin ϕc;i; j zð Þ� �
hi;2 zð Þ ¼ 2ρsin λ−kβz−

π
N

2i−3ð Þ
� �

sin
π
N

� �

2.3 Pro-process for calculating the cutting-force
coefficients and the cutter run-out parameters

At the shown in Fig. 1, the total cutting force produced by the
cutting edge is calculated by integrating the differential cutting
forces. By combining Eqs. (4) and (5), the sum of all X, Y, and
Z forces of the cutting edge elements with respect to the cutter
rotation angular can be obtained as shown in Eq. (9). The
lower and upper axial engagement limits of the in-cut portion
z1 and z2 corresponding the cutter rotation angle can be solved
by the methods in preterit articles [15, 16].

Fig. 1 Force analysis in a
workpiece cut by an end milling

Fig. 2 Geometry of the cutter run-out
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Fx;i; j ¼
Z zi;2

zi;1

−Ktchicos ϕc;i; j zð Þ� �
−Krchisin ϕc;i; j zð Þ� �

−Ktecos ϕc;i; j zð Þ� �
−Kresin ϕc;i; j zð Þ� �� 	

dz

Fy;i; j ¼
Z zi;2

zi;1

Ktchisin ϕc;i; j zð Þ� �
−Krchicos ϕc;i; j zð Þ� �

−Ktesin ϕc;i; j zð Þ� �
−Krecos ϕc;i; j zð Þ� �� 	

dz

Fz;i; j ¼
Z zi;2

zi;1

Kachi þ Kae½ �dz

8>>>>>>>><
>>>>>>>>:

ð9Þ

Note that ∑
n

i¼1
sin aþ 2πi

n

� �¼ ∑
n

i¼1
cos aþ 2πi

n

� �¼0, where a is an

arbitrary constant. So,∑
N

i¼1
hi;2 zð Þ ¼ ∑

N

i¼1
2ρsinð λ−kβz− π

N 2i−3ð Þ� �

sin π
N

� �Þ¼ 0 and ∑
N

i¼1
hi;1 ϕc;i; j zð Þ� � ¼ ∑

N

i¼1
hi;1¼N f tsin ϕc; j−kβz

� �
.

Through substituting the instantaneous uncut chip thick-
ness hi(ϕ,z) into the Eq. (9) and accumulating the cutting
forces of different cutting edges, we can obtain the Eq. (10)

XN
i¼1

Fx;i ϕc;i; j zð Þ� �
=N ¼ −KtcC1;i; j−KrcS1;i; j−KteC2;i; j−KreS2;i; j

XN
i¼1

Fy;i ϕc;i; j zð Þ� �
=N ¼ KtcS1;i; j−KrcC1;i; j þ KteS2;i; j þ KreC2;i; j

XN
i¼1

Fz;i ϕc;i; j zð Þ� �
=N ¼ f tS2;i; jKac þ Kae

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

S1;i; j ¼
Z z2;i; j

z1;i; j

sin ϕc;i; j zð Þ� �
hi;1 ϕc;i; j zð Þ� �

dz

C1;i; j ¼
Z z2i; j

z1;i; j

cos ϕc;i; j zð Þ� �
hi;1 ϕc;i; j zð Þ� �

dz

S2;i; j ¼
Z z2;i; j

z1;i; j

sin ϕc;i; j zð Þ� �
dz

C2;i; j ¼
Z z2;i; j

z1;i; j

cos ϕc;i; j zð Þ� �
dz

By subtracting average cutting forces from instantaneous
cutting force, the cutter run-out parameters can be separated
from the instantaneous uncut chip thickness as shown in
Eq. (11).

Fx;i; j−
XN
i¼1

Fx;i; j

.
N ¼ 2sin

π
N

� �
−KtcA1;i; j−KrcA2;i; j

� �
ρsinαið Þ þ −KteA3;i; j−KreA4;i; j

� �
ρcosαið Þ� �

Fy;i; j−
XN
i¼1

Fy;i; j

.
N ¼ 2sin

π
N

� �
KtcA2;i; j−KrcA1;i; j

� �
ρsinαið Þ þ KteA4;i; j−KreA3;i; j

� �
ρcosαið Þ� �

8>>>><
>>>>:

ð11Þ

αi ¼ λ−
π
N

2i−3ð Þ

A1;i; j ¼ M 1;i; jsin ϕc;i; j zð Þ� �þM 2;i; jsin ϕc;i; j zð Þ� �
A2;i; j ¼ M 2;i; jsin ϕc;i; j zð Þ� �

−M 1;i; jcos ϕc;i; j zð Þ� �
A3;i; j ¼ −M 3;i; jsin ϕc;i; j zð Þ� �

−M 1;i; jcos ϕc;i; j zð Þ� �
A4;i; j ¼ −M 1;i; jsin ϕc;i; j zð Þ� �þM 3;i; jcos ϕc;i; j zð Þ� �

M 1;i; j ¼
Z

z1;i; j

z2;i; j

sin 2kβz
� �

dz

M 2;i; j ¼
Z

z1;i; j

z2;i; j

1þ cos 2kβz
� �� �

dz

M3;i; j ¼
Z

zi;1

zi;2

1−cos 2kβz
� �� �

dz

2.4 The analysis of ill-posed problem about calibrating
the coefficients

The formula for determining cutting-force coefficients can be
derived easily from the Eq. (10). The solution problem of the

Table 1 Three-axis milling experiment parameters

Test no. Milling type Radial depth
of cut ae/mm

Axial depth
of ap/mm

Feed per tooth
fz/(mm per tooth)

Rotation
speed /(r⋅min−1)

1 Down 3 3 0.04 6000

2 Down 3 2 0.05 6000

3 Down 2 3 0.06 6000

4 Up 3 3 0.02 6000

5 Up 3 2 0.03 6000

6 Up 2 3 0.04 6000
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cutting force coefficients is a parameter identification prob-
lem, and the cutting force coefficients Ktc, Krc and the blade
force coefficients Kte, Kre can be identified through least-
square method as shown in Eq. (12).

Ktc

Krc

Kte

Kre

2
664

3
775 ¼ Vx;i

T ⋅Vx;i

� �−1⋅Vx;i
T ⋅

XN
i¼1

Fx;i;1=N

XN
i¼1

Fx;i;2=N

⋮XN
i¼1

Fx;i; j=N

⋮
XN
i¼1

Fx;i;n=N

2
66666666666666666664

3
77777777777777777775

ð12Þ

where

Vx;i ¼

−C1;i;1 −S1;i;1 −C2;i;1 −S2;i;1 0 0
−C1;i;2 −S1;i;2 −C2;i;2 −S2;i;2 0 0
⋮

−C1;i; j

⋮

⋮
−S1;i; j
⋮

⋮
−C2;i;2

⋮

⋮
−S2;i; j
⋮

⋮
0
⋮

⋮
0
⋮

−C1;i;n −S1;i;n −C2;i;n −S2;i;n 0 0

2
666664

3
777775

Actually, the order of magnitude of the condition number
of coefficients matrix Vx,i is around 103 in practical experi-
ments. This implies that the coefficients matrix Vx,i is ill-con-
ditioned, and the computed solution is potentially very sensi-
tive to perturbations of the data. Usually, this phenomenon is
called the ill-posed problem. The main impact on the accuracy
in calibration with the ill-posed problem is that it is essentially
underdetermined due to the cluster of small singular values of
the coefficient matrix. Therefore, it is necessary to contain
more information about the conceivable solution in order to

Fig. 3 a The cutting forces from different cutting edges and the average
cutting force in x direction of test no. 1. b The cutting forces from
different cutting edges and the average cutting force in y direction of
test no. 1

Fig. 4 a Themeasured and predicted average cutting forces in x direction
of test no. 1. b The measured and predicted average cutting forces in x
direction of test no. 1
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enhance the calculation stability and get a useful and stable
solution. This is the purpose of study in this paper. In next
section, the method to improve the calculation stability by
solving the ill-posed problem of coefficients matrix Vx,i will
be discussed in detail.

Based on the least-square method, the axial cutting force
coefficients Kac and the axial blade force coefficients Kae can
be derived from Eq. (13).

Kac

Kae


 �
¼ Vz;i

T ⋅Vz;i

� �−1⋅Vz;i
T ⋅

Fz;i;1

Fz;i;2

⋮
Fz;i; j

⋮
Fz;i;n

2
666664

3
777775

ð13Þ

where

Vz;i ¼

Pi;1 þ Qi;1 Ri;1

Pi;2 þ Qi;2 Ri;2

⋮ ⋮
Pi; j þ Qi; j Ri; j

⋮ ⋮
Pi;n þ Qi;n Ri;n

2
6666664

3
7777775
; ⋅

Pi; j ¼ f t
1

kβ
S2;i; j

Qi; j ¼ 2ρsin
π
N

� �Z z2;i; j

z1;i; j

sin λ−kβz−
π
N

2i−3ð Þ
� �

dz

Ri; j ¼
Z z2;i; j

z1;i; j

dz

8>>>>>><
>>>>>>:

It is noteworthy that the order of magnitude of the condi-
tion number of coefficients matrix Vz,i is much less than co-
efficients matrix Vx,i. Thus, the solution is not sensitive to
perturbations of the data.

When the cutting force coefficients and the blade force
coefficients are known, the run-out parameters can be deter-
mined as shown in Eq. (14).

ai
bi


 �
¼ WT ⋅W

� �−1⋅WT ⋅

Fx;i;1−
XN
i¼1

Fx;i;1=N

Fx;i;2−
XN
i¼1

Fx;i;2=N

⋮

Fx;i; j−
XN
i¼1

Fx;i; j=N

⋮

Fx;i;n−
XN
i¼1

Fx;i;n=N

2
66666666666666666664

3
77777777777777777775

ð14Þ

where

ai ¼ ρsinαi; ⋅bi ¼ ρcosαi and W

¼ 2sin
π
N

� �
−KtcA1;i;1−KrcA2;i;1 −KteA3;i;1−KreA4;i;1

−KtcA1;i;2−KrcA2;i;2 −KteA3;i;2−KreA4;i;2

⋮ ⋮
−KtcA1;i; j−KrcA2;i; j −KteA3;i; j−KreA4;i; j

⋮ ⋮
−KtcA1;i;n−KrcA2;i;n −KteA3;i;n−KreA4;i;n

2
6666664

3
7777775

The solving method for the run-out parameters is just sim-
ilar with that for the axial cutting force coefficientsKac and the
axial blade force coefficients Kae. The matrix W is not ill-
conditioned, and we can obtain more accurate result without
enhancing the calculation stability.

Fig. 5 a The measured and predicted difference values between the
cutting force of the first edge and the average cutting force in x
direction. b The measured and predicted difference values between the
cutting force of the first edge and the average cutting force in y direction
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3 Experimental verifications

3.1 The experiment on the accuracy of calibration

In the experiment of calibrating of cutting force coefficients,
ill-posed problem about calibrating the coefficients was ob-
served as the accuracy of calibration is highly susceptible to
perturbations of the cutting force signal. But, in the actual
experiments, the received signal ineluctably has some distor-
tion. In this section, the calibrating accuracy of cutting force
coefficients with the signal interference was analyzed.

The validity of the proposed approach of calibrating the
cutting force coefficients is implemented through a series of
cutting tests on a three-axis CNC vertical milling machine. A
four-fluted flat-end mill with a diameter of 8 mm and a helix
angle of 30° is set up on the three-axis CNC vertical milling.
The workpiece material is 45 steel and the cutting forces are
measured with a KISTLER 9265B dynamometer. The cutting
types and cutting conditions in the test are illustrated in Table 1.

As an example to illustrate the ill-posed problem in the
calibration, the calibrating process of the test no. 1 was
discussed. The cutting forces from different cutting edges
and the average cutting force in x direction and in y direction
of test no. 1 provided by a dynamometer can be seen in Fig. 3.

The thing to note here is that cutting angles of different edges
was transformed into the cutting region of the first edge.

As mentioned above, the cutting forces signal almost al-
ways is effected by noise and interference. So, only using the
Eq. (12), the accuracy of the calibration will not be satisfacto-
ry. In test no. 1, the calibration values of the cutting force
coefficients Ktc, Krc and the blade force coefficients Kte, Kre

by using the Eq. (12) are 1353.538, 938.620, 35.299, and
−2.2017. In fact, the condition number of coefficients matrix
Vx,i in x direction of test no. 1 is 2880.393. To illustrate the
influence on the calibration accuracy, the measured and pre-
dicted average cutting forces using the above calibration
values in x and in y direction of test no. 1 are shown in
Fig. 4. It is obvious that the predicted results are of well con-
formity with the measured cutting forces in x direction. How-
ever, the fitting results are not satisfactory in y direction.

In order to find out a useful and stable solution to satisfy the
fitting precision in x and y directions, it is necessary to incor-
porate further information about the desired solution. Thus,
this paper reconstructs the Eq. (12) as shown in Eq. (15). In
test no. 1, the calibration values of the cutting force coeffi-
cients Ktc, Krc and the blade force coefficients Kte, Kre are
1502.719, 872.907, 35.214, and 3.924. In Fig. 4, we can see
these predicted results coincide with the experimental very
well both in x and in y directions.

Ktc

Krc

Kte

Kre

2
664

3
775 ¼ Vxy;i

T ⋅Vxy;i

� �−1⋅Vxy;i
T ⋅ Fx

Fy


 �
ð15Þ

where

Fx ¼

XN
i¼1

Fx;i;1=N

XN
i¼1

Fx;i;2=N

⋮XN
i¼1

Fx;i; j=N

⋮
XN
i¼1

Fx;i;n=N

2
66666666666666666664

3
77777777777777777775

; ⋅ Fy ¼

XN
i¼1

Fy;i;1=N

XN
i¼1

Fy;i;2=N

⋮XN
i¼1

Fy;i; j=N

⋮
XN
i¼1

Fy;i;n=N

2
66666666666666666664

3
77777777777777777775

; ⋅ Vxy;i ¼ Vx;i

Vy;i


 �

Fig. 6 The average cutting force of the first cutting edge in z direction

Table 2 Experimental results:
the identified cutting force
coefficients and cutter run-out
parameters

Test no. Cutting force coefficients Run-out parameters

Ktc Krc Kte Kre Kac Kae ρ (mm) λ (radians)

1 1502.711 872.908 35.214 3.924 158.481 3.351 0.0140 0.271

2 1589.482 711.431 37.896 11.080 164.130 10.613 0.0036 0.175

3 1618.569 771.311 34.878 7.963 194.033 1.208 0.0157 0.072

4 1495.519 826.804 25.149 10.987 230.458 9.450 0.0058 0.229

5 1580.845 834.470 44.899 17.854 213.170 22.224 0.0172 0.459

6 1631.501 855.775 37.878 27.057 255.069 18.392 0.0104 0.185
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Fig. 7 a Comparisons of measured and predicted cutting forces in test
no.1. b Comparisons of measured and predicted cutting forces in test no.
2. c Comparisons of measured and predicted cutting forces in test no. 3. d

Comparisons of measured and predicted cutting forces in test no. 4. e
Comparisons of measured and predicted cutting forces in test no. 5. f
Comparisons of measured and predicted cutting forces in test no. 6
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Only using Eq. (14) in test no. 1, we can get the a1 and b1
with values 0.0122 and 0.0069. Further, the values of λ and ρ
can be obtained with values 0.2709 and 0.0140 based on the
Eq. (16). According to the measured and predicted difference
values between the cutting force of the first edge and the
average cutting force in x and y directions from Fig. 5, the
algorithm for the calibrating values of λ and ρ has good fitting
results.

λ ¼ arctanαi þ π
N

2i−3ð Þ
αi ¼ arctan

ai
bi

ρ ¼ ai þ bi
sinαi þ cosαi

8>>>><
>>>>:

ð16Þ

As similar with the calibration of the run-out parameters,
we can get the good fitting prediction results from the Eq. (13)
without reconstructing coefficient matrix. By substituting the
run-out parameters λ and ρ into the Eq. (13) in test no. 1, the
calibration values of the axial cutting force coefficients Kac

and the axial blade force coefficients Kae can be solved
as.177.503 and 2.678. In Fig. 6, it is shown that the calibrating
results of average cutting force in z direction are consistent
with those of experiments.

On the basis of above study, the two methods should be
used to calibrate the force coefficients and run-out param-
eters. For the cutting force coefficients Ktc, Krc and the
blade force coefficients Kte, Kre, the calibration process
based on the least square method need to include the av-
erage cutting forces information in x and y directions to
solve the ill-posed problem. But, for the axial cutting force
coefficients Kac, the axial blade force coefficients Kae and
run-out parameters λ and ρ, the good fitting prediction
result can be achieved only using the one direction cutting
forces information without reconstructing coefficient
matrix.

3.2 Prediction results of cutting forces

The cutting force graph with the sampling time as the abscissa
provided by a dynamometer is translated into the one with the
cutter rotation angle as the abscissa, according to the spindle
speed and sample frequency. It follows from Sect. 2.3 that the
cutting force coefficients can be determined from Eqs. (14)
and (15), then the values of ρ and λ can be solved from
Eq. (16). The calibrated values of these in the cutting tests
are shown in Table 2.

The predicted and measured cutting forces are given in
Fig. 7, which are measured from test no.1 to test no. 6. Clearly,
the predicted results are of well conformity with the measured
cutting forces both in magnitude and in distribution, despite of
cutting types and cutting conditions (Fig. 7).

4 Conclusions

In this paper, the calibration accuracy of the cutting force
coefficients and the cutter radial run-out parameters in flat-
end milling has been discussed. In order to eliminate the in-
fluence of the ill-posed problem on calibration accuracy, the
cutting force coefficient matrix was optimized by incorporat-
ing the average cutting information in x and y directions based
on the least square method. The presented identification meth-
od is tested and validated by the experimental data.

The main work of this paper can be summarized as follows:
first, in order to eliminate the numerical oscillations on the
cutting force waveforms and simplify the procedure of cali-
bration, the continuous form of cutting force model and the
constant coefficients are used to predict the cutting force; sec-
ondly, the ill-posed problem in calibration of the tangential
and radial cutting force coefficients was found out, and the
solution method was proposed to enhance the calculation sta-
bility and to get a useful and stable solution.
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