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Abstract In hot strip rolling process, rolling schedule setup,
geometrical accuracy (thickness and profile), and even the
final product homogeneity of mechanical properties are affect-
ed by the automatic control, and the rolling force and torque
are the prerequisite in the control process. A new cosine ve-
locity field is firstly proposed in this paper to get the values of
the required minimum rolling force and torque. The field and
equal area (EA) yield criterion are used to integrate the inter-
nal plastic deformation power. Using the co-line vector inner
product method, the friction power is analyzed. Finally, the
analytical expressions of rolling force, rolling torque, and
stress effective factor are obtained. The theoretical predictions
of rolling forces are compared with on-line measured ones in a
hot strip rolling plant and other researchers’ models. Results
show that the calculated rolling forces are in fair agreement
with the actual measured ones, and the proposed solution is
considered to be applicable for solving hot strip finish rolling.

Keywords Cosine velocity field . EAyield criterion . Co-line
vector inner product . Analytical solution

1 Introduction

Automatic control system has become significant for the mass
manufacturing due to production cost and flexibility, manipulat-
ing security and requirement of skilledworkers under the increas-
ing global competition in the steel plant circumstance. Accurate

prediction of the rolling force and torque is a major issue for
obtaining better automation control of production line in hot strip
rolling. There have been many researchers developing some ap-
proximate methods to predict the rolling force and torque. These
can be divided into two groups: numerical solution based on
finite element method (FEM) and analytical solution.

Analytical solution is one of the methods to predict the
rolling force. Hill [1] proposed a theoretical approach about
the stress/strain analysis of processes for mechanical working
or forming metals. A kinematically admissible velocity field
based on the concept suggested by Hill has been proposed by
Oh and Kobayashi [2] to investigate the side spread in flat
rolling. An approach for analyzing plane strain rolling is pre-
sented byMartins PAF [3] combining upper-boundmethod and
weighted residual method. The dual-stream function velocity
field was derived by Sezek et al. [4] to analyze cold and hot
plate rolling.

To study complex deformation, FEM is one of the best ways.
Kobayashi [5] used FEM to investigate metal forming in flat
rolling, and this is an early research work. Mori and Osakada
[6] used rigid-plastic FEM to analyze changes of the strip appear-
ance and rolling force in rolling deformation. Kwak et al. [7]
developed an approximate model predicting rolling force and
torque applicable to finishing stand of tandem hot strip mill using
rigid-viscoplastic FEM. Mori et al. [8] established the formula-
tion of rigid-plastic FEM using diagonal matrix and developed a
parallel processing for the large-scale simulation of metal
forming processes. The influence of rolling force on the plate
shape and final profile was studied by Zhang and Cui [9] using
3D thermo-mechanical coupled elastoplastic FEM. However,
FEM is not suitable for on-line control due to large number of
computation times and huge memory capacities, so an analytical
method is also necessary for actual production.

Narayanasamy [10] used a cosine velocity field to research
extrusion and received the upper-bound solution. But, cosine
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velocity field has not been reported to be applied to rolling yet.
In this paper, a successful method has been presented to com-
pute the analytical solution of rolling force and torque in hot
strip finish rolling on the basis of a cosine velocity and strain
rate fields which are firstly proposed. The validity of the cal-
culated results is discussed through comparing those with oth-
er models’ results and on-line measured ones in a hot strip
rolling plant.

2 Cosine velocity field

As shown in Fig. 1, the thickness is reduced from 2h0 to 2h1
(absolute reduction Δh=h0

−h1) while the workpiece is rolled
through a pair of cylindrical work rolls with radius of R consid-
ering the effect of roll flattening. The horizontal projected length
of the roll-workpiece contact arc is given by l, and bite angle is
given by θ (θ=sin−1(l/R)). Cartesian coordinates x, y, and z are
defined as length, width, and thickness directions of the work-
piece, respectively. The deformation zone of the workpiece is
assumed rigid-plastic material [11]. On account of the symmetry
of deformation zone, only a quarter is considered, as shown in
Fig. 2. The precise equation of contact arc is

hx ¼ Rþ h1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− l−xð Þ2

q
, and the first-order derivative equa-

tion is h
0
x ¼ − l−xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2− l−xð Þ2
p ¼ −tanα.

Note that the shape factor of the workpiece satisfies that the
ratio of width/thickness is greater than 10 and l/(2hm)>1 (hm is
the mean half thickness) in finishing zone of hot strip
rolling, and then, deformation in the width direction is
neglected [4]. The width b can be taken as a constant;
hence, b0=bn=b1=b. Moreover, it is assumed that
rolling cross sections remain plane and vertical lines
remain straight. Using those assumptions, a new cosine
velocity field is proposed:

vx ¼ v0 1þ 2

π
cos

πhx
2h0

� �� �

vy ¼ v0h
0
xy

1

h0
sin

πhx
2h0

� �
−
1

hx
1þ 2

π
cos

πhx
2h0

� �� �� �

vz ¼ v0h
0
xz

hx
1þ 2

π
cos

πhx
2h0

� �� � ð1Þ

According to the Cauchy equation, the strain rate compo-
nents from Eq. (1) are as follows:

ε�x ¼ ∂vx
∂x

¼ −
v0h

0
x

h0
sin

πhx
2h0

� �

ε�y ¼ ∂vy
∂y

¼ v0h
0
x

1

h0
sin

πhx
2h0

� �
−
1

hx
1þ 2

π
cos

πhx
2h0

� �� �� �

ε�z ¼ ∂vz
∂z

¼ v0h
0
x

hx
1þ 2

π
cos

πhx
2h0

� �� �
ð2Þ

In Eqs. (1) and (2), ε�x þ ε�y þ ε�z ¼ 0; vx|x=0=v0; vy|y=0=0;
vz|z=0=0; vzj z¼hx ¼ −vxtanα. So, they are kinematically ad-
missible velocity and strain rate fields[12]. The flow volume
per second is U=v0h0b=vnhnb=vRcosαnb(R+h1−Rcosαn),
where αn is a neutral angle.

3 EA yield criterion

Equal area (EA) yield criterion is a linear criterion, which
covers equal projected area to that of Mises circle on the
π-plane. The geometric figure of EA yield criterion on
the π-plane is equilateral, but non-equiangular dodeca-
gon intersected with Mises circle locus as shown in
Fig. 3.

The formula of the EA yield criterion and the power per
unit volume were given by Zhao et al. [13]. The equations of
EAyield criterion in the Haigh-Westergaard stress space are as
follows (σ1>σ2>σ3):

σ1− 2−
9ffiffiffi
3

p
π

� �
σ2−

9ffiffiffi
3

p
π
−1

� �
σ3 ¼ σs; if σ2≤

1

2
σ1 þ σ3ð Þ

9ffiffiffi
3

p
π
−1

� �
σ1 þ 2−

9ffiffiffi
3

p
π

� �
σ2−σ3 ¼ σs; if σ2≥

1

2
σ1 þ σ3ð Þ

D ε⋅i j
	 
 ¼

ffiffiffi
3

p
π

9
σs ε⋅max−ε⋅minð Þ

ð3Þ

where σs is the material yield stress and D ε⋅i j
	 


is the plastic
power per unit volume.

The EAyield criterion had been used in metal rolling [13],
calculation of the crack tip plastic zone dimension [14], and so
on.
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Fig. 1 Deformation of workpiece

844 Int J Adv Manuf Technol (2016) 84:843–850



4 Total power functional

4.1 Internal plastic deformation power

According to Eq. (2), ε⋅max ¼ ε⋅x, ε⋅min ¼ ε⋅z and substituting
these into the Eq. (3), the internal plastic deformation power
W
:
i then becomes

W
:
i ¼

Z
V

D ε⋅i j
	 


dV ¼ 4
ffiffiffi
3

p
π

9
σs

Z l

0

Z b

0

Z hx

0
ε⋅max−ε⋅minð Þdxdydz

¼ 4
ffiffiffi
3

p
πσsU

9
εþ 8

π2
1−cos

πε
2

� �h i
þ 2 1−εð Þ

π
sin

πε
2

� �� � ð4Þ

where ε ¼ Δh
h0

is the reduction.

4.2 Friction power

The friction power acts on the interface between the roll and
workpiece, as shown in Fig. 2. The roll surface equation is

z ¼ hx ¼ Rþ h1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− l−xð Þ2

q
ð5Þ

The tangential velocity discontinuityΔvf and friction stress
τf=mk are always co-linear vector on the interface. The co-
line vector inner product [15] is used to integrate the friction
power W

:
f as follows:

W
:
f ¼ 4

Z l

0

Z b

0
τ f




Δv f



dF ¼ 4

Z l

0

Z b

0
τ fΔv f dF

¼ 4

Z l

0

Z b

0
τ f xΔvx þ τ f yΔvy þ τ f zΔvz
	 


dF

¼ 4mk

Z l

0

Z b

0
ΔvxcosαþΔvycosβ þΔvzcosγ
	 


dFð6Þ

where k ¼ σs=
ffiffiffi
3

p
is the yield shear stress, α, β, γ are the

angles between Δvf and the directions of x, y, and z axes,
respectively. Differential element area of the roll surface from

Eq. (5) is dF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

0
x

	 
2q
dxdy ¼ secαdxdy. And then, the

values of direction cosines are as follows

cosα ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− l−xð Þ2

q
R

cosγ ¼ � l−xð Þ
R

¼ sinα cosβ ¼ 0 ð7Þ

The components of tangential velocity discontinuity Δvf
along roll surface from Eq. (1) are respectively:

Δvx ¼ vRcosα−v0 1þ 2

π
cos

πhx
2h0

� �� �

Δvy ¼ −v0h
0
xy

1

h0
sin

πhx
2h0

� �
−
1

hx
1þ 2

π
cos

πhx
2h0

� �� �� �

Δvzjz¼hx
¼ vRsinα−v0tanα 1þ 2

π
cos

πhx
2h0

� �� �
ð8Þ
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Substituting Eqs. (7) and (8) into Eq. (6) and integrating,
then obtains

W f ¼ 4mkb

Z l

0
vRcosα−v0 1þ 2

π
cos

πhx
2h0

� �� �� �
dxþ

Z l

0
vRsinα−v0tanα 1þ 2

π
cos

πhx
2h0

� �� �� �
tanαdx

� �
¼ 4mkb I f 1 þ I f 2

	 
 ð9Þ

I f 1 ¼
Z xn

0
vRcosα−v0 1þ 2

π
cos

πhx
2h0

� �� �� �
dx−
Z l

xn

vRcosα−v0 1þ 2

π
cos

πhx
2h0

� �� �� �
dx

¼ vRR
θ
2
−αn þ sin2θ

4
−
sin2αn

2

� �
þ g f v0Rsinαn þ gbv0R sinαn−sinθð Þ

ð10Þ

I f 2 ¼
Z xn

0
vRsinαtanα−v0tan2α 1þ 2

π
cos

πhx
2h0

� �� �� �
dx−
Z l

xn

vRsinαtanα−v0tan2α 1þ 2

π
cos

πhx
2h0

� �� �� �
dx

¼ vRR
θ
2
−αn þ sin2αn

2
−
sin2θ
4

� �
þ gbv0R ln

tan π
.
4þ αn

.
2

� �
tan π

.
4þ θ

.
2

� � þ sinθ−sinαn

2
4

3
5

þ g f v0R lntan π
.
4þ αn

.
2

� �
−sinαn

h i
ð11Þ

where gb and gf are the parameters, gb ¼ 1þ 2
π cos

πhmb
2h0

� �
and g f ¼ 1þ 2

π cos
πhm f

2h0

� �
. Mean thickness of workpiece be-

tween entry and neutral plane is hmb ¼ h0þhαn
2 ;, and mean

thickness of workpiece between exit and neutral plane is

hmf ¼ h1þhαn
2 .

Substituting Eqs. (10) and (11) into Eq. (9), then
gives

W
:
f ¼ 4mkbR vR θ−2αnð Þ þ U

h0b
gbln

tan π
.
4þ αn

.
2

� �
tan π

.
4þ θ

.
2

� � þ g f lntan π
.
4þ αn

.
2

� �0
@

1
A

2
4

3
5 ð12Þ

4.3 Shear power

In the exit section (x=l) of deformation zone according to
Eq. (1), there is hx= l

′ =hα =0
′ =0, νz|x= l=νy|x= l=0. Therefore,

there is no shear power in the exit section. But, on the entry
section (x=0)

vy x¼0j ¼ 0; vz x¼0j ¼ −
v0tanθ
h0

z ð13Þ

Then, the shear power W
:
s is [16]

W
:
s ¼ 4k

Z h0

0

Z b0

0
Δvtj jdydz ¼ 4k

Z h0

0

Z b0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2y þ v2z

q
dydz

¼ 4k

Z b

0

Z h0

0

v0tanθ
h0

zdydz ¼ 2kbh0v0tanθ ¼ 2kU tanθ

ð14Þ

4.4 Total deformation power and its minimization

Substituting Eqs. (4), (12), and (14) into Φ ¼ W
:
i þW

:
f þW

:
s,

an analytical solution of total deformation power functional Φ
is

Φ ¼ 4
ffiffiffi
3

p
πσsU
9

εþ 8

π2
1−cos

πε
2

� �h i
þ 2 1−εð Þ

π
sin

πε
2

� �� �
þ2kU tanθ

þ 4mkbR vR θ−2αnð Þ þ U

h0b
gbln

tan π
.
4þ αn

.
2

� �
tan π

.
4þ θ

.
2

� � þ g f lntan π
.
4þ αn

.
2

� �0
@

1
A

2
4

3
5

ð15Þ

The total power of Eq. (15) is minimized with re-
spect to the arbitrary variable αn, and then, the value
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closest to the actual power required is got. The follow-
ing equation can be obtained

dΦ
dαn

¼ dW
:
i

dαn
þ dW

:
s

dαn
þ dW

:
f

dαn
¼ 0 ð16Þ

where

dW
:
i

dαn
¼ 4

ffiffiffi
3

p
πσsN

9
εþ 8

π2
1−cos

πε
2

� �h i
þ 2 1−εð Þ

π
sin

πε
2

� �� �
ð17Þ

dW
:
f

dαn
¼ 4mkbR −2vR þ N

h0b
gbln

tan π
.
4þ αn

.
2

� �
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.
4þ θ
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2

� � þ g f lntan π
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4þ αn

.
2

� �2
4

3
5 þ

U gb þ g f

� �
h0bcosαn

8<
:
−
URsinαn

2h20b
sin

πhmb
2h0

� �
ln
tan π

.
4þ αn

.
2

� �
tan π

.
4þ θ

.
2

� � þ sin
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2h0

� �
lntan π

.
4þ αn

.
2

� �2
4

3
5
9=
;

ð18Þ

dW
:
s

dαn
¼ 2kN tanθ ð19Þ where N ¼ dU

dαn
¼ vRbRsin2αn�vRb Rþ h1ð Þ sinαn.

The friction factor can be deduced as follows:

m ¼

ffiffiffi
3

p
πσsN

9
εþ 8

π2
1−cos

πε
2

� �h i
þ 2 1−εð Þ

π
sin

πε
2

� �� �
þ kN tanθ

2

kbR 2vR−
N

h0b
gbln

tan π
.
4þ αn

.
2

� �
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.
4þ θ

.
2

� � þ g f lntan π
.
4þ αn

.
2

� �2
4

3
5− U gb þ g f

� �
h0bcosαn

8<
:

þ URsinαn
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� �
ln
tan π

.
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.
2

� �
tan π

.
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2h0

� �
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2

� �2
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9=
;

ð20Þ

The optimal values of αn in various production conditions
are obtained by solving Eq. (16). The minimum of total power
Φmin can be obtained by substituting αn into Eq. (15) [17].
Then, the corresponding minimum values of rolling torque
Mmin, rolling force Fmin, and stress effective factor nσ (χ is
the arm factor) can be determined, respectively [18]:

Mmin¼ RΦmin

2νR
Fmin¼ Mmin

χ⋅
ffiffiffiffiffiffiffiffiffiffiffiffi
2RΔh

p nσ ¼ Fmin

4bl k
ð21Þ

Considering the effect of roll flattening on the rolling force,
the roll flattening model used in calculation is determined by
Sun [19]

R ¼ R0 1þ 2:2� 10−5
Fmin

bΔh

� �
ð22Þ

where R0 is the original radius of work roll. The computing
flow chart is shown in Fig. 4, and the process ends when the

radius is convergent. The condition of convergence is Ri−Ri−1j j
Ri

≤0:01 in this paper.

5 Calculation and discussion

Practical data of rolling force measured in a factory are
used to verify the analytical result calculated in this paper.
Taking the material of Q235B steel product, for example,
the workpiece thickness is reduced from 50 to 5.7 mm in
the seven finishing stands; the width is 510 mm. Table 1
gives the roll circumferential velocity vR and temperature t
of no. 1 to no. 7 stands in finishing mill. The regression
model of deformation resistance for the Q235B steel used
in the calculation is determined by the formula in Ref.
[19], and it can be expressed as follows:

σs ¼ σ0e
a1Tþa2ð Þ Ε

�

10

 ! a3Tþa4ð Þ
a6

Ε
0:4

� �a5

− a6−1ð Þ Ε
0:4

� �

ð23Þ
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where σ0=139.8MPa, a1=−2.861, a2=3.642, a3=0.254,
a4=−0.1993, a5=0.4349, a6=1.51, T ¼ tþ273

1000 , and t is
the deformation temperature. Equation (23) shows that de-
formation resistance is a function of rolling temperature t,
true strain Ε, and strain rate E

:
.

The rolling forces of analytical result are calculated by
Eq. (21) and then compared with measured ones and the an-
alytical results of Sims [20] and Ford-Alexander [21] ones as
shown in Fig. 5.

According to Fig. 5, due to the nature of the upper-
bound method, the calculated rolling forces are slightly
higher than the measured ones. However, the errors are

less than 9.51 %. The results of the present model are
in a good agreement with Sims and Ford-Alexander ones
within 8.5 % error. The model of deformation resistance is
chosen from the reference which was regressed the data
from laboratory experiment. The comparison errors may
be made large by this model. The model of deformation
resistance may be regressed from the data in the actual
production, which is to be left as a future work. Results
show that the proposed cosine velocity field is reliable and
adequate enough to be applied in the process control of
hot strip finish rolling.

Figure 6 illustrates that the rolling torque and force increase
linearly with the increasing of reduction ε. While Δh in-
creases, the length of deformation zone and the volume of
compressed metal increase, and then, the rolling force in-
creases subsequently.

Figure 7 shows that the shear power W
:
s is smaller

than the internal plastic deformation power W
:
i and fric-

tion power W
:
f . Since the workpiece used in the present

paper is thin, then friction power increases with the
increasing of reduction ε.

It can be seen from Fig. 8 that the location of neutral
point xn/l is affected by the reduction ε and friction
factor m. When ε increases or m decreases, the neutral
point moves toward the exit plane. Besides, the neutral

Table 1 Rolling conditions in a
factory Pass No. 1 2 3 4 5 6 7

vR (m s−1) 0.94 1.32 1.9 2.8 3.8 5.12 6.02

t (°C) 1040.94 1032.23 1023.37 1015.41 1008.03 998.44 992.67

Ε=ln(h0/h1) 0.352 0.343 0.357 0.394 0.294 0.293 0.125

σs (MPa) 108.58 119.07 136.94 153.43 155.14 167.42 130.66

Property and geometrical
inputs

End

Start

Calculate cosine velocity field

vx, vy and vz

Calculate total deformation
power

Minimize total power s

Calculate rolling torque Mmin

and rolling force Fmin

N

Y

convergence

Calculate roll flattening radius
Ri

*

*

+i s fW W W

min

Fig. 4 Flow chart of the calculation
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Fig. 5 Comparison rolling force predicted by present model with other
researchers’ and measured results
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point location changes obviously with a small change in
friction for m<0.3.

It can be seen from Fig. 9 that the reduction ε and friction
factor m influence the stress state coefficient nσ obviously.
And, the nσ increases with the increasing of ε or m. In addi-
tion, the effect of m on the nσ is obvious, which is consistent
with the result shown in Fig. 7.

Figure 10 displays the effect of deformation factors l/(2hm)
and R/h0 on stress state coefficient nσ. It can be seen that nσ
increases as l/(2hm) or R/h0 increases.
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6 Conclusions

1. The cosine velocity field satisfying kinematically admis-
sible condition is firstly proposed to be applied in hot strip
finish rolling process. The analytical solutions of rolling
torque, rolling force, and stress effective factor are obtain-
ed using the field and EA yield criterion.

2. The error of calculated required optimum rolling forces is
within 9.51 % compared with measured ones and less
than 8.5 % compared with Sims and Ford-Alexander’s
results. The analytical solutions are reliable and adequate
enough to research finish rolling process.

3. While friction factorm decreases or reduction ε increases,
the neutral point moves toward the exit. Both rolling force
and torque increase with the increasing of reduction ε.

4. The stress factor nσ increases while the shape factor l/
(2hm), ε, R/h0, or friction factor m increases.

Acknowledgments This study is financially supported by the National
Natural Science Foundation of China (No.: 51074052, 50734002), the
Fundamental Research Funds for the Central Universities (No.:
N140704001), and the PhD Start-up Fund of Natural Science Foundation
of Liaoning Province, China (No.: 20131033).

References

1. Hill R (1963) A general method of analysis for metal-working
processes. J Mech Phys Solids 11(5):305–326

2. Oh SI, Kobayashi S (1975) An approximate method for a three-
dimensional analysis of rolling. Int J Mech Sci 17(4):293–305

3. Martins PAF, Marques MJMB (1999) Upper bound analysis of
plane strain rolling using a flow function and the weighted
residuals method. Int J Numer Meth Eng 44(11):1671–1683.
doi:10.1002/(Sici)1097-0207(19990420)44:11<1671::Aid-
Nme559>3.0.Co;2-2

4. Sezek S, Aksakal B, Can Y (2008) Analysis of cold and hot plate
rolling using dual stream functions. Mater Design 29(3):584–596.
doi:10.1016/j.matdes.2007.03.005

5. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-
element method. Oxford university press, New York

6. Mori K, Osakada K (1990) Finite element simulation of three‐di-
mensional deformation in shape rolling. Int J Numer Meth Eng
30(8):1431–1440

7. Kwak WJ, Kim YH, Park HD, Lee JH, Hwang SM (2000) FE-
based on-line model for the prediction of roll force and roll power
in hot strip rolling. ISIJ Int 40(10):1013–1018. doi:10.2355/
isijinternational.40.1013

8. Mori K, Otomo Y, Yoshimura H (2006) Parallel processing of 3D
rigid-plastic finite element method using diagonal matrix. J Mater
Process Technol 177(1–3):63–67. doi:10.1016/j.jmatprotec.2006.
04.064

9. Zhang JL, Cui ZS (2011) Continuous FEM simulation ofmulti-pass
plate hot rolling suitable for plate shape analysis. J Cent South Univ
T 18(1):16–22. doi:10.1007/s11771-011-0652-3

10. Narayanasmy R, Ponalagusamy R, Venkatesan R, Srinivasan P
(2006) An upper bound solution to extrusion of circular billet to
circular shape through cosine dies. Mater Design 27(5):411–415.
doi:10.1016/j.matdes.2004.11.026

11. Chandra S, Dixit US (2004) A rigid-plastic finite element analysis
of temper rolling process. J Mater Process Technol 152(1):9–16.
doi:10.1016/j.jmatprotec.2003.11.003

12. Tabatabaei SA, Abrinia K, Givi MKB (2014) Application of equi-
potential lines method for accurate definition of the deforming zone
in the upper-bound analysis of forward extrusion problems. Int J
Adv Manuf Tech 72(5–8):1039–1050. doi:10.1007/s00170-014-
5647-4

13. Zhao DW, FangQ, Li CM, Liu XH,WangGD (2010) Derivation of
plastic specific work rate for equal area yield criterion and its ap-
plication to rolling. J Iron Steel Res Int 17(4):34–38

14. Lan LY, Li CM, Zhao DW, Qiu CL (2012) Derivation of equal area
criterion and its application to crack tip plastic zone analysis. Appl
Mech Mat 110:2918–2925

15. Liu YM, Zhang DH, Zhao DW, Sun J (2015) Analysis of vertical
rolling using double parabolic model and stream function velocity
field. Int J Adv Manuf Tech. doi:10.1007/s00170-015-7393-7

16. Abrinia K, Mirnia MJ (2009) A new generalized upper-bound so-
lution for the ECAE process. Int J Adv Manuf Tech 46(1–4):411–
421. doi:10.1007/s00170-009-2103-y

17. Hua L, Deng JD, Qian DS, Ma Q (2014) Using upper bound solu-
tion to analyze force parameters of three-roll cross rolling of rings
with small hole and deep groove. Int J Adv Manuf Tech 76(1–4):
353–366. doi:10.1007/s00170-014-6107-x

18. Zhang SH, Zhao DW, Gao CR (2012) The calculation of roll torque
and roll separating force for broadside rolling by stream function
method. Int J Mech Sci 57(1):74–78. doi:10.1016/j.ijmecsci.2012.
02.006

19. Sun YK (2010) Model and control of cold and hot rolling mill for
sheets and strips. Metallurgical Industry Press, Beijing

20. Sims RB (1954) The calculation of roll force and torque in hot
rolling mills. Proc I Mech Eng 168(1954):191–200. doi:10.1243/
pime_proc_1954_168_023_02

21. Gupta S, Ford H (1967) Calculation method for hot rolling of steel
sheet and strip. J Iron Steel Institute 205(2):186–190

850 Int J Adv Manuf Technol (2016) 84:843–850

http://dx.doi.org/10.1002/(Sici)1097-0207(19990420)44:11%3C1671::Aid-Nme559%3E3.0.Co;2-2
http://dx.doi.org/10.1002/(Sici)1097-0207(19990420)44:11%3C1671::Aid-Nme559%3E3.0.Co;2-2
http://dx.doi.org/10.1016/j.matdes.2007.03.005
http://dx.doi.org/10.2355/isijinternational.40.1013
http://dx.doi.org/10.2355/isijinternational.40.1013
http://dx.doi.org/10.1016/j.jmatprotec.2006.04.064
http://dx.doi.org/10.1016/j.jmatprotec.2006.04.064
http://dx.doi.org/10.1007/s11771-011-0652-3
http://dx.doi.org/10.1016/j.matdes.2004.11.026
http://dx.doi.org/10.1016/j.jmatprotec.2003.11.003
http://dx.doi.org/10.1007/s00170-014-5647-4
http://dx.doi.org/10.1007/s00170-014-5647-4
http://dx.doi.org/10.1007/s00170-015-7393-7
http://dx.doi.org/10.1007/s00170-009-2103-y
http://dx.doi.org/10.1007/s00170-014-6107-x
http://dx.doi.org/10.1016/j.ijmecsci.2012.02.006
http://dx.doi.org/10.1016/j.ijmecsci.2012.02.006
http://dx.doi.org/10.1243/pime_proc_1954_168_023_02
http://dx.doi.org/10.1243/pime_proc_1954_168_023_02

	A...
	Abstract
	Introduction
	Cosine velocity field
	EA yield criterion
	Total power functional
	Internal plastic deformation power
	Friction power
	Shear power
	Total deformation power and its minimization

	Calculation and discussion
	Conclusions
	References


