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Abstract Monitoring and early detection of chatter are the
key techniques to avoid the harmful effects caused by chatter
in manufacturing process. The key for early chatter detection
is to capture the feature signatures. A convenient and reliable
technique is presented in this study to detect chatter in gear
grinding process based on servo feed motor current and wave-
let packet transform. Wavelet packet transform was used to
monitor the energy change in the frequency domain and to
identify the feature frequency band with respect to chatter,
the result of which was confirmed by the impact hammer test.
Standard deviation and energy ratio of the feature frequency
band signal were chosen as the indexes of chatter monitoring.
Combining these two chatter features, the state of the grinding
process could be classified and chatter could be detected reli-
ably in industrial application with proper thresholds. Acceler-
ation signals of the machine tool were used as a reference to
compare with the results from current signals. In every stage
of the grinding process, the feature frequency band signals of
current and vibration signal have shown very coincident var-
iation trend. Both theoretical analysis and experimental results
manifested the feasibility and efficiency of the proposed
method.
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1 Introduction

Chatter is a kind of self-excited instable vibration during ma-
chining process, which always leads to multiple negative ef-
fects. The high complexity of mechanism and phenomenon
makes it very difficult to understand chatter completely.
Therefore, avoidance of chatter in manufacturing process
has become a necessary and important requirement for man-
ufacturers. Traditionally, two kinds of strategies are employed
to achieve this target. One is to select proper machining pa-
rameters, and the other is to change the mechanical system’s
dynamic behavior [1]. However, it is always difficult to apply
these methods in practice due to many factors, such as the
frequent change of workpiece and machining parameters, the
movement of the tool holder and worktable, the dullness of the
tool, and so on. The only reliable strategy is to identify the
machining status automatically by online monitoring, recog-
nizing the occurrence of chatter, and suppressing it with effi-
cient measures. Therefore, monitoring and detection of chatter
are the foundation and key to avoid chatter in manufacturing.

In view of industrial practical application, a chatter detect-
ing system should be with high precision, high reliability, low
cost, and high usability. To a large extent, these demands rely
on the signal type chosen to monitor. The signals often used
for chatter monitoring are vibration, current, acoustic emis-
sion, cutting force, cutting torque, sound, and power. Kuljanic
[2] used an approach based on multi-sensors to detect chatter
inmilling. The results indicate that cutting torque is influenced
by chatter significantly since it is proportional to the uncut
chip thickness, which is perturbed by the regenerative effect.
Therefore, reliable chatter indicators can be derived from the
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cutting torque signals. However, it is difficult to apply the
rotating dynamometer in industrial conditions since it is not
compatible to the tool changer, which may reduce the stiffness
of the system and limit the selection of cutting parameters. At
the same time, it is expensive. The use of microphones for
capturing and analyzing the cutting sound has been demon-
strated to be an efficient and cheap solution [3]. However, one
drawback is that the sound coming from other machines of the
factory will make the received sound signal have a low signal
to noise ratio (SNR).

Recently, researchers also began to detect chatter occur-
rence in turning and milling process with current signals.
Compared with other signals, the drive motor current has sev-
eral remarkable advantages, such as easier to acquire, low
transducer cost, convenient to set up, and no interference with
the machining environment. Based on those properties, a lot
of work has been done on cutting force, tool-wear, tool-
breakage detection, and other machining status monitoring
by using motor current [4–8]. The current signals utilized for
chatter detection could be spindle motor current or feed motor
current. For milling process, the spindle inertia is small; thus,
the spindle current is sensitive enough to be used to detect
chatter [9]. As for machining process with large inertia spin-
dle, like heavy duty numerical control (NC) vertical lathing or
grinding, the power used to remove the workpiece material is
only a part of the total spindle power. Therefore, the spindle
motor current is insensitive to the change of cutting state,
leading to the loss of high-frequency machining state infor-
mation. However, the feed motor current is sensitive to the
change of cutting force and cutting state. Accordingly, we
can use the feed motor current to monitor and detect chatter
in heavy duty turning and grinding process. Liu [10] proposed
a cutting state monitoring method based on feed motor current
in turning, which has an identification accuracy rate of above
95 %. As stated above, motor current can be used as an excel-
lent indicator for chatter detection.

Wavelet analysis has been widely used in chatter monitor-
ing field [11, 12]. Gonzalez-Brambila [13] used discrete wave-
let transform (DWT) to analyze waviness on the workpiece
surface in outer diameter grinding to monitor the amplitude
and location of chatter. Choi [14] used a wavelet-based max-
imum likelihood estimation algorithm to calculate a chatter
detection index. Yao [15] used wavelet packet transform
(WPT) to extract chatter feature vector and designed a support
vector machine (SVM) for pattern classification. Cao [16]
proposed a chatter identification method for end milling based
on WPT and Hilbert–Huang transform (HHT).

Recently, Quintana and Ciurana [1] reviewed the research
achievement of chatter in machining process in detail. It is
pointed out that the key of chatter monitoring is to detect
chatter when it just begins and is not completely developed;
therefore, the negative effect caused by chatter can be sup-
pressed as much as possible. However, in the initial stage of

chatter occurrence, the chatter features are submerged by
forced vibration and noise. Thus, the key point to realize early
chatter identification is to extract the feature frequency band
signal where chatter information concentrates and based on
that relevant analysis can be conducted.

However, in the realistic condition, chatter frequencies are
very complicated, which are related to the damped natural
frequency of the mechanical system. In milling process, they
are also connected to the tooth pass excitation frequency and
its higher harmonics [17]. In grinding process, the chatter
frequency varies along with the grinding process which has
strong nonlinear behavior character [18]. As a result, the chat-
ter frequency band is usually selected based on experience
almost lacking precise criterion [16].

This paper proposed a convenient and reliable grinding
chatter detection technique based on servo feed motor current
and an analytical method to identify the chatter frequency
band. The rest of the paper is organized as follows.
Section 2 briefly summarizes the study on chatter in grinding
and its detection problem. The theoretical background of chat-
ter detection by using servo feed motor current is stated in
Section 3. Section 4 presents the scheme of the proposed chat-
ter detection technique based on WPT. Section 5 introduces
the experimental setup. In Section 6, the results and discussion
of the proposed chatter detection technique are given and the
acceleration signals are used as a reference to compare with
the results. Finally, the conclusions are given in Section 7.

2 Chatter in grinding and its detection

The stability and monitoring of chatter vibrations in grinding
was reviewed in a CIRP key note paper by Inasaki and
Karpuschewski [19], and the time domain simulation of grind-
ing chatter was reviewed by Altintas and Weck [20]. Among
the various conceivable reasons for process instability in
grinding, the regenerative effect is considered to be the major
cause. Due to the rotational motion of the workpiece during
the material removal process, the waves generated on the
workpiece surface created by the relative vibration between
the grinding wheel and the workpiece result in a change of
depth of cut after one revolution of the workpiece. The phase
shift between the surface waves and the current relative vibra-
tion makes the process unstable when a certain condition is
reached. According to the position where regenerative waves
generated, it can be divided into workpiece regenerative chat-
ter and grinding wheel regenerative chatter. The increase rate
of vibration amplitude for wheel regenerative chatter is much
slower than that of workpiece regeneration type. Compared
with cutting process, grinding is much more complex with
multi-point contact and the characteristic parameters of grind-
ing dynamics which are not generally necessary to consider in
cutting dynamics, such as the contact stiffness of the grinding
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wheel and the grinding damping. As a result, there have been
fewer research reports on grinding chatter than on cutting
chatter like turning and milling.

Basically, the principles to achieve chatter detection can be
classified into two kinds. One is based on the changes of the
characteristics of feature signals which are sensitive to chatter
occurrence, and the other is based on the changes in grinding
dynamics caused by the onset of chatter. For the former one,
the signals often used are acoustic emission, acceleration, and
grinding force [21, 22]. Chatter will excite harmonics of grind-
ing wheel spindle or workpiece axis rotational frequency in
the feature signal according to the frequency domain analysis
of regenerative chatter [19]. The latter chatter detection prin-
ciple uses the coarse-grained entropy rate [23] or the coarse-
grained information rate [24] as the indicators which reflect
the predictability of the process.

To sum up, it can be concluded that although many differ-
ent approaches have been taken to detect chatter from process
quantities, it is basically only acceleration sensors and to some
extent AE systems that have found greater industrial accep-
tance. All the other sensor systems are restricted to laboratory
use either because of the complexity or financial and time
efforts or because of a lack of reliability in the rough surround-
ing of industrial production [19]. Therefore, the motor current-
based grinding chatter detection system proposed in this study
is of great industrial application value.

3 Theoretical background of chatter detection
using servo feed motor current

A lot of research work indicated that cutting torque is a perfect
signal for chatter detection [2, 25, 26]. However, the applica-
tion of cutting torque transducer is constrained by some fac-
tors like transducer setup, mechanical compatibility, and cost.
Therefore, researchers tried to acquire the equivalent cutting
torque using other indirect methods, within which the equiv-
alent conversion of motor current signals is a considerable and
successful method.

Young [4] constructed a dynamical model of machine tool
feed drive system to determine the relationship between the
cutting force, motor current, and motor rotation. The motor
servo drive system is composed of three parts, the position
loop, the velocity loop, and the current loop. The torque equa-
tion of the feed drive system can be derived as follows:

Tm ¼ Jm
dw

dt
þ T d ¼ Jm

dw

dt
þ T cutting force þ T friction ¼ K tIq ð1Þ

where Tm is the motor torque, Jm is the equivalent inertia, w is
the angular velocity, Td is the disturbance torque, Kt is the
torque constant, and Iq is the converted equivalent DC from
the three-phase AC.

The worktable moves once the motor torque (Tm) over-
comes the disturbance and table inertia. In the cutting process,
the disturbance can be divided into frictional torque and the
torque caused by cutting force. During the steady cutting pro-
cess, the effects of frictional torque and inertia torque can be
neglected. Therefore, the cutting torque is proportional to the
motor current Iq approximately.

The three-phase AC can be converted into DC using a DQ
transformation, whereas the root mean square (rms) method is
more often used in industrial conditions [5]. In the steady
state, the rms current value multiplied by √3 is the Q-axis
current (Iq). We used the rms value as the equivalent DC to
calculate the motor torque. The formula is

I rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
I2u þ I2v þ I2w
� �

r
ð2Þ

Therefore, by measuring the motor three-phase currents
and converting them into DC, the equivalent cutting torque
can be acquired.

Moreover, along with the improvement of modern NCma-
chine tool servo drive system, the precision, sensitivity, and
frequency response of the NC system all reach a high level. In
some advanced and complicated machining processes, such as
gear grinding [27] and curved surface milling, synchronous
movements of multiple axes are required. Mostly, the move-
ment of the workpiece axis is constrained by the synchronous
relationship with other active moving axis. For example, in
this study, during the gear generating grinding process, the
theoretical angular velocity of the workpiece axis is decided
by tracking and sampling the movement of the grinding wheel
axis and two feed axes, then closed loop controlled by the NC
system.When chatter occurs, the machine tool system, includ-
ing the workpiece axis, grinding wheel axis, and feed axes, all
will vibrate with the chatter frequency. And the NC servo
system will respond to this vibration, track, and compensate
to the chatter of these axes automatically. Therefore, compo-
nents corresponding to the chatter frequency are contained in
the workpiece axis motor currents.

As stated above, on the one hand, equivalent cutting torque
can be acquired from the motor currents. On the other hand,
components corresponding to the chatter frequency are
injected actively into the workpiece axis motor currents when
chatter occurs. Therefore, chatter can be detected effectively
by analyzing the servo feed motor current.

4 Chatter frequency band identification and feature
extraction based on WPT

The first feature in the process of chatter generating is that the
vibration energy transfers from high frequency to low fre-
quency, and the frequency band becomes narrow at the same
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time. Then, in the time domain, the vibration amplitude begins
to grow significantly [28]. Therefore, compared with time
domain monitoring, frequency domain monitoring is more
fundamental and important.

Wavelet packet transform decomposes signal in the fre-
quency domain as a decomposition tree. Compared with
DWT, WPT can provide a more elaborate signal analysis. It
decomposes the signal at the whole frequency band; therefore,
the higher frequency resolution can be obtained [29]. As an
illustration, the three-level WPT decomposition process is
displayed in Fig. 1. A signal x(t) is decomposed by WPT,
and the wavelet packet signal xi, j is produced, where xi, j de-
notes the jth frequency band signal at level i ( j=1,2,…,J,
where J is the number of decomposed wavelet packets and
equals 2i, and i=1,2,…,I, where I is the decomposition level).
The frequency bandwidth of xi, j is denoted as [( j−−1)2−ifN,
j2−ifN], where fN is the upper limit of the signal frequency
covered by x(t).

The signal is decomposed into independent frequency band
with no redundant, exhaustive, and orthogonal characteristic;
thus, the SNR of the feature signal is improved [30]. The
energy of every single frequency band reveals different status
information during the machine running process and can be
used as an important criterion for machine dynamic analysis,
monitoring, and diagnosis [31]. With the help of WPT analy-
sis, we can observe the energy change of every frequency
band completely, realizing frequency domain monitoring of
the machining process.

To detect chatter at its early stage, the feature frequency
band signal of chatter should be focused on. This signal may
have remarkable characteristics of chatter as many interfering
information has already been filtered. When chatter develops,
the energy of the frequency band where chatter locates is
bound to increase. Therefore, by monitoring the energy
change of all frequency bands, we can identify the chatter

frequency band analytically and precisely. By tracking and
monitoring the feature frequency band specifically, the detec-
tion of weak chatter in its early stage can be realized.

The implementation of early chatter identification is to de-
tect the trend of chatter in the transition state based on relevant
features. Two kinds of chatter features should be considered:
(1) the increase of the signal amplitude in time domain and (2)
the energy transfer in frequency domain. Standard deviation
of the signal can reflect changes of the signal amplitude in
time domain, so that it can be chosen as a feature index. En-
ergy ratio of each wavelet packet clearly demonstrates the
developing process in frequency domain in the course of chat-
ter emerging and reflects the fundamental cause of chatter;

signal acquisition 
module

Worktable

Grinding wheel

Gear

Spindle motor

3-axis Accelerometer

Motor
Inverter

Current clamp

Torque motor 

Fig. 3 Schematic diagram of the experimental setup

Measured current signals

 in the machining process

Converting 3-phase AC currents to DC

Signal processing using wavelet packet 

transform

Calculating the energy histogram during the 

machining process, determine the chatter 

frequency band(s) 

Calculating the feature indexes (std. deviation, 

energy ratio) and identifying the machining 

state

Signal preprocessing using high pass filter

Fig. 2 Framework of the proposed chatter detection scheme

Fig. 1 Three-level WPT decomposition process
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thus, it can be chosen as another feature index. The energy
ratio can be calculated with the following steps.

Ei ¼
XN

n¼1

ci nð Þj j
2

ð3Þ

E ¼
X

Ei ð4Þ

ri ¼ Ei

E
ð5Þ

where ci is the reconstructed signal of the i
th wavelet packet, n

is the coefficient index, and ri is the energy ratio of the ith
wavelet packet.

The framework of the proposed chatter detection scheme is
illustrated in Fig. 2, which contains the following main steps:

(1) Sample the three-phase AC signals and convert them into
equivalent DC.

(2) Filter the DC signal with a high-pass filter to remove the
low frequency trend.

(3) Decompose and reconstruct the DC signal into a set of
multiple frequency bands using WPT.

(4) Calculate the energy ratio of every single frequency band
during the machining process and plot the energy
histogram.

(5) Identify the feature frequency band by observing the en-
ergy histogram (the variation trend of which follows the
machining process changes).

(6) Calculate the feature indexes of the feature frequency
band signal and identify the machining state.

5 Experimental setup

The experiments were performed on awormwheel gear grind-
ing machine, which uses a permanent magnet synchronous
motor (PMSM) supplied by three-phase AC to drive the work-
table. The scheme diagram of the experimental setup is illus-
trated in Fig. 3. Three current sensors (HIOKI 9278 Universal
Clamp ON CT, Japan), which have a bandwidth of 100 kHz,
were used to measure the servo feed motor current. A three-
axis piezoelectric acceleration sensor (356A15, PCB, USA)
was placed at the free end of the grinding wheel axis to mea-
sure the vibration of the tool. The gear is made of C45 with 70
teeth and a module of 3 mm. The helix angle is 0°. The
clamping of workpiece and setup of acceleration sensor are
shown in Fig. 4. A high-speed signal acquisition system (DT
9738B, dynamic signal acquisition modules) was used to col-
lect acceleration signal and current signal synchronously. So,
it is favorable for comparative analysis of acceleration signals
and current signals.
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Table 1 Experimental conditions

Machining stage Grinding wheel
speed (rpm)

Grinding feed
(mm/stroke)

Rough machining (four strokes) 4000 0.12

Semi-finish machining (one stroke) 4000 0.06

Finish machining (one stroke) 2000 0.03
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Fig. 5 Frequency response function of the grinding wheel spindle

Fig. 4 Setup of the workpiece and sensor
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The grinding wheel spindle dynamics was obtained
through impact hammer test. Figure 5 shows the measured
frequency response function (FRF) without wheel contact. It
can be seen that there are two dominant modes, whose natural
frequency is 308.6 and 921.7 Hz, respectively.

Before grinding test, all the gears were ground once to
eliminate the thermal distortion. The whole machining process
is composed of three stages: rough machining, semi-finish
machining, and finishmachining. The grinding wheel traveled
six strokes along the gear axis, namely every gear flank sur-
face would be ground six times. Oil-based coolant was used
throughout the machining process. Table 1 lists the experi-
mental conditions of the grinding process.

6 Experimental results and discussion

figure 6 displays the converted DCmotor current signal and X
feed direction vibration signal of the grinding wheel axis col-
lected during the whole machining process.

Along with the grinding process, chatter experiences the
process of generation and development. In every single stroke,
the vibration amplitude increases along with chatter develop-
ment. Between adjacent strokes, the regenerative effect of the

grinding wheel aggravates arising from the grinding wheel
wear, resulting in the gradual increase of chatter amplitude.
However, constrained by the inner feedback mechanism of
chatter, the vibration amplitude will not keep on increasing
without limit. Instead, the amplitude is susceptible to machin-
ing conditions, like grinding wheel speed, grinding feed, and
grinding wheel topography. Therefore, the current signal was
divided into six parts according to the grinding strokes and
analyzed independently.

When applying WPT, the parameters needed to be consid-
ered are the decomposition level and the wavelet basis. If the
decomposition level is too small, the frequency band of the
wavelet packet will be too wide, which means more irrelevant
frequency components to chatter will be included, and then
decrease the SNR and the sensitivity of chatter features. On
the contrary, if the decomposition level is too large, the fre-
quency band will be very narrow, which makes the feature
information of chatter cannot be concentrated in a single fre-
quency band and the identification of chatter frequency band
gets complex. For the selection of wavelet basis, Daubechies
wavelets have many good characteristics for the application of
feature extraction, like compactly supported, orthonormal, the
highest number of vanishing moments for a given support
width. When the order gets larger, the cutoff characteristic of
the wavelet filter is closer to that of an ideal filter, on the cost
of longer calculation time, however. After comparing and
balancing, the vibration signal was decomposed to the third
level using Daubechies wavelet db10, acquiring eight recon-
structed signals. Figure 7 shows the waveforms of the recon-
structed signals in the third stroke.

To calculate the energy ratio of every wavelet packet, we
will obtain the energy ratio histogram of eight frequency
bands in six strokes as shown in Fig. 8.

During the rough machining stage, along with the grinding
process development, grinding wheel wear aggravated and the
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regenerative effect enhanced; thus, chatter amplitude in-
creased gradually. During the semi-finish machining stage,
the grinding wheel speed was the same as before, while the
grinding feed decreased, leading to the decrease of grinding
force and the chatter amplitude as well. During the finish
machining process, both the grinding wheel speed and grind-
ing feed decreased; at the same time, new grinding wheel
thread was used to impair the negative effect caused by grind-
ing wheel wear. All these factors gave rise to the substantial
decrease of grinding force and thus chatter amplitude.

According to the qualitative description above, the fourth
frequency band in Fig. 8 whose frequency interval is 465–
620 Hz (Fig. 7) is found to obey this variation trend, while
the left frequency bands show apparent difference. Further-
more, stability analysis by solving the system characteristic
equations shows that the machine structure will be excited in
the range of its dominant natural frequencies and the chatter
frequency is always higher than the natural frequency of the
mechanical system [19]. The fourth frequency band is in ac-
cordance with this conclusion compared with the results of the
hammer test shown in Fig. 5. Thus, the fourth frequency band
is just the feature frequency bandwhere the majority of chatter
information locates. This is confirmed further by the time-
frequency distribution of the vibration signal (Fig. 9).

As shown in Fig. 9, there is still some leakage of the chatter
energy in the adjacent frequency bands (the third and fifth)
and there is another chatter frequency band (the seventh); this
explains the dramatic energy ratio increase of it at the third
stroke (Fig. 8) when chatter emerged. At the fifth stroke, the
grinding feed reduced, the energy in the fourth frequency band
decreased, while the 400 Hz frequency component in the third
frequency band was large in amplitude; therefore, the energy
ratio of the third frequency band increased a lot. At the sixth
stroke, both grinding wheel speed and grinding feed were
reduced; new interference component with large amplitude
appeared at the eighth frequency band causing the sudden

energy ratio increase of it. The decrease of the grinding wheel
speed gave rise to the decrease of the frequency interval of
chatter harmonics and the downshift of chatter frequency
band. Therefore, the energy ratio of the third frequency band
grew up at the sixth stroke. This problem will be the research
direction for future works. To summarize, despite the interfer-
ence from the energy ratio changes of other frequency bands,
the dominant chatter information is covered in the fourth fre-
quency band before the grinding wheel speed changed and the
variation trend of chatter state can be precisely revealed by the
fourth frequency band.

The result of applying the same processing method to the
current signal is shown in Fig. 10. The similar variation trend
can be observed in the fourth frequency band, except that the
energy ratio of the first stroke is a little higher than the second
stroke, which is not consistent with the hypothesis. This may
be caused by the interference error of WPT based on Mallat
algorithm [32]. However, basically, the variation trend was
consilient with that of vibration signal, which meant the chat-
ter information was also revealed in the current signal and the
fourth frequency band was the feature frequency band.
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The time domain waveforms and feature curves of the
fourth frequency band current signal in all strokes are shown
sequentially in Fig. 11.

The big waves in the first stroke may come from the non-
uniform machining stock of the gear, since it was a new
workblank. During the second stroke, the grinding process
become stable, the time domain waveform and feature curves
are all stationary, and the energy ratios is low. During the
third stroke, chatter begins to occur and develop. The
waveform and feature curves all grow observably, and
the energy ratio rises to about 50 % rapidly. During the

fourth stroke, chatter keeps increasing slightly on the
basis of a large amplitude. Constrained by the numerous
nonlinear factors, chatter amplitude does not keep on
increasing unlimitedly, but stabilizes within a range after
a while. The energy ratio of the fourth frequency band is
the highest among all frequency bands and keeps a value
between 40 and 60 % basically. In the fifth stroke, chat-
ter keeps decreasing gradually. At the beginning of the
sixth stroke, chatter still increases slightly, but the ampli-
tude and energy ratio are both quite small and decrease
gradually in the end.
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Fig. 11 Waveforms and feature curves of the feature frequency band current signal
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Combining these two chatter features, the state of the grind-
ing process can be classified as shown in Fig. 12. With a
threshold value of 0.1 for standard deviation and 20 % for
energy ratio, chatter can be detected reliably in industrial ap-
plication.When both thresholds are exceeded, it can be judged
that chatter happens. The chatter state classification of the
sixth stroke may have some deviation because of the down-
shift of the chatter frequency band.

The waveforms of vibration signal in the fourth frequency
band of all strokes are shown in Fig. 13. In every stage of the
grinding process, the current signal and vibration signal have
shown very coincident variation trend. This phenomenon was
verified by a series of experiments and the inevitability was
demonstrated. This result verified the correctness of the theory
of chatter detection by using servo feed motor current.

To illustrate the early chatter detection property of this
technique, the DC signal of the third stroke, during which
chatter appeared, was analyzed without feature signature

extraction. The time domain waveform after high-pass filter-
ing and its std deviation curve are shown in Fig. 14.

Compared with Fig. 14, the onset of chatter is much clearly
revealed in the waveform and feature curves of the third stroke
in Fig. 11. The threshold to detect the occurrence of chatter in
Fig. 11 is much lower than that in Fig. 14, which enhances the
early chatter detection ability. These properties will bring
muchmore efficiency, accuracy, and time advantage in detect-
ing chatter.

7 Conclusions and future works

A convenient and reliable technique to detect early chatter in
gear grinding process based on servo feed motor current and
wavelet packet transform was presented in this study. WPT
was used to monitor the energy change in the frequency do-
main and identify the chatter frequency band analytically, the
result of which was confirmed by the impact hammer test.
Standard deviation and energy ratio of the feature frequency
band signal were chosen as the indexes of chatter monitoring.
Combining these two chatter features, the state of the grinding
process could be classified and chatter could be detected reli-
ably in industrial application with proper thresholds. Acceler-
ation signals of the machine tool were used as a reference to
compare with the results from current signals. In every stage
of the grinding process, the feature frequency band signals of
current and vibration signal have shown very coincident var-
iation trend. Both theoretical analysis and experimental results
manifested the feasibility and efficiency of the proposed chat-
ter detection method.

Because of the inherent characteristics of grinding chatter,
chatter frequency band may shift with the grinding wheel
speed. This would cause some deviation for the chatter state
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Fig. 14 Waveform and std deviation curve of the third stroke DC after
filtering
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Fig. 13 Waveforms of the feature frequency band vibration signal
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Fig. 12 Machining state classification based on the two chatter features
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classification when applying the proposed method. Future
works should be done to solve this problem.
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