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Abstract In this study, the effects of tool rotational and tra-
verse speeds on the mechanical properties and the microstruc-
ture of the friction stir welded joints from Al 5086-H34 were
studied. Insufficient heat generation and inadequate metal
transportation at very low rotational speed and high turbulence
in the plasticized metal at very high rotational speed emerged
tunnel and worm hole defects into the weldment. It was dis-
covered that as rotational and traverse speed increased, the
average grain size of the weldment decreased due to more
dynamic recrystallization and amplified stirring effect. An in-
crease in the rotational speed increased the ultimate tensile
strength and microhardness of the specimens. At the best
welding condition, by employing the rotational and traverse
speeds of 1250 rpm and 80 mm/min, respectively, 51 % en-
hancement in the elongation and 8 % increase in the micro-
hardness of the welded samples were obtained. Moreover, the
ultimate tensile strength of this welded joint reached to 85 %
of the base metal.

Keywords Friction stir welding . Rotation speed . Traverse
speed . SEM . 5086-H34 aluminum alloy

1 Introduction

Aluminum is mainly known for its low density and high cor-
rosion resistance. The welding of Al and its alloys has always
represented a big challenge for designers and technologists

[1]. The conventional joining processes concerning these al-
loys include gas metal arc welding (GMAW), gas tungsten arc
welding (GTAW), plasma arc welding (PAW), and electron
beamwelding (EBW) [2]. The strength of the joints fabricated
through the conventional fusion welding methods can only
reach up to 50–70 % of the parent metal. Low strength of
these welded joints can be explained by segregation, lowmelt-
ing temperature, porosities, and loss of alloying elements dur-
ing the conventional fusion welding processes. Large amount
of residual stresses induced by fusion welding process also
decreases the strength of the welded joints [3–5]. Welding-
distortion or warping of weldments during fusion welding is
another problem of conventional welding which is a natural
outcome of the high amount of welding heat input and conse-
quently large internal stresses produced during the conven-
tional welding [6]. Due to these problems, the weldability of
the aluminum alloys is classified as “difficult to weld” metals
[7].

On the other side, it was reported that the ultimate strength
of the welded joints produced by friction stir welding (FSW)
technique reached 80–100 % of the parent metal [8]. FSW is a
solid-state joining process proposed at the TWI organizations
in 1991 in which a rotating tool is plunged into the workpieces
and traverses along the weld path. Figure 1 presents the sche-
matic drawing of the FSWed joint. In this method, the rotating
tools can plastically deform (stir) and transport the surround-
ing material from the front to the back of the tools. So the
workpieces can be stirred together to form a joint with good
mechanical properties and better joint efficiency than the con-
ventional welded joints [9]. The simultaneous rotation and
traverse motion of the tool create asymmetrical temperature
distribution and material flow between the two sides of the
weld, which leads to different microstructures and mechanical
properties between the advancing side (AS) and the retreating
side (RS) of the weld [10]. The FSW process was considered
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to be the most significant development in metal joining in the
past decades and due to energy efficiency, environment friend-
liness, and versatility, it is called a “green” technique. This
method can be employed for joining the high-strength alumi-
num alloys and other metallic alloys, which cannot be easily
welded through traditional fusion welding methods [11], but a
few successful applications of FSW have been reported [12].
There is no liquid state for the weld pool during the FSW; as a
result, the defect types within the weld, such as “tunnel defect,
” “lazy S,” and “kissing-bond,” can be seen in this type of
welding. The tunnel defect is a long cavity in the weld along
the welding direction as well; the lazy S is the oxide particle at
the joint line remnant and the kissing bond is macroscopically
a sound bonding, while it is an imperfect or weak bonding
microscopically [13].

Friction stir welding has been recently applied for joining
the Cu alloys [14–16], Al alloys [17–19], and Ti alloys [20,
21]. The obtained results presented an acceptable weld quality
with applicable mechanical properties. Parameters including
material and geometry of the tool, tilt angle, rotational speed,
traverse speed, and vertical force of the tool significantly af-
fects the friction stir welding process. These parameters affect
the material transportation pattern and the welding tempera-
ture distribution during the welding process which conse-
quently change the mechanical and metallurgical properties
of these joints. In the present study, a combination of five
rotational and three traverse speeds was used in friction stir
welding of Al 5086-H34 alloy. The effects of tool rotational
and traverse speeds on the microstructural and mechanical
properties of the weld were studied, and the optimum process
parameters were identified.

2 Materials and methods

In the present work, a 6-mm-thick aluminum plate of Al 5086-
H34 with chemical composition as listed in Table 1 was

utilized. Specimens with 100×50 mm dimensions were pre-
pared for FSW.

Lots of studies were carried out to examine the influence of
tool pin profile on the mechanical and microstructural proper-
ties of friction stir welded joint. Numerous application of the
square pin profiled tool was observed in the contemporary
literature [22–25]. Malik et.al. investigated the effects of six
different tool pin profiles in friction stir welding. They ob-
served that the square pin profiled tool consumes less power
among other profiles employed in their study without affect-
ing the temperature generation [23]. Venkata et al. examined
the influence of tool pin profile on the microstructure and
corrosion behavior of friction stir welded joint of AA2219
Al-Cu alloy. Their experiments were conducted with different
tool pin profiles, namely conical, triangular, square, pentagon,
and hexagon cross-sections. Appropriate properties were re-
ported for the specimens prepared by the square pin profiled
tool [24]. Amirafshar et al. studied the effect of tool pin design
on the microstructural evolutions and tribological characteris-
tics of friction stir processing. They observed that the tool pin
designs of cylindrical, conical, and triangular, as well as
square, are all successfully applicable for ST14 steel to pro-
duce defect-free processed material. According to their find-
ings, the average grain size obtained with square profile was
the minimum as compared to the obtained with conical, cylin-
drical, and triangular pins. The maximum hardness for stirred
zone was also observed for specimens prepared by the square
profiled tool [26]. Arora et al. reported that tools with flat faces
such as square and triangular pin profiled tools created more
heat during welding, so they were more susceptible to wear
[27]. However, they observed that utilizing square pin profiled
tool improved the mechanical and microstructural properties
of the weldment due to the more imposed plastic deformation
content and subsequent formation of grain boundaries rather
than other pins. Bahrami et al. investigated the mechanical
properties of the FSW joints using three different tools. They
observed that using the square pin enhanced the tensile
strength and elongation of the joints [28]. Elangovan et al.

Fig. 1 The schematic drawing of
the FSWed joint
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investigated the mechanical properties of AA 6061 FSWed
joints, utilizing five different tool profiles (square, triangular,
threaded cylindrical, tapered cylindrical, and simple cylindri-
cal). Results indicated that utilizing the tools with square pin
led to superb microstructural and mechanical properties such
as microhardness, ultimate tensile strength, and elongation
[29]. The similar results were observed by Palanivel et al. [30].

Due to extensive application and great advantages of the
square pin profiled tool, this configuration was employed in
order to achieve the superb weld mechanical and microstruc-
tural properties. A tool from heat-treated H-13 hot work tool
steel with the shoulder diameter of 16 mm, the pin diameter of
6 mm and, the pin height of 5.7 mm was employed. Figure 2
illustrates the geometry of the tool employed in this study.

In order to eliminate the tool wear, its hardness was in-
creased to 52 HRC by heat treating. So no effective tool wear
was observed even after several meters of 5086-H34
Aluminum welding.

In order to study the effects of process parameters on the
microstructure and mechanical properties of 5086-H34 alumi-
num welded joints, full factorial experiments, including all
combinations of five rotational speeds (RS) of 500, 800,
1000, 1250, and 1600 rpm and three traveling speeds (TS)
of 41.5, 80, and 125 mm/min, were conducted as listed in
Table 2.

In order to eliminate any marks left by the shoulder on the
specimens, the top surfaces of the welded joints were ma-
chined. According to ASTM-E8, the sub-sized tensile speci-
mens were cut from the welded samples perpendicular to the
welding direction using electrical discharge machining [31].
The tensile tests were carried out using a SANTAM-STM50-
type testing machine with a crosshead speed of 1 mm/min.

For metallographic examinations, the specimens were
cross-sectioned perpendicular to the welding direction. Then,
metallographic specimens were etched for 50 s using
Poulton’s reagent-solution. Grain size measurements were
carried out according to ASTM E112-96. The fracture surface
of the specimens was also examined using scanning electron
microscopic (SEM). Besides, micro-hardness tests were car-
ried out along a path perpendicular to the welding direction on
the cross section of the specimens. A micro-hardness test ma-
chine with a Vickers indenter of 100 g load for 15 s was
employed. The distance between the measurement points
was selected to be 0.5 mm.

3 Results and discussion

3.1 Defects of friction stir welded joints

Insufficient heat generation and inadequate metal transporta-
tion increase the probability of defect formation [32]; there-
fore, it is necessary to select the tool rotational and traverseT
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speeds carefully. Defects can seriously influence the mechan-
ical properties of the weldment. The tensile strength and elon-
gation of the weld were decreased significantly in the presence
of weld defects as described by Chen et al.[33]. Figure 3
shows the macrostructure of the defective joints which are
obtained with rotational speeds of 500, 800, and 1600 rpm.

Tunnel defects were observed at low rotational speeds (500
and 800 rpm) and very high rotational speed (1600 rpm). But
there was not any defect in the cross section of the specimens
prepared by rotational speeds of 1000 and 1250 rpm.
Appropriate tool rotational and traverse speed provided a suit-
able welding heat input, which created a good condition for
material stirring without any turbulences.

Basically, nugget shapes can be classified into two types,
basin-shaped nugget that widens near the upper surface and

elliptical nugget [12]. The shape of the nugget varies by the
tool geometry and thermal conductivity of the base metal. As
the tool geometry and the base metal were the same for all
specimens, so uniform basin-shaped nugget for all samples
were observed. The nuggets of the weld joints were widen
near the upper surface except for the specimens prepared by
rotational speed of 1600 rpm.

Figure 3 presents tunnel (worm hole) defects which were
volumetric defects in continuous or non-continuous form.
These defects were disrupted the weld in its severe forms
and deteriorates the mechanical behavior of the joints. These
defects acts as stress concentration centers in the weld section
and decreased the strength of the welded joint significantly.

Formation of the tunnel defects at low rotational speeds of
500 and 800 rpm attributed to inadequate heat input and in-
sufficient metal transportation. Besides, formation of defects
at rotational speed of 1600 rpm can be explained by a further
increase in the turbulence of the plasticized metal during
welding at high rotational speeds. Rajakumar et al. also re-
ported the formation of similar defects as a result of high tool
rotation speeds [34]. Tunnel defects were observed on the
lower side of the nuggets. Defect locations were depended
on the material properties and the FSW parameters. In the
examined specimens, the defects were normally observed on
the advancing side of the weldment.

3.2 Microstructural examination

Figure 4 illustrates the microstructure of the base plate in its
initial form. The images present the highly stretched grains of
the rolled plate with an average length of 98 μm. The black
and white regions shown in Fig. 4b indicates AlxMgy and
AlxMny compounds, respectively [35].

Figure 5 shows the distinct zones in the friction stir welded
joint of Al 5086-H34: the stir zone (SZ), the thermo-

Fig. 2 The tool used in friction
stir welding process

Table 2 Process parameters of the prepared FSWed joints

Rotational speed [rpm] Traverse speed [mm/min]

500 41.5

500 80

500 125

800 41.5

800 80

800 125

1000 41.5

1000 80

1000 125

1250 41.5

1250 80

1250 125

1600 41.5

1600 80

1600 125
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mechanically affected zone (TMAZ,) and the base metal
(BM). The SZ had fine grains with recrystallized
equiaxed grain structure as observed in ref. [36]. The
frictional heating and extensive plastic deformation gen-
erate fine grains in the nugget zone [37]. Nelley et al.
attributed the miniaturization of the aluminum grains to
high stacking fault energy and dynamic mechanical re-
crystallization during welding [38]. The bending of the
grains in the TMAZ can be explained by the stirring
action of the FSW tool which drawn the flat grains of
the parent metal into the weld nugget zone [22]. The
most decrease in grain size was observed at the bound-
aries between the TMAZ and HAZ [39].

In order to study the effects of welding rotational and tra-
verse speed on the microstructure of the welded joints, the
microstructures of the SZ for sound welded joints are

presented in Fig. 10. Intensive temperature rise and severe
plastic deformation during FSW lead to the formation of fine
equiaxed microstructure in the SZ. Dynamic recovery (DRV),
geometric dynamic recrystallization (GDRX), and discontin-
uous dynamic recrystallization (DDRX) are the mechanisms
which refine the grains during the FSW. DDRX normally
begins at the old grain boundaries. New grains are then nucle-
ated at the boundaries of the growing grains, and in this way, a
thickening band of recrystallized grains is shaped. This phe-
nomena is named the discontinuous dynamic recrystallization
[22]. Severe plastic deformation during the FSW breaks the
grains and generates low angle misorientated grain boundaries
and suitable sites for nucleating recrystallization. Dynamic
recrystallization transforms the low-angle grain boundaries
to high-angle grain boundaries and produced fine equiaxed
grains [40].

Fig. 3 Cross-section view of the
defective welds with rotational
and traverse speeds of a 500 rpm,
41.5 mm/min; b 500 rpm, 80mm/
min; c 500 rpm, 125 mm/min; d
800 rpm, 41.5 mm/min; e 800
rpm, 80 mm/min; f 800 rpm, 125
mm/min; g 1600 rpm, 41.5 mm/
min; h 1600 rpm, 80 mm/min; i
1600 rpm, 125 mm/min
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Increase of tool traverse speed led to more plastic
deformation in the weld zone. Comparison between
Fig. 6a and c revealed that the grain size of the SZ
reduced by increasing the traverse speed which can be
explained by the more dynamic recrystallization and al-
so the less annealing effect of the welding heat input at
higher traverse speed. The similar results were obtained
by comparing the Fig. 6d with Fig. 6f.

Grain size measurements were carried out according
to ASTM E112-96. The measured grain sizes for differ-
ent specimens are listed in Table 3. Figure 7 presents
the effects of rotational and traverse speeds on the av-
erage grain size of the welded specimens. Two key fac-
tors affect the grain size in the SZ: the first one is the
dynamic recrystallization and increases in the disloca-
tion density, which consequently prevents the grain
boundary slipping and reduces the grain size, and the
second one is the annealing effect of the welding heat
input, which increases the grain size [41].

By increasing the traverse speed, the material underwent
severe mechanical stresses and experienced an extensive dy-
namic recrystallization, which increased the number of nucle-
ation sites and reduced the grain size. On the other side, de-
crease in the welding heat input at high traverse speeds

mitigated the effects of annealing. The heat input reduction
occurred as the result of reduction in the stirring process. Due
to these two mechanisms, the grain size decreased significant-
ly with an increase in the traverse speed, which presented in
Fig. 7.

It is also observed that an increase in the rotational speed
amplified the stirring effect and resulted in more material de-
formation and stirring which decreased the grain size
significantly.

3.3 Mechanical properties

3.3.1 Hardness results

In the following, the effects of rotational and traverse speeds
on the microhardness of the prepared samples were studied.
The microhardness measurement for 30 points in the alumi-
num 5086-H34 was 89±2. 2 HV. Figure 8 represenst the mi-
crohardness variations of the welded specimens at rotational
speeds of 1000 and 1250 rpm, respectively. In all cases, the
microhardness of the SZ was greater than the base metal hard-
ness. Besides, it was observed that the microhardness values
of the TMAZwere a little lower than the microhardness of the
base metal which might be due to dissolution and growth of
the precipitates during the welding. Similar results were ob-
served by Yadav et al. [42]. No meaningful changes in TMAZ
hardness were observed by changing the welding process
parameters.

The annealing effect and stirring action are the two main
factors which affect the microhardness of the joints. Stirring
action of the pin was raised by increasing the tool rotational
speed. Higher stirring action of the pin led to more dynamic
recrystallization which reduced the grain size, increased the
dislocations, and finally improved the microhardness of the
SZ. The increment of the microhardness of the SZ due to grain
miniaturization can be described by the Hall-Petch relation-
ship [43]. On the other hand, the annealing effect of welding

a b 
Fig. 4 Microstructure images of
the base plate using a optical
microscopy (OM) and b SEM

Fig. 5 SZ and TMAZ in the friction stir welded joint
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heat input declined the microhardness of the joints. In friction
stir welding of Al 5086-H34, the effect of stirring action on
high tool rotational speed was dominant, so the microhardness
of the SZ was increased at higher rotational speed. A further
increase in the microhardness of the SZ was observed at
higher welding traverse speed, which was due to the lower
welding heat input and consequently the lower annealing ef-
fect. Meanwhile, more material deformation at higher traverse
speeds increased the dislocation density and consequently in-
creased the hardness of the SZ.

It is evident in Fig. 8 that the microhardness values in the
advancing side were higher than the retreating side. This is
due to the asymmetric and non-uniformed material transpor-
tation through the welding. The higher hardness with more

a b

c 

e 

d

f

Fig. 6 The microstructure of the
SZ for specimens with rotational
and traverse speeds of a 1000 rpm
and 41.5 mm/min, b 1000 rpm
and 80 mm/min, c 1000 rpm and
125 mm/min, d 1250 rpm and
41.5 mm/min, e 1250 rpm and
80 mm/min, and f 1250 rpm and
125 mm/min

Table 3 The grain size of the FSW joints with different rotational and
traverse speeds

Rotational speed 1000 rpm 1250 rpm

Specimen’s number 1 2 3 4 5 6

Traveling speed (mm/min) 41.5 80 125 41.5 80 125

Grain size (μm) 14.2 12.7 11.8 10.9 9.8 7.6
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Fig. 7 Mean grain size variations for different rotational and traverse
speeds
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high-angle grain boundaries in the advancing side proved that
the dislocation hindrance mechanism (at grain boundaries)
had a significant role in the enhancing the microhardness of
the weldment [44]. The lower hardness of the TMAZ than the

Fig. 8 Microhardness of FS
welded specimens in different
traverse speeds and rotational
speed of a 1000 and b 1250 rpm
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Fig. 9 Ultimate tensile strength for different rotational and traverse
speeds

Table 4 Mechanical properties of the FSW joints with different
rotational and traverse speeds

Rotational speed 1000 rpm 1250 rpm

Specimen’s number 1 2 3 4 5 6

Traveling speed (mm/min) 41.5 80 125 41.5 80 125

Percentage of elongation 16.5 13 12 18 23.5 24

UTS (MPa) 167 182 229 233 264.5 252

618 Int J Adv Manuf Technol (2016) 83:611–621



base metal in welded specimens might be due to dissolution
and deposit growth in this zone.

3.3.2 Tensile results

Tensile tests were performed at room temperature in order to
study the effects of rotational and traverse speeds on the ulti-
mate tensile strength (UTS) and elongation of the welded

specimens. The measured UTS band elongation for the base
metal were 310 MPa and 15.5 %, respectively. Tensile prop-
erties including UTS and elongation of the studied samples are
presented in Table 4.

The UTS of all the welded joints were smaller than the base
metal ultimate strength. An increase in tool rotational speed
increased the UTS of the welded joints significantly. It can be
explained by the significant decrease in the grain size at high
rotational speeds. Figure 9 shows the variation of the UTS of
the welded joint at different rotational and traverse speeds.

By increasing the traverse speed at the constant rotational
speed of 1000 rpm, the UTS of the welded joints was in-
creased. As the grain size of the specimens decreased, the
UTS of the welded joins were increased. But at the rotational
speed of 1250 rpm, the maximum UTS was obtained for the
specimens prepared by the traverse speed of 80 mm/min,
while a further increase in the welding speed results in a de-
crease of the UTS of the welded joints. This was due to the
insufficient frictional heat generated. In general, FSW at
higher traverse speeds resulted in a short exposure time in
the weld area with insufficient heat and a poor plastic flow
of the metal which caused some void-like defects in the joints.
Investigations of Palanivel et al. were in good agreement with
the aforementioned results [23]. It can be concluded that in
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Fig. 10 Elongation for welded joints with different rotational and
traverse speeds

a b

c d

Fig. 11 Low and high
magnification fractographs of a, b
base metal and c, d welded joint
with rotational speed of 1250 rpm
and traverse speed of 80 mm/min
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order to achieve the maximum strength for each rotational
speed, an optimal traverse speed should be employed. The
optimum traverse speed for rotational speed of 1000 rpm is
probably higher than 125 mm/min.

The elongation in some of the specimens increased signif-
icantly in comparison to the base metal. It can be described by
the release of compressive residual stresses generated during
the rolling of the base metal. The similar results were reported
by Barmouz et al. [45]. The elongation variations of the
welded specimens for different rotational and traverse speeds
are presented in Fig. 10.

Grain size and dispersion of precipitated second phase par-
ticles are the two factors which affect the elongation of the
welded specimens. At rotational speeds of 1250 rpm, the grain
size of the SZ decreased by increasing the tool rotational speed
and consequently the ductility of the specimens increased. But
at a rotational speed of 1000 rpm, poor plastic flow of the
material by increasing the traverse speed led to nonuniform
dispersion of precipitated second phase particles in the Al
matrix which reduced the elongation.

Figure 11 illustrates the fracture surfaces of the base metal
and the specimen with the largest UTS (rotational speed of
1250 rpm and traverse speed of 80 mm/min).

As shown in Fig. 4b, d, the dimple pattern of the welded
specimens was smaller than the base metal, which resulted in
ductile fracture. The UTS and elongation in this specimen
were about 78 and 111 % of the base metal, respectively,
which confirmed this observation.

4 Conclusion

In this study, FSW was applied for butt joining of the alumi-
num 5086-H34 alloy plates at different rotational and traverse
speeds. The effects of rotational and traverse speeds were
investigated on the mechanical and microstructural properties
of the welded joints. The results can be summarized as
follows:

& At very low rotational speeds, tunneling and worm hole
defects were generated as a result of insufficient heat gen-
eration and insufficient metal transportation.

& At very high rotational speeds, the large turbulence in the
plasticized metal led to tunneling and worm hole defects.

& Increase of the tool rotational and traverse speed led to
grain refinement which induced by the intensive dynamic
recrystallization and the increase of dislocation density.

& An increase in the tool rotational speed increased the UTS
of the welded joints significantly. In order to achieve the
maximum joint strength for each rotational speed, an op-
timal traverse speed should be employed.

& Using higher traverse speed increased the microhardness
of the specimens which can be explained by a decrease in

the welding heat input and further material deformation at
higher tool traverse speed.

& The microhardness of the thermo-mechanically affected
zone was lower than the base metal which can be attribut-
ed to dissolution and growth of the precipitates during the
welding.
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