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Abstract Inaccuracies in conventional tolerance characteri-
zation methods, which are based on worst-case and root-
square-error methods, as well as inefficiencies in Monte
Carlo computational methods of statistical tolerance analysis,
require an accurate and efficient method of statistical analysis
of geometric tolerances. Here, we describe a unified error
distribution model for various types of geometric tolerance
to obtain the distribution of the deviations in different direc-
tions. The displacement distributions of planes, straight lines,
and points are analyzed based on distributions within toler-
ance zones. The distribution of the displacements of clearance
fits is then determined according to the precedence of the
assembly constraints. We consider the accumulated assembly
variations and displacement distributions, and an analytical
model is constructed to calculate the distribution of the devi-
ations of the control points and the process capability index to
validate the functional requirements. The efficiency of the
method is shown by applying it to the assembly of a single-
rod piston cylinder. The results are compared with other sta-
tistical methods of tolerance analysis. We find an improve-
ment of approximately 20 % in tolerance analysis, and the
process capability index of the assembly procedure was re-
duced by 10 %.

Keywords Statistical tolerance analysis . Deviation
direction . Geometric tolerance . Chi distribution

1 Introduction and purpose

Tolerance analysis is important in verifying the assemblability
of parts, as well as in the quality of the assembled product.
Conventional methods of tolerance analysis include the worst-
case (WC) method and the root-square-sum (RSS) method.
The WC method requires full interchangeability, i.e., the ac-
curacy of the final calculation is required to be within the
scope of the functional assembly requirements, and the assem-
bly success probability is 100 %. The WC method is exces-
sively strict, and results in large manufacturing costs to guar-
antee that assembly requirements are met. By contrast, the
RSS method requires tarsus interchangeability, and errors in
parts are assumed to be independent normally distributed.
Because the deviations from the design geometry are identical
for each orthogonal direction, we can use the variance to cal-
culate the assembly precision. To ensure thatmost of the prod-
ucts are within the scope of assembly requirements, the calcu-
lation process is less stringent; however, the RSS method is
often so lenient that assembly requirements are poorly satis-
fied. Consequently, neither theWCmethod nor the RSSmeth-
od is a good description of the accumulated assembly
variations.

Although manufacturing errors are uncertain, the distribu-
tion thereof can be well described. To improve the accuracy of
error characterization, it is necessary to carry out a statistical
tolerance analysis to determine the frequency distribution of
the characteristics of the measured tolerances [1, 2].
Efficiency is also required for optimization of tolerances to
avoid substantial computational costs. In addition, different
types of geometric tolerance are commonly used in the design
of parts to control the form, direction or/and position.
Compared with dimensional tolerances, geometric tolerances
may restrict the displacement of features along several con-
straint directions. Therefore, a multi-dimensional analysis is
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required, which should consider the interrelations among dis-
placement constraints within the tolerance zones.

The purpose of this study was to carry out a statistical
analysis of geometric tolerances. An analytical model is used
to describe assembly precision based on distributions of devi-
ations in multiple degrees of freedom (DOFs). Based on the
relationships between geometric errors and the multi-DOF
deviations, distributions thereof are constrained by the geo-
metric tolerances and fitting gaps. These are analyzed com-
prehensively for planes, straight lines, and points. A covari-
ance analysis is then carried out for the accumulated assembly
variations, and the assembly precision and assembly capabil-
ity index are computed efficiently.

2 Literature review

Here, we focus on the error distributions of tolerances,
assemblability of parts, and distributions of the resulting error.
Although dependent on the tolerance type, the distribution of
tolerances is typically characterized by dimensional errors and
geometric errors. Dimensional errors are usually assumed to
follow a normal distribution, and the 3σ principle is widely
used in quality control [3]; however, other distributions may
appear, such as a uniform distribution or a triangular distribu-
tion. With geometric errors, the distributions are more varied,
and are typically multi-dimensional and non-negative. Wu [4]
used a Rayleigh distribution to model positional deviations.
Braun [5] reported experimental studies that support non-
normal statistical models for the tolerances of populations of
parts. These studies showed that geometric errors follow a
Rice distribution or non-central chi distribution in the absence
of symmetric errors. However, to date, three-dimensional (3D)
error distributions of positional tolerances applied to a point
(i.e., the derived geometry of a spherical feature) have not
been reported. Furthermore, the distributions of geometric er-
rors with different dimensions and in the presence of symmet-
ric errors have not been described in a unified manner.

Statistical measures of assemblability involve dimensional
errors, as well as geometric errors describing the assembly of
two parts. Shan [6] used feasible assembly formulae and
Monte Carlo simulation to calculate the probability of suc-
cessful two-hole and two-pin assemblies. Zou [7] reported a
Gapspace-based model to assess assemblability statistically.
Shen [8] proposed an improved simulation-based approach
to evaluate the assemblability of multiple pin–hole floating
mating geometries. Ameta [9, 10] extended the tolerance
map to describe the probability of one-dimensional (1D) clear-
ance in slot–tab and pin–hole assemblies. Dantan [11] used
Monte Carlo methods to simulate geometric deviations via
statistical tolerance analysis. These studies, however, did not
consider the precedence or the constraints of the assembly

sequence. These factors can lead to a change in the distribu-
tion of displacements and hence affect the assemblability.

The resulting error is given by the combined effects of
several errors along propagation paths or dimensional chains,
and its distribution will determine whether functional require-
ments are satisfied. To describe accumulated dimensional er-
rors with non-normal distributions, Seo [12] used a three-level
Taguchi-based three-point information method to achieve sta-
tistical tolerance analysis for general distribution. Lin [13]
developed a beta distribution approximation method to de-
scribe error using a beta distribution. Varghese [14] utilized
the probability distribution function for manufacturing data,
together with a numerical method, to perform rapid statistical
tolerance stack-up analyses. Similarly, Liu [15] used convolu-
tion to compute probability density functions to describe
closed-loop components analytically. Tsai [16] proposed a
moment-based method to compute the resultant tolerance to
deal with non-normal error distributions with variance, skew-
ness, and kurtosis. Kuo [17] employed the first four moments
of a truncated normal distribution to carry out tolerance anal-
ysis of components with a doubly truncated normal distribu-
tion. Khodaygan [18] used statistical analysis of asymmetric
tolerances based on fuzzy logic to represent the uncertainty of
tolerance components. Although these methods are sufficient-
ly flexible to deal with different kinds of distribution, they can
only be applied to 1D geometric errors and are not suitable for
multi-dimensional geometric errors. Whitney [19] and Ghie
[20] proposed space-state- and Jacobian-matrix-based
methods for statistical analysis of geometric tolerances.
However, the assembly variation was simulated based on
Monte Carlo methods rather than a direct relationship with
the tolerances. Therefore, they were not able to validate the
functional requirements and optimize tolerances due to the
prohibitively large computational costs.

Here, we describe an analytical model used to predict as-
sembly precision that can improve the efficiency of the anal-
ysis of geometric tolerances. The model can be used to obtain
an assembly precision and assembly capability index rapidly,
and is therefore useful for direct practical production, and can
provide a reference for modifying the design parameters.

3 Unified error distributions of geometric tolerances

To implement the calculations of assembly precision, we re-
quire measurements of the directions of the deviations for
various types of geometric tolerance. We then use these devi-
ations to calculate transformation of the nominal position, i.e.,
we calculate the maximum distance from the nominal position
using the measured geometric tolerance. The relationship be-
tween the geometric tolerance and the variance of each of the
deviations can be obtained from the unified error distribution.
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3.1 Deviation direction

When features or their derived geometries are constrained by
geometric tolerances, points on them may deviate from their
nominal position within a given tolerance. To express the po-
sition of each point, we should obtain the constraints that
describe the directions of features.

In the design process of parts and assemblies, defined tol-
erances and assembly information are used to constrain vari-
ation among the features of a part or those of different parts.
Commonly, more than two features are engaged in a single
location scheme. As a result, the constrained directions of
different pairs of features can be correlated. For constraint
analysis, all relevant features must be collected as a set.
However, due to the functional requirements, tolerance prim-
itives, and datum precedence, not all of the deviation direc-
tions between two features can be addressed or need to be
addressed. Some may even be constrained repeatedly, so that
in some situations, only a subset of the apparent constraint
directions needs to be constrained.

A design can be divided into several deviations along sev-
eral orthogonal directions; these are termed deviation
directions here. Since one point can move along up to three
independent directions in a 3D space, the number of deviation
vectors is 1≤k≤3.

Geometric tolerances are applied to constrain the surface or
derived geometry of a feature. For a surface, there is only one
deviation direction, because it can only deviate from the nom-
inal position as a whole within the tolerance zone. For a de-
rived geometry, the number of deviation directions is equal to
the number of degrees of freedom (DOFs) of translation; oth-
erwise, the derived geometry remains invariant following the
deviation. Table 1 lists the deviation directions for different
types of feature that are constrained by different types of geo-
metric tolerance.

It is possible that not all of the deviation directions of a
feature are restricted by datum features or datum reference
frames. Therefore, the number of deviation directions may
be fewer than that listed in Table 1.

For example, as shown in Fig. 1, the axis of a cylindrical
feature is restricted by datum plane A by the position toler-
ance. Rotation around Y and translation along X are
constrained, and each point on the axis can deviate from the
nominal position only in X; therefore, the number of deviation
directions is one. From Table 1, we can see that up to two
deviation directions can be constrained for a straight line;
hence, the number of deviation directions is related to the
datum reference frame.

3.2 Transfer of nominal position

For each deviation direction, among all the points on a feature
or the derived geometry, the maximum distance from the

nominal position affects the geometric tolerance. It has been
shown [4, 5] that the deviations in different directions can be
assumed to be independent and normally distributed.

Let lq be the deviation along the qth direction. Because the
manufacturing conditions are identical for each deviation di-
rection, the deviations in different directions have the same
variance σl

2. The distribution of lq can then be expressed in a
unified way as follows:

lqeN μq;σl
2

� �
1≤q≤kð Þ ð1Þ

Because of systematic errors, we typically do not have μq=
0. As a result, the center of the distribution shifts from the
nominal position. If we also shift the nominal position μq
along the qth deviation direction, and use this as the new
nominal position, the distributions of the deviations can be
made symmetrical about the new nominal position.

Although the distributions of the deviations relative to the
new and original nominal positions do not necessarily coin-
cide, μq is typically so small (compared with the tolerance)
that this difference can be neglected in practice. From the
deviations along all directions relative to the new nominal
position, we can obtain the geometric error T as follows:

T

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

q¼1

lq−μq

� �2

vuut ð2Þ

3.3 Unified error distribution

The distribution of the square root of the sum of squares of
independent random variables that are normally distributed is
termed the chi distribution (or χ distribution). Because the
deviations in different directions are independent, we have

T

2σl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

q¼1

lq−μq

σl

� �2
vuut e χ kð Þ ð3Þ

where χ(k) is the χ-distribution with kDOFs. Eq. (3) describes
the unified error distribution of the geometric tolerances. Let
μk be the expectation and σk be the variance; then, the expec-
tation and variance of the geometric error satisfy:

E Tð Þ
2σl

¼ μk ¼
ffiffiffi
2

p Γ k þ 1ð Þ=2ð Þ
Γ k=2ð Þ

D Tð Þ
4σl

2
¼ σk

2 ¼ k −μk
2

8>><>>: ð4Þ

where Γ(·) is the gamma function. Table 2 lists values of μk
and σk

2 when k=1, 2, and 3.
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According to the six-sigma principle, to ensure an accept-
able range of the geometric tolerance, the geometric tolerance
should satisfy the following relationship:

t−E Tð Þ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffi
D Tð Þ

p
ð5Þ

By combining this expression with Eqs. (4) and (5), the
relationship between the geometric tolerance and the variance
of each deviation is given by

t ¼ 2 μk þ 3σkð Þσl ð6Þ

4 Statistical analysis of variation

Depending on the type of feature (i.e., plane, straight line, or
point), the constraints of the deviation required to achieve
tolerance may vary. We use the relationship between the max-
imum distance from the nominal position and the deviation
direction to obtain the error distribution for each direction. The
variance of the displacements under partially constrained con-
ditions is obtained using analysis of variance (ANOVA).

4.1 Parametric modeling

Let ti,j be the geometric tolerance of the ith target feature
relative to the jth datum feature. The tolerance is applied to
the surface of the ith feature if j=0; otherwise, the tolerance is
used to constrain the variation in the derived geometry. If a

feature is a feature-of-size (FOS), the upper and lower limits of
the deviation of its dimensions are represented by mi and ni,
respectively. The length, width, height, and radius of the ith
feature are represented by Li, Wi, Hi, and Ri, respectively.

To carry out ANOVA of features, the variation in the ith
feature relative to the jth feature (which is restricted by ti,j) is
described as

δvi; j ¼ δxi; j; δyi; j; δzi; j; δαi; j; δβi; j; δγi; j
� �

ð7Þ
where δxi,j, δyi,j, and δzi,j are the deviations in the X, Y, and Z
axes, respectively, and δαi,j, δβi,j and δγi are the deviations in
the orientation around the X, Y, and Z axes, respectively. These
deviations can be assumed to be independent and normally
distributed, as has been shown using the central limit theorem
[19]. The expectation values relative to the original and new
nominal positions are described by

E0 δvi; j
� � ¼ E0 δxi; j

� �
;E0 δyi; j

� �
;E0 δzi; j

� �
;E0 δαi; j

� �
;E0 δβi; j

� �
;E0 δγi; j

� �� �
E δvi; j
� � ¼ E δxi; j

� �
;E δyi; j

� �
;E δzi; j

� �
;E δαi; j

� �
;E δβi; j

� �
;E δγi; j

� �� �
8<:

ð8Þ

The deviations of the farthest point from the new nominal
position along X, Y, and Z are represented by Δxi,j, Δyi,j, and
Δzi,j, respectively, which are normally distributed with the
same variances σi,j

2, i.e.,

Δxi; j∼N 0;σi; j
2

� �
Δyi; j∼N 0;σi; j

2
� �

Δzi; j∼N 0;σi; j
2

� �
8<: ð9Þ

Fig. 1 The deviation directions
of the position tolerance for a
hole, and the distribution of the
deviations along one deviation
direction

Table 1 The deviation directions
of different types of features and
their derived geometries

Feature (derived geometry) Form, profile, runout Direction Position

Plane (plane) Normal direction k=1 Normal direction k=1 Normal direction k=1

Cylinder, cone (straight line) Radius direction k=1
(perp. to axis k=2)

Perp.to axis k=2 Perp.to axis k=2

Sphere (point) Radius direction k=1 None k=0 Any direction k=3
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Using Eq. (6), σi,j
2 can be expressed in term of ti,j, i.e.,

σi; j
2 ¼ ti; j2

4 μk þ 3σkð Þ2 ð10Þ

4.2 Variation in a plane

A plane can be constrained along its normal direction (the Z
axis) and in two orthogonal directions parallel to the plane
(i.e., the X and Y axes). Based on the shape of the boundary,
a plane can be categorized as either circular or rectangular.

We can represent a rectangular plane by using the central
points along the four sides A, B, C, and D, as shown in Fig. 2.
Variations in such a plane will make these points deviate from
the nominal positions in the Z axis by zA, zB, zC, and zD, which
can be calculated in term of the displacement of the plane as
follows:

zA ¼ δzi; j−Liδβi; j=2
zB ¼ δzi; j þ Liδβi; j=2
zC ¼ δzi; j−Wiδαi; j=2
zD ¼ δzi; j þWiδαi; j=2

8>><>>: ð11Þ

Because all possible positions of these central points are
symmetrical about the new nominal position, their expectation
values are zero. Hence, using Eq. (11) to express the displace-
ments in term of the deviations of the central points, the ex-
pectation values of the displacements can be expressed as

E δzi; j
� � ¼ E zA þ zBð Þ=2ð Þ ¼ E zC þ zDð Þ=2ð Þ ¼ 0

E δαi; j

� � ¼ E zD−zCð Þ=Wi; j

� � ¼ 0
E δβi; j

� � ¼ E zB−zAð Þ=Li; j
� � ¼ 0

8<: ð12Þ

From Eq. (11), deviations in A and B are related only to
the displacements around Y and along Z. Furthermore, the
plane can be located within the tolerance zone wherever
the two points are. Therefore, deviations in A and B are
irrelevant, and the covariance of zA and zB is given by the
following:

Cov zA; zBð Þ ¼ E zAzBð Þ−E zAð ÞE zBð Þ
¼ E δzi; j

2−Li2δβi; j
2=4

� �
− 0� 0

¼ D δzi; j
� �þ E 2 δzi; j

� �
−D δβi; jLi=2

� �
−E 2 δβi; jLi=2

� �
¼ D δzi; j

� �
−D δβi; jLi=2

� � ¼ 0

ð13Þ

and consequently, the variances in the displacements
around Y and along Z satisfy the following relationship:

D δzi; j
� � ¼ Li

2D δβi; j

� �
=4 ð14Þ

Similarly, from the deviations in the central pointsC andD,
the variances of the displacements around X and along Z are
described by

D δzi; j
� � ¼ Wi

2D δαi; j

� �
=4 ð15Þ

On a rectangular plane, one or more of the four vertexes
will be farthest from the new nominal position, which deter-
mines the deviation along the only available deviation direc-
tion of the plane. Δzi,j can therefore be obtained from the
displacements of the plane as follows:

Δzi; j
		 		 ¼ δzi; j

		 		þ Li δβi; j

		 		=2þWi δαi; j

		 		=2 ð16Þ

For independent variables (x1, x2…, xa, y1, y2,…, yb), if h(·)
and g(·) are continuous functions, it follows that h(x1, x2…, xa)
and g(y1, y2, …, yb) are independent. It also follows that |δzi,j|,
|δαi,j|, and |δβi,j| are independent because δzi,j, δαi,j, and δβi,j are
independent and |·| is a continuous function. From Eq. (16), the
variance of |Δzi,j| can be calculated as follows:

D Δzi; j
		 		� � ¼ D δzi; j

		 		� �þ Li
2D δβi; j

		 		� �
=4

þWi
2D δαi; j

		 		� �
=4 ð17Þ

Since the expectation values of the displacements rel-
ative to the new nominal positions are zero (which fol-
lows from Eq. (12)), the absolute value of each

Fig. 2 The variation of a
rectangular plane within the
tolerance zone between two
parallel planes

Table 2 The
expectation values and
the variance of the χ
distribution with k
degrees of freedom

k 1 2 3

μk (2/π)1/2 (π/2)1/2 (8/π)1/2

σk
2 1–2/π 2-π/2 3–8/π
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displacement follows a half-normal distribution, the var-
iance of which can be expressed as

D �j jð Þ ¼ 1−
2

π

� �
D �ð Þ ð18Þ

Combining this expression with Eqs. (14), (15), (17), and
(18), the variances of all displacements of the rectangular
plane can be expressed as

D δzi; j
� � ¼ σi: j

2=3
D δαi; j

� � ¼ 4σi: j
2=3Wi

2

D δβi; j

� � ¼ 4σi: j
2=3Li

2

8<: ð19Þ

However, sometimes, some apparently constrained direc-
tions may not be restricted, and the distribution of Δzi,j re-
mains invariant, yet the distributions of displacements along
or around the constrained directions may still change. Table 3
lists the variances of the displacements under such partially
constrained conditions.

We may describe a round plane using four endpoints along
the X and Yaxis, A, B, C, and D, as shown in Fig. 3, where zA,
zB, zC, and zD are the deviations in the Z axis relative to the
new nominal position. From the ANOVA for a rectangular
plane, we can obtain the expectation values and variances of
the displacements of a round plane as follows:

E δzi; j
� � ¼ E δβi; j

� � ¼ E δαi; j

� � ¼ 0
D δzi; j
� � ¼ Ri

2D δαi; j

� � ¼ Ri
2D δβi; j

� �

ð20Þ

In contrast to a rectangular plane, the points on the bound-
ary of a circular plane will deviate from the new nominal
positions equally. From the relationship between the coordi-
nates of a point and its deviation, Δzi,j can be expressed in
terms of the displacements as follows:

Δzi; j
		 		 ¼ δzi; j

		 		þ Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δαi; j

2 þ δβi; j
2

q
ð21Þ

Similarly, because of the independence of the displace-
ments, it follows that

D Δzi; j
		 		� � ¼ D δzi; j

		 		� �þ Ri
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δαi; j

2 þ δβi; j
2

q� �
ð22Þ

Because δαi,j and δβi,j are distributed normally and their
expectation values are all zero, the second term on the right-
hand side of Eq. (22) can be rewritten using Eq. (20), and the
variance of the chi distribution with the 2 DOFs listed in
Table 2, i.e.,

Ri
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δαi; j

2 þ δβi; j
2

q� �
¼ Ri

2σ2
2D δαi; j

� � ð23Þ

By combining this expression with Eqs. (18), (20), (22),
and (23), the variances of the displacements can be expressed
as

D δzi; j
� � ¼ 2 π−2ð Þσi: j

2

−π2 þ 6π−4

D δαi; j

� � ¼ D δβi; j

� � ¼ 2 π−2ð Þσi: j
2

−π2 þ 6π−4ð ÞRi
2

8>><>>: ð24Þ

If only the partially constrained directions are restricted, the
variances of the displacements along or around them are as
listed in Table 4.

4.3 Variation in straight line

A straight line can be constrained along and around two or-
thogonal directions perpendicular to the line (i.e., X axis and Y
axis). Let the points A and B be the two endpoints of the
straight line, as shown in Fig. 4. Within the tolerance zone,
the deviations of the two points in the X and Y axes can be
represented by xA, xB, yA, and yB, which can be expressed in
terms of the displacements of the straight line as follows:

xA ¼ δxi; j þ Hiδβi; j=2
xB ¼ δxi; j−Hiδβi; j=2
yA ¼ δyi; j þ Hiδαi; j=2
yB ¼ δyi; j−Hiδαi; j=2

8>><>>: ð25Þ

Because all of the possible positions of A and B along the X
and Yaxes are symmetric about the new nominal position, the
expectation values of xA, xB, yA, and yB are all zero. Hence, the
expectation values of the displacements relative to the new
nominal position can be expressed as

E δxi; j
� � ¼ E xA þ xBð Þ=2½ � ¼ 0

E δyi; j
� �

¼ E yA þ yBð Þ=2½ � ¼ 0

E δαi; j

� � ¼ E yB−yAð Þ=Hi½ � ¼ 0
E δβi; j

� � ¼ E xB−xAð Þ=Hi½ � ¼ 0

8>>><>>>: ð26Þ

Moreover, regardless of the location of points A and
B along the X axis, we can guarantee that the axis is
located within the tolerance zone; therefore, xA and xB

Table 3 The variances of displacements with partially constrained
directions for a rectangular plane

Constraint direction (s) D (δzi,j) D (δαi,j) D (δβi,j)

αi,j, βi,j 0 2σi,j
2/Wi

2 2σi,j
2/Li

2

zi,j, αi,j σi,j
2/2 2σi,j

2/Wi
2 0

zi,j, βi,j σi,j
2/2 0 2σi,j

2/Li
2

zi,j σi,j
2 0 0

αi,j 0 4σi,j
2/Wi

2 0

βi,j 0 0 4σi,j
2/Li

2
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are irrelevant. As a result, from the covariance of xA
and xB, it follows that

Cov xA; xBð Þ ¼ E xAxBð Þ−E xAð ÞE xBð Þ
¼ E δxi; j

2−Hi
2δβi; j

2=4
� �

−0� 0
¼ D δxi; j

� �þ E2 δxi; j
� �

−D δβi; jHi=2
� �

−E2 δβi; jHi=2
� �

¼ D δxi; j
� �

−D δβi; jHi=2
� � ¼ 0

ð27Þ

From Eq. (27), the variances of the displacements along X
and around Y satisfy the following relationship:

D δxi; j
� � ¼ Hi

2D δβi; j

� �
=4 ð28Þ

Similarly, the variances of displacements along Y and
around X have the following relationship:

D δyi; j
� �

¼ Hi
2D δαi; j

� �
=4 ð29Þ

For each deviation direction, one of the two end-
points will be the farthest point from the new nominal
position. Therefore, based on the coordinates and devi-
ations of A and B, Δxi,j and Δyi,j can be computed as
follows:

Δxi; j−δxi; j
		 		 ¼ Hiδβi; j=2

		 		
Δyi; j−δyi; j
		 		 ¼ Hiδαi; j=2

		 		

ð30Þ

Since all parameters are normally distributed, and their ex-
pectation values are zero, from Eq. (17) it follows that

D Δxi; j−δxi; j
� � ¼ D Hiδβi; j=2

� � ¼ D Δxi; j
� �þ D δxi; j

� �
−2Cov Δxi; j; δxi; j

� �
D Δyi; j−δyi; j
� �

¼ D Hiδαi; j=2
� � ¼ D Δyi; j

� �
þ D δyi; j

� �
−2Cov Δyi; j; δyi; j

� �(

ð31Þ

The probabilities that the endpoints A and B are the farthest
point are equal. Therefore, and from Eqs. (26) and (30),
Cov(Δxi,j,δxi,j) and Cov(Δyi,j,δyi,j) can be simplified to

Cov Δxi; j; δxi; j
� � ¼ E Δxi; j−E Δxi; j

� �� �
δxi; j−E Δδxi; j

� �� �� � ¼ E Δxi; jδxi; j
� �

¼ E δxi; j
2 � Hiδβi; jδxi; j=2

� � ¼ E δxi; j
2

� �� E δxi; j
� �

E Hiδβi; j=2
� � ¼ D δxi; j

� �
Cov Δyi; j; δyi; j

� �
¼ E Δyi; j−E Δyi; j

� �� �
δyi; j−E Δδyi; j

� �� �h i
¼ E Δyi; jδyi; j

h i
¼ E δyi; j

2 � Hiδαi; jδyi; j=2
h i

¼ E δyi; j
2

� �
� E δyi; j

� �
E Hiδαi; j=2
� � ¼ D δyi; j

� �
8>>>><>>>>:

ð32Þ

Combining this expression with Eqs. (31) and (32), we can
obtain the variances of Δxi,j and Δyi,j as follows:

D Δxi; j
� � ¼ D δxi; j

� �þ D Hiδβi; j=2
� �

D Δyi; j

� �
¼ D δyi; j

� �
þ D Hiδαi; j=2

� �(
ð33Þ

Using Eqs. (28), (29), and (33), the variances of all dis-
placements can be expressed as

D δxi; j
� � ¼ D δyi; j

� �
¼ σi: j

2=2

D δαi; j

� � ¼ D δβi; j

� � ¼ 2σi: j
2=Hi

2

(
ð34Þ

If this expression is not satisfied, all of the constrained
directions are restricted in one deviation direction, and the
variances of the displacements along or around the restricted
directions will change, as listed in Table 5.

4.4 Variation in a point

One point can be constrained along three directions (i.e., theX,
Y, and Z axes), as shown in Fig. 5, where each direction

Fig. 3 The variation of a circular
plane within the tolerance zone
between two parallel planes

Table 4 The variances of displacements with partially constrained
directions for a circular plane

Constraint
direction(s)

D (δzi,j) D (δαi,j) D (δβi,j)

α, β 0
2 π−2ð Þσi: j2
π 4−πð ÞRi

2
2 π−2ð Þσi: j2
π 4−πð ÞRi

2

z, α σi,j
2/2 2σi,j

2/Ri
2 0

z, β σi,j
2/2 0 2σi,j

2/Ri
2

z σi,j
2 0 0

α 0 σi,j
2/Ri

2 0

β 0 0 σi,j
2/Ri

2
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corresponds to one deviation direction. Let xO, yO, and zO be
the deviations of a point O along the X, Y and Z axes; the
deviations in each deviation direction and the displacement of
pointOwithin the tolerance zone can be expressed as follows:

xO ¼ δxi; j ¼ Δxi; j
yO ¼ δyi; j ¼ Δyi; j
zO ¼ δzi; j ¼ Δzi; j

8<: ð35Þ

Because the deviations of the point are symmetrical about
the new nominal position, fromEq. (33), the expectation value
of the displacements can expressed as

E δxi; j
� � ¼ E xOð Þ ¼ 0

E δyi; j
� �

¼ E yOð Þ ¼ 0

E δzi; j
� � ¼ E zOð Þ ¼ 0

8><>: ð36Þ

The variances of all displacements can be expressed as

D δxi; j
� � ¼ D Δxi; j

� � ¼ σi; j
2

D δyi; j
� �

¼ D Δxi; j
� � ¼ σi; j

2

D δzi; j
� � ¼ D Δzi; j

� � ¼ σi; j
2

8><>: ð37Þ

The variance of the displacement of the unconstrained di-
rections will be therefore be zero.

5 Analytical model of assembly variation

The precedence of the relative positions of a pin–hole assem-
bly may vary depending on the results of a statistical analysis
of geometric variation. Considering the covariance of the ac-
cumulated variation during assembly, a relationship can be
constructed between the unified error distribution and the as-
sembly precision, which allows us to calculate an assembly
capability index efficiently.

5.1 Variation in the clearance fit

During assembly, if we assimilate the assembly features as the
data and target features of a geometric tolerance, the gap be-
tween the assembly features can be viewed as a geometric
tolerance. However, this gap may vary due to size and form
tolerances. To cover the worst-case scenario, the geometric
tolerance should be equal to the maximum gap.

Because the possible directions and positions of one assembly
feature are symmetric about another following mating, the expec-
tation values of all displacements are zero. Based on the prece-
dence of assembly constraints between two parts, we can establish
a procedure to analyze the variances of the displacements induced
by the clearance fits, as shown by the flowchart in Fig. 6.

Fig. 4 The variation of a straight
line within a cylindrical tolerance
zone

Table 5 The variances of
displacements with partially
constrained directions for a
circular plane

Deviation direction, X Deviation direction, Y

Constraint direction(s) D (δxi,j) D (δαi,j) Constraint direction(s) D (δyi,j) D (δαi,j)

xi,j, βi,j σi,j
2/2 2σi,j

2/Hi
2 yi,j, αi,j σi,j

2/2 2σi,j
2/Hi

2

xi,j σi,j
2 0 yi,j σi,j

2 0

βi,j 0 4σi,j
2/Hi

2 αi,j 0 4σi,j
2/Hi

2
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When an assembly constraint of a clearance fit has the
highest precedence, none of the constrained directions has
been restricted previously, and the variances of the displace-
ments can be obtained directly based on the equivalent geo-
metric tolerances of the clearance fit and the statistical analysis
of the variations given above. Otherwise, the partially
constrained directions have been restricted by other assembly
constraints that have higher precedence. The variances of the
displacements along or around the unconstrained directions
are determined by equivalent geometric tolerance of the clear-
ance fit, whereas the variances of the constrained displace-
ments are determined by the geometric tolerances between
the assembly features of one part.

Here, we take the pin–hole assembly shown in Fig. 7 as an
example. The ith feature corresponds to a pin, and the jth
feature corresponds to a hole. The equivalent geometric toler-
ance of the clearance fit is as follows:

ti; j ¼ n j−mi ð38Þ

As shown in the upper-right of Fig. 7, the assembly con-
straints of the pin–hole have the highest precedence, so there
are no constrained directions that have been restricted previ-
ously. Variances of the displacements due to the clearance fit
can be calculated directly using Eqs. (10) and (34).

D δxi; j
� � ¼ D δyi; j

� �
¼ ci−d j

� �2
8 μ2 þ 3σ2ð Þ2

D δαi; j

� � ¼ D δβi; j

� � ¼ ci−d j

� �2
2 μ2 þ 3σ2ð Þ2Hi

2

8>>>><>>>>: ð39Þ

Otherwise, some directions were restricted, as shown in the
lower-right of Fig. 7, where the displacements around the X

and Yaxes of the pin and hole have been fixed due to assembly
constraints of two planar features (the i’th and j’th features).
Then, the pin–hole assembly restricts displacement only along
the X and Y axes, the variances of which can be obtained
according to Eqs. (10), (31) and (38), i.e.,

D δxi; j
� � ¼ D Δxi; j

� �
−D

Hi

2
δβi;i 0−δβ j; j 0
� �� �

¼ ci−d j

� �2
4 μ2 þ 3σ2ð Þ2 −

Hi
2

4
D δβi;i 0
� �þ D δβ j; j 0

� �� �

D δyi; j
� �

¼ D Δyi; j
� �

−D
Hi

2
δαi;i 0−δα j; j 0
� �� �

¼ ci−d j

� �2
4 μ2 þ 3σ2ð Þ2 −

Hi
2

4
D δαi;i 0
� �þ D δα j; j 0

� �� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð40Þ

5.2 Analytical model

Variations in the assembly reflect the displacements of the
functional target features relative to the original nominal po-
sitions, as determined by the functional datum feature. Based
on the linear accumulation model of assembly variation pro-
posed by Zhou [21], the assembly variation can be expressed
in terms of the displacements of the features as follows:

U 6�1 ¼ A6�qV q�1⇔

δx f
δy f
δz f
δα f

δβ f

δγ f

26666664

37777775 ¼ A6�q

⋮
δxi; j
δyi; j
δzi; j
δαi; j

δβi; j

δγi; j
⋮

26666666664

37777777775
q�1

ð41Þ

where U is a matrix constructed from the displacements of a
functional target feature (δxf, δyf, δzf, δαf, δβf, and δγf) relative

Fig. 5 The variation of a point
within a spherical tolerance zone
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to a functional datum feature, V is a matrix constructed using
the relative displacements of features, which can be represent-
ed by q, and A is a coefficient matrix determined by the nom-
inal positions of features.

The functional requirements are typically verified based on
the deviations of several control points on the corresponding
functional target features. Therefore, it is necessary to calcu-
late the deviation of each control point with assembly varia-
tion, i.e.,

Fp�1 ¼ Bp�6U 6�1⇔
l1
⋮
lp

24 35 ¼ Bp�6

δx f
δy f
δz f
δα f

δβ f

δγ f

26666664

37777775 ð42Þ

where F is a matrix describing the deviations of one control
point, lp represents the deviation along the pth deviation di-
rection, and B is a coefficient matrix determined by the coor-
dinates of the control point in the coordinate system of the
functional target feature.

When varying the nominal positions of features, the nom-
inal position of the control point on the functional target fea-
ture will also vary. Since the new nominal positions of features
are determined by their displacement relative to the original
nominal position, the deviations of the expectation values of
the control point can be obtained from Eqs. (8), (41), and (42)
as follows:

E0 Fð Þ ¼
E0 l1ð Þ
⋮

E0 lp
� �

24 35 ¼ E0 BUð Þ ¼ E0 B AVð Þ½ � ¼ BAE0 Vð Þ ð43Þ

Fig. 7 The relative positions of
pin–hole assemblies with various
differing precedences

Fig. 6 A flowchart showing the
analysis process for the variation
of a clearance fit
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The variance of the deviation of the control point can be
calculated using the covariance as follows:

Cov Fð Þ ¼
D l1ð Þ ⋯ Cov l1; lp

� �
⋮ ⋱ ⋮

Cov lp; l1
� �

⋯ D lp
� �

24 35 ¼ Cov BUð Þ ¼ BCov Uð ÞBT

¼ BCov AVð ÞBT ¼ BACov Vð ÞATBT ¼ BAð ÞCov Vð Þ BAð ÞT
ð44Þ

where Cov(V) is a diagonal matrix, since all displace-
ments are independent, and where each diagonal element
corresponds to the variance of one displacement. In par-
ticular, although a change in the nominal position of fea-
tures will alter the coefficient matrix A, it will be too
small to significantly affect the final assembly variation.
Hence, A will remain invariant wherever new nominal
positions occur.

In summary, Eqs. (43) and (44) constitute an analytical
model of assembly variation, and the expectation values of
deviation, and the variances of a control point can be obtained
using this model.

5.3 Evaluation for the process capability index
of an assembly

When one control point has two or three deviation directions, the
deviations along them may not be independent following the
accumulation of errors. Using principle component analysis
(PCA), the eigenvectors of Cov(F) indicate the independent di-
rections of deviations. Furthermore, the eigenvalues of Cov(F)
are equal to the variances of the deviations along the directions of
the eigenvectors. Let dp and vp represent the pth eigenvalue and
eigenvector of Cov(F), respectively; it follows that

Cov Fð Þvp ¼ dpvp ð45Þ

For each direction of each eigenvector, the expectation val-
ue of the deviation, denoted ep, can be determined from the
following transformation:

ep ¼ E0 lp
� �		 		 E0 lp

� �
⋅vp

E0 lp
� �		 		� vp

		 		 ¼ E0 lp
� �

⋅vp
vp
		 		 ð46Þ

Fig. 8 The design of a single-rod piston cylinder, showing the tolerances

Int J Adv Manuf Technol (2016) 84:347–360 357



Because the directions of the eigenvectors are independent,
the functional requirements can be validated by comparing them
with the largest range of deviations in these directions. If the
functional requirements are denoted as Tf, the process capability
index of the assembly, Cpk, can be evaluated as follows:

Cpk ¼ T f

Max ep
		 		þ 3dp
� � ð47Þ

6 Example

To demonstrate the feasibility of our method, we consider a
model of a single-rod piston cylinder, as shown in Fig. 8, as an

example, and carry out a statistical tolerance analysis. The
functional requirements of the piston cylinder are to guarantee
that the gap between the two cylindrical surfaces (with nom-
inal diameters of 100 mm) of the piston and the piston bore is
at least 0.120 mm when the piston travel reaches the maxi-
mum distance of 120 mm. The point C on the axis of the
piston is used as a control point.

We assume that the average systematic error is one
fifteenth of the tolerance in each translation and orien-
tation direction (multiplied by the dimensions of the
feature). Based on the tolerance and dimensional infor-
mation, the expectation values and variances of the dis-
placements of features are listed in Table 6.

Using the dimensional information of the parts shown in
Fig. 8, the following coefficient matrix A can be obtained:

A ¼

0 117 1 0 0 117 1 0 0 120 1 0 1 0 0 120 1 0 0 0
−117 0 0 1 −117 0 0 1 −120 0 0 1 0 1 −120 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26666664

37777775 ð48Þ

where each column in matrix A corresponds to an item in
Table 6. Based on the coordinates of the control point C on

the cylindrical feature of the piston, the following coefficient
matrix B is obtained:

B ¼ 1 0 0 0 15 0
0 1 0 −15 0 0


 �
ð49Þ

The new nominal position of control point C relative to the
original nominal position can then be calculated using
Eq. (43), i.e.,

E0 Fð Þ ¼ 0:0066267
−0:0014267


 �
ð50Þ

Table 6 The
expectation values and
variances of the
displacements among
features

No. δvi,j Expectation
(mm/rad)

Variance (mm2/rad2) No. δvi,j Expectation
(mm/rad)

Variance (mm2/rad2)

1 δα2,1 0.025/15/150 6.5975056×10−9 11 δx6,5 0.012/15 2.7879743×10−6

2 δβ2,1 0.025/15/150 6.5975056×10−9 12 δy6,5 0.012/15 2.7879743×10−6

3 δx3,1 0.015/15 4.3562098×10−6 13 δx7,6 0 3.2545717×10−5

4 δy3,1 0.015/15 4.3562098×10−6 14 δy7,6 0 3.2545717×10−5

5 δα4,2 0 0 15 δα7,6 0 5.2073164×10−8

6 δβ4,2 0 0 16 δβ7,6 0 5.2073164×10−8

7 δx5,3 0 1.0596238×10−4 17 δx8,7 0.012/15 2.7879743×10−6

8 δy5,3 0 1.0596238×10−4 18 δy8,7 0.012/15 2.7879743×10−6

9 δα6,4 0.012/15/50 4.4607588×10−9 19 δα8,7 0.012/15/30 1.2390996×10−8

10 δβ6,4 0.012/15/50 4.4607588×10−9 20 δβ8,7 0.012/15/30 1.2390996×10−8

Table 7 The results of the analytical model described here and the
results of other methods

Method Deviation
of axis (mm)

Process
capability index

Worst case 0.14680 0.8174

Root sum square 0.06856 1.7503

Monte Carlo(105 times) 0.11201 1.0713

Analytical model 0.11465 1.0467
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From Eq. (44), and the variances of the displacements of
features listed in Table 6, the deviation covariance matrix of
the control point is given by

Cov Fð Þ ¼ 1:296514� 10−3 0
0 1:296514� 10−3


 �
ð51Þ

Because the covariancematrix is diagonal, the eigenvectors
are the same as the deviation directions of the control point,
and the eigenvalues are equal to the diagonal elements. From
Eqs. (47), (50), and (51), the process capability index of the
assembly is given by

Cpk ¼ 0:120

0:0066267þ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:296514� 10−3

p

¼ 0:120

0:11465
¼ 1:0467 ð52Þ

7 Results and discussion

Table 7 lists the results of analyses of the single-rod piston cylin-
der using the WC method, RSS method, the Monte Carlo meth-
od, and the analytical model described here. Compared with the
Monte Carlo analysis, the WC method underestimated the pro-
cess capability index and the RSS method overestimated the
process capability index. These methods therefore do not provide
an accurate measure of the process capability index; however, it
can be computed quickly and directly based on tolerances and
dimensional information. The results obtained using the analyti-
cal model described here were in good agreement with the results
of the Monte Carlo method. It follows that our method has fa-
vorable accuracy compared with either theWC or RSS methods.

Although it has good accuracy, the Monte Carlo method
incurs significant computational expense to obtain stable and
accurate results. With a Monte Carlo approach, first, the tol-
erances are mapped to the constraint inequalities of the dis-
placements. Second, each displacement is assigned indepen-
dently and randomly based on a given distribution within the
tolerance zone. Then, only if the selected displacements can
satisfy the constraint inequalities, they will be utilized to ac-
cumulate the assembly variations. Hence, the actual distribu-
tion of the displacements is not the same as the given distri-
bution. By contrast, with our model the distributions of the
displacements are analyzed after ensuring that the geometric
tolerances are satisfied. Then, using the expectation and co-
variance analysis based on linear accumulation of assembly
variations, a direct relationship among the geometric toler-
ances and deviation variances of the control points can be
established to verify the functional requirements. Therefore,
our analytical model is considerably more efficient than the
Monte Carlo method, with no significant loss of accuracy.

8 Conclusions and future work

We have described an analytical model to deal with statistical
analyses of geometric tolerances efficiently and accurately. To
express the error distributions of geometric tolerance, the devia-
tion directions are summarized for different types of features, and
the original nominal positions are transformed when systematic
error is taken into consideration; the chi-distribution with a var-
iable number of DOFs is used to describe a unified distribution
of geometric errors. To analyze the assembly variation, direct
relationships among the geometric tolerances, displacement dis-
tributions of features, and deviation distributions of control
points are used to evaluate the functional requirements based
on the tolerance. Moreover, partially constrained situations that
arise due to datum precedence in geometric tolerances and as-
sembly constraints are also considered in the model.

The method can be used to validate design schemes with
geometric tolerances, and can also be used as part of optimi-
zation of geometric tolerances. It is advantageous to avoid
wastage prior to assembly of parts, and our model has impor-
tant theoretical and practical significance for decreasing prod-
uct development times, reducing the cost of products, and
improving the quality of products.

Some problems were not considered, such as where two parts
are located by several coupled assembly features and displace-
ment distributions. Through an analysis of the variations that are
constrained by the location priority, constrained relationships
among the variations of assembly features should be determined
according to the contact conditions to achieve fits between op-
posed parallel planes, cylinders, cones, and spheres.We assumed
that the displacements were normally distributed to establish the
analytical model for geometric tolerances; however, in practice,
the displacementsmay follow other distributions. Further work is
therefore required to investigate the significance of coupled as-
sembly features and of different distributions of displacements.
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