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Abstract In this research, the collation delay (CD) and
makespan minimization problem in a mail-order pharmacy
automated distribution (MOPAD) system are studied. The
MOPAD systems, which are integrated with pharmaceu-
tical auto-dispenser machines, auto-packer machines, and
conveyor, are utilized to fulfill the increasing prescription
demand in recent years. The motivation of this research is
derived from the practical deadlock problem in a MOPAD
system of the central fill pharmacies (CFP). Most of the cus-
tomer orders consist of multiple medications, which need
to be collated together before being packaged and shipped.
The CD is defined as the fulfillment completion time dif-
ference between the first and last medications within the
same order, which is a critical factor of the MOPAD sys-
tems throughput. When CD is minimized, the makespan
often increases. Therefore, alternative scheduling solutions
are often needed to balance the CD and makespan in the
MOPAD system. This paper presents the trade-off solutions
between minimizing CD and the makespan. Three multi-
objective genetic algorithms with a three-tuples chromo-
some design, including Vector Evaluated Genetic Algorithm
(VEGA), Multi-Objective Genetic Algorithm (MOGA), and
non-dominated sorted genetic algorithm-II (NSGA-II), are

� Debiao Li
debiaoli5@gmail.com

Sang Won Yoon
yoons@binghamton.edu

1 Fuzhou University, Fuzhou, Fujian, China

2 State University of New York at Binghamton,
Binghamton, New York, USA

3 Hongik University, Sejong, South Korea

implemented and compared under various system settings.
Compared to the current implemented longest processing
time (LPT) heuristic, three multi-objective genetic algo-
rithms save the CD by 95.67 %, but only increase the
makespan by 5.62 % on average. The results also show that
the NSGA-II provided the best frontier.

Keywords Collation delay minimization · Mail-order
pharmacy automated distribution system · Multi-objective
genetic algorithm · Three-tuple chromosome

1 Introduction

In recent years, the demand for prescription medications
has continuously increased, which is in part due to a grow-
ing elderly population [13]. The number of prescriptions
that are dispensed in the USA climbed from 2.1 billion
to 3.9 billion, which is an 86 % increase from 1994 to
2009 [13]. In order to keep up with this trend, the mail-
order pharmacy distribution (MOPAD) system has been
utilized in the central fill pharmacy (CFP), which allows
pharmacies to complete larger workloads in a shorter time,
decreases the number of work staff and medication filling
errors, improves workflow, and reduces inventory cost [25].
The CFP usually receive orders from hundreds of different
retail pharmacy locations, fill and collate the orders within
1 − 2 days, and deliver the orders to the local pharmacies
or patients. By working with a MOPAD system, a large
portion of a pharmacist’s workload in filling and verifica-
tion can be moved to an off-site location and more time
can be spent on patient consultations and addressing their
needs. The MOPAD system also leads to savings on pre-
scription dispensing and inventory holding costs, improving
drug safety and quality [2]. As a result, the MOPAD system
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Fig. 1 Relationship between
CD and makespan

has become more popular and many retail pharmacies are
utilizing MOPAD systems to obtain business and societal
benefits.

MOPAD systems utilize pharmaceutical auto-dispensing
robots and conveyors to fill large amounts of orders with
little human intervention. Auto-dispensing robots are com-
prised of a mechanical arm and hundreds of auto-dispensers.
The arm picks up a vial and brings it to one of the dispensers
so the correct medication is dropped into the vial. For
more commonly ordered medications, multiple dispensers
may be used to hold a large quantity of the same medica-
tion to reduce replenishment time. This also reduces filling
downtime because dispensing can continue from another
dispenser while an empty dispenser is being replenished.
By utilizing automated robots, more orders can be filled
in a shorter time, compared to pharmacists performing the
same work. After the medications are filled, a pharmacist
must verify before the vial is sealed and put into the robot.
Images are taken during the dispensing process and com-
pared to stock photos, which allow the pharmacists to verify
the medications remotely and reduce the verification time.

One of the most important factors in the operation
of a MOPAD system is the collation delay (CD). The
CD is defined as the fulfillment completion time differ-
ence between the first and last medications within the
same order [16]. Due to the aging population and long-
term effects of disease, 50–80 % of prescription orders
received in a MOPAD system are multiple medications
orders, which may generate CDs. These medicines from
the same prescription order may be dispensed from dif-
ferent robots. After being filled, the medicines must be
transferred together and collated. The CD is identified as a
critical factor to the MOPAD system’s throughput according
to a factorial multivariate analysis of variance (MANOVA)
based on simulation results [17]. The large CDs indicate a
large amount of medications are looping in the conveyor
and waiting to be collated. When the number of medica-
tions exceed the conveyor capacity, the MOPAD system
will be a deadlock. No orders can be processed through the
system without manually clearing out the collation stations

and conveyors after deadlock. This situation can be avoided
by having additional resources (e.g., collation stations and
conveyors). However, this is not always feasible due to
the constraints of cost and space. To solve this problem,
the CD problem is proposed as a flexible order scheduling
problem with the objective of minimizing the CD. How-
ever, just minimizing the CD could have adverse effects on
the makespan. As shown in Fig. 1a, the CD is minimized
to zero for order 1 and 2 by adding idle times, such that
all the jobs within an order are fulfilled at the same time.
However, the makespan increases because of the non-value-
added machine idle time. If minimizing the makespan is
considered as a single objective, the CD becomes greater
than zero after applying the longest processing time heuris-
tic, as shown in Fig. 1b. The makespan is conflicting with
CD in some cases, particularly when the majority prescrip-
tion orders are consist of multiple medications. Therefore,
alternative scheduling solutions are often needed to balance
the CD and makespan in the MOPAD system. This problem
is treated as a multi-objective optimization problem in this
research, which minimizes both CD and makespan.

This paper discusses the relationship between colla-
tion delay and makespan, formulates a bi-objective integer
programming, proposes three-tuple chromosome design in
the Vector Evaluated Genetic Algorithm (VEGA), Multi-
Objective Genetic Algorithm (MOGA), and non-dominated
sorted genetic algorithm-II (NSGA-II). A literature review
is presented in Section 2. A mathematical model developed
for the CD-makespan problem is stated in Section 3, and
three multi-objective genetic algorithms are discussed in
Section 4. The experimental results are shown in Section 5,
followed by the conclusion and future work in Section 6.

2 Literature review

The automations in pharmacies increase the efficiency, con-
sistency, and safety in pharmaceutical practice [10], ensure
the five-right of medication (right patient, route, dose, time,
and medication), and improve the healthcare quality and
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Table 1 List of notations used for the CD-Cmax mathematical model

Indexes Description

i Order index, i ∈ {1, 2, . . . , m}
j Job index, j ∈ {1, 2, . . . , ni}
k Machine index, k ∈ {1, 2, . . . , o}
l Position index, l ∈ {1, 2, . . . , L}

Data

m Number of orders

ni Number of jobs in order i

o Number of machines

L Total number of jobs L = ∑m
i=1 ni

pij Given processing time of job j from order i

Variables

xijkl Binary variable, 1 if job j from order i is

processed in position l of machine k; 0 otherwise

sijkl Integer variable, starting time of job j from order i

on machine k in position l

Cmax Integer variable, production makespan

Cmin
i Integer variable, the earliest completion time of order i

Cmax
i Integer variable, the latest completion time of order i

safety [2]. The design of pharmaceutical auto-dispensing
systems has been proposed and implemented to increase the
feasibility and accuracy of dispensing process [21]. A fuzzy
self-adaptive proportional-integral-derivative (PID) control
method has been presented to study the dynamic char-
acteristics of the lifter in pharmaceutical auto-dispensing
systems, and a GA has been implemented to search its short-
est routes [27]. The medication location planning problem
in pharmaceutical auto-dispensing systems has also been
studied as an location assignment problem [23]. A multi-
objective particle swarm algorithm has also been applied to
optimize the medicine location and planning. The simula-
tion results indicate that the proposed algorithm reduces the
cost and improves the efficiency.

MOPAD systems are utilized to handle the increasing
prescription demand in CFP. A typically MOPAD system
consists of auto-dispensing machines, auto-cappers, auto-
packaging machines, and auto-transportation systems (e.g.,
conveyors, vacuum transport tube system, etc.). Based on
a factorial multivariate analysis of variance (MANOVA) of
simulation results, the CD is identified as a critical factor to
the MOPAD system’s throughput [17]. The CD is defined as
the fulfillment completion time difference between the first
and last medications within the same order [16]. An adap-
tive parallel tabu search algorithm is proposed to minimize
the CD problem in a MOPAD system [18]. The CD is min-
imized as a single objective optimization approach, while
the makespan is considered as a constraint. A makespan

tolerance is enforced by 10 % of the optimal makespan,
which means that valid schedules are allowed to have at
most 110 % of the optimal makespan. The result from the
adaptive parallel tabu search is compared to classical tabu
search and longest processing time (LPT) heuristic. The
final results showed that the adaptive parallel tabu search
algorithm is superior, especially at larger job sizes [18].
However, the makespan often increases as CD is mini-
mized in MOPAD systems. The single solution approach
has a limitation in investigating the Pareto frontier set when
the trade-off (CD and makespan) surface is non-convex.
Therefore, alternative scheduling solutions are considered
to minimize the CD and makespan in this research.

There are two general approaches when solving multiple-
objective problems. The first is to frame the objective into
a single objective or to set all objectives except one as con-
straints [15]. Optimization of problems using these methods
would return only a single solution. The second approach
is to find the Pareto optimal solution set, the set of solu-
tions that are non-dominated when compared to each other
[15]. This approach is often preferred because it provides a
set of solutions that considers trade-offs in resource usage
and are more useful when real-life problems are considered.
In multi-objective optimization problems, Pareto optimal
solutions are points that cannot be improved without com-
promising at least one of other objectives. The Pareto front
is a set of the solutions that are called non-dominated solu-
tions. It means that the solutions cannot be better in terms
of all the considered objectives simultaneously [5]. The
concept of Pareto optimality is widely applied in the evolu-
tionary metaheuristics for the multi-objective optimization
problems [19, 20]. The Pareto-based fitness assignment
is first proposed by Goldberg [9]. The Pareto optimality
ranking method has been used in a variety of scheduling
problems [7, 22]. Although they do not guarantee optimal-
ity, they are usually applied to efficiently seek good quality
solutions for large and complex problems. There are many

Table 2 Example jobs and their processing times

Order Job index Processing time

1 1 3

2 1 2

3 1 7

4 1 4

5 1 9

6 1 8

6 2 14

7 1 2

7 2 9

7 3 5
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Table 3 Example machine assignment based on chromosome
representation

Machine Jobs (In order of processing)

1 (7,2) (4,1) (1,1) (2,1) (6,2)

2 (3,1) (5,1) (7,1)

3 (7,3) (6,1)

parameters have to be set by the user, and the solution qual-
ity is usually sensitive to the parameter settings [14]. A
genetic algorithm is applied to maximize the orders’ satis-
faction level and minimize their total processing times by
considering uncertain orders, processing time, and arrival
times [11]. Their results indicate that the algorithm can
efficiently find multiple trade-off solutions that simultane-
ously minimize WIP and makespan. MOGA is proposed
and applied to a flowshop scheduling problem [4]. MOGA
performs better than the VEGA when the objectives mini-
mized makespan, total completion times, and total tardiness
[26]. The NSGA-II proposed by Deb et al. is a well-known
algorithm for solving multi-objective optimization problems
using a non-dominated approach [6]. It has been success-
fully applied to many multi-objective problems, e.g., facility
location problem [3], multi-site order scheduling problem
(MSOS) [12], generation expansion planning problem [24],
and constrained grinding optimization for time, cost, and
surface roughness [8]. To minimize the CD and makespan
in MOPAD, a mathematical model is established and three
multi-objective genetic algorithms with a three-tuples chro-
mosome design are proposed in this paper.

3 Mathematical model

In this study, both minimizing makespan and CD are con-
sidered as the objective functions. It is assumed that all
the automated dispensing machines are identical and are
capable of processing one job assigned at a time with a
deterministic processing time. There is no set-up time, no
breakdowns, and no replenishment needed, such that each
machine has L (L = ∑m

i=1ni) positions to locate jobs. It is
also assumed that the number of jobs in a multi-medication
order will not exceed the number of machines. In reality,
there is a distance between machines that would be included
in the CD calculation. In this research, it is assumed that

Table 4 Example of total processing time by machine

Machine Total processing

1 32

2 18

3 13

Table 5 Example of start and finish times for jobs using Table 3
sequence

Order Start First finish Last finish CD

1 13 16 16 0

2 16 18 18 0

3 0 7 7 0

4 9 13 13 0

5 7 17 17 0

6 5 13 32 19

7 0 5 18 13

after an job is finished auto-filling, it is waiting for the
other jobs that are part of its order. A mathematical model
of the CD-Cmax minimization problem is developed based
on these assumptions. The notations used in this model is
presented in Table 1.

f1 : min
m∑

i=1

(
Cmax

i − Cmin
i

)
(1)

f2 : minCmax (2)

subject to:

sijkl + pij · xijkl ≤ Cmax
i ∀i, j, k, l (3)

sijkl + pij · xijkl ≥ Cmin
i ∀i, j, k, l (4)

sijkl + pij · xijkl ≤ si′j ′kl′ ∀i, j | i �= i′ ∧ j �= j ′, k, l ≤ l′ (5)
o∑

k=1

xijkl ≤ 1 ∀i, j, l (6)

L∑

l=1

xijkl ≤ 1 ∀i, j, k (7)

m∑

i=1

n∑

j=1

L∑

l=1

pij · xijkl ≤ Cmax ∀k (8)

xijkl ∈ {0, 1} ∀i, j, k, l (9)

sijkl , pij , Cmax ∈ Z
+ ∀i, j, k, l (10)

The collation delay minimization objective, minimizing the
time difference between the earliest and latest completed
jobs in a multi-medication order for all orders, is shown
in Eq. 1. The makespan minimization objective, the mini-
mization of the time to process all jobs, is shown in Eq. 2.
Equations 3 and 4 define the earliest and latest completion
times within an order, sijkl + pij · xijkl . If xijkl = 1 then
job j of order i is processed on machine k in position l of
the machine and pij · xijkl = pij ; otherwise, pij · xijkl = 0.
Equation 5 establishes the sequence of jobs being processed
on the same machine. If a job j in order i is processed on
machine k in position l at time sijkl , job j ′ from order i′
being processed on the same machine k in a position l′ > l,
must necessarily start at a time after sijkl + pij , the start-
ing time of job j from order i plus its processing time pij .
i cannot equal i′ and j cannot equal j ′ simultaneously oth-
erwise the exact same job will be referenced twice. A job
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Fig. 2 Example of scheduling
jobs based on Table 3 sequence

is only processed on one machine, as stated in Eq. 6. Equa-
tion 7 states that a job can only be in one position; a job
cannot be split and preempted by another job. The makespan
is defined in Eq. 8. xijkl is a binary variable, and the starting
times, processing times, and makespan must be all positive
integers, as stated in Eqs. 9 and 10.

4 Methodology

In this research, three multi-objective genetic algorithms
with the three-tuples chromosome design, including VEGA,
MOGA, and NSGA-II, are applied in solving this CD prob-
lem under various conditions. The three-tuples chromosome
introduced in Section 4.1 is implemented in multi-objective
genetic algorithms. Different fitness function designs of
VEGA, MOGA, and NSGA-II are presented in Section 4.2.
The crossover and mutation are discussed in Sections 4.3
and 4.4.

4.1 Chromosome design

In order for the data to be input in the GA, it must be prepro-
cessed into a chromosome. The chromosome will contain
all the information for the order of jobs to be processed on
the assigned machines for each job. Each job will be in the
form of a three-tuple (i, j, k). It indicates that job j of order
i will be processed on machine k. The order in which the
three-tuples appear will determine the order the machine

will process jobs. For example, there are seven orders with
a total of ten jobs as shown in Table 2. Therefore, if (1,2,3)
appears to the left of (2,1,3) then job 2 of order 1 will be
processed before job 1 of order 2 on machine 3.

Table 3 shows the resulting machine assignment if there
are three machines and the orders from Table 2 are assigned
to machines randomly: (7,2,1) — (3,1,2) — (4,1,1) —
(1,1,1) — (2,1,1) — (6,2,1) — (7,3,3) — (6,1,3) — (5,1,2)
— (7,1,2)

4.2 Fitness

The fitness of each sequence will be calculated and
determined based on CD and makespan. The makespan
of a schedule is the maximum of completion time of
all machines. The workload is balanced by minimizing
makespan. The lower bound of the makespan in a parallel
machine problem can be determined by the average machine

processing time (
∑

Pij

o
). One of the methods to reduce

makespan is the longest processing time (LPT) rule. For o

parallel machines and L jobs, the jobs are sorted in descend-
ing order of processing times. For each job in order, it is
assigned to the first available machine in time (break ties
arbitrarily). If L ≤ o, then the optimal makespan follow-
ing the LPT rule is just the longest processing time among
the jobs. Otherwise, the LPT will approximate the following
ratio: Cmax(LPT)/Cmax(OPT) ≤ (4/3 − −1/3o) [1].

The CD is calculated by the difference between the ear-
liest and the latest completion time in one order. The CD

Fig. 3 Example of scheduling
jobs to minimize the makespan
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Fig. 4 Example of scheduling
jobs to minimize the CD

for the entire schedule is the sum of all CDs for all orders,
as shown in Eq. 1. For example, the makespan and the
CD will be calculated based on Table 3. All jobs will be
processed at the earliest possible time so that there is no
idle time between jobs on a machine. Table 4 shows the
total processing time for each machine given the job assign-
ments from Table 3. The makespan for the schedule is
the maximum processing time of the three machines, 32 s.
As shown in Table 5, the CD is the difference between
the earliest and the latest completion time of a job. The
CD of the schedule is 32 s and the schedule is depicted
in Fig. 2.

Figure 3 indicates a schedule that minimizes makespan
without considering the CD. There machines have the
equal balance workload, but the CD is generated for
order 6 and 7. Figure 4 shows a schedule that mini-
mizes the CD without considering the makespan. Machine
1 and 3 have idle time to achieve zero CD, but the
makespan is increased. In this case, there is a trade-off
between minimizing makespan and minimizing the CD. The
makespan measures the dispensing throughput, and the CD
measures the auto-collation efficiency. Therefore, multi-
objective approaches are applied to minimize the makespan
and CD.

4.2.1 VEGA

The VEGA is the first implemented to solve this multi-
objective problem. It approximates the Pareto front by divid-
ing the population into equally sized sub-populations. Each
subpopulation optimizes a different objective and assigns
a fitness value to each member in the subpopulation. In
VEGA, each subpopulation is only evaluated against its
objective z. The roulette-wheel selection method is adopted
to select parents. The fitness is associated with the prob-
ability of selection. Solutions having a better z value are
more likely to be chosen and placed into the subpopulation.
Therefore, they are more likely to be placed into the subpop-
ulation. The population in the next generation are generated
based on the chromosome crossover and mutation. The

main drawback to using this approach is that Pareto optimal
solutions may be discarded because they are evaluated with
respect to only one objective in each subpopulation. Solu-
tion population tends to be crowded around the extreme of
each objective [15, 26].

4.2.2 MOGA

In the MOGA proposed by Fonseca and Flemming, the
ranking is done by sorting each solution into a front [7], as
shown in Algorithm 1. The equation used to determine rank-
ing is r(x, t) = 1 + nq(x, t), where nq(x, t) is the number
of solutions that dominate solution x at generation t . Each
solution in the population is considered, and then compared
to every other solution. A solution is dominated if the other
solution has either a better CD or a better Cmax.

Algorithm 1 Sort algorithm in MOGA

1: Sort the population (P ) in decreasing fitness based on
one objective

2: If |P | = 1 return P as Front (P ). Else, T =
Front (P(1) − P(|P/2|)) and B = Front (P(|P |/2+1) −
P(P )). If the ith non-dominated solution B is not dom-
inated by any non-dominated solution of T , create a
merged setM = T ∪i. ReturnM as output of Front (P )

In MOGA, a fitness penalty is applied for solutions that
are in the same ranking. The Euclidean distance between

Table 6 Parameters used in multi-objective genetic algorithms

Population size (L = 12, 24) 10 · L

Population size (L = 120) 2000

Crossover method Single point

Crossover rate 100 %

Mutation method 2-opt swap

Mutation rate 20 %

Parent selection method Roulette wheel
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Fig. 5 Example ranking before and after the VEGA process in the 24–12 problem

every solution pair is calculated, and a niche count is deter-
mined. The niche is a defined neighborhood of solutions,
and the solutions in the neighborhood contribute to each
others niche count. A higher niche count indicates a more
densely populated area. Their fitness is scaled down, which
reduces the probability that they are selected as a parent
for crossover. Niching limits continuously explore of areas
in the objective function space. It is difficult to determine
what the niche parameter should be. Fonseca and Flem-
ing [7] describe a method to approximate the niche size in
the objective value domain. Given a population of size N ,
σshare can be estimated by solving:

Nσ
q−1
share−

∏q

z=1(Mz − mz + σshare) − ∏q

z=1(Mz − mz)

σshare
= 0

(11)

where q is the number of objectives, Mz and mz are the
maximum and minimum values of objective z for the current
generation, respectively. This formula is applied at every
generation.

In this study, MOGA uses stochastic universal selec-
tion to determine the mating pool. This selection method
is similar to roulette-wheel selection. Instead of re-rolling
a random number for each selection, all selections are
made at one time based on a single random number. For
N solutions to be selected, the selections will be made 1/N
distance apart. The random number to be generated will
be in the range of [0, 1/N]. After the mating population
is selected, a binary tournament is used to determine par-
ents for crossover. The stochastic universal selection keeps
consistency in the mating pool.

4.2.3 NSGA-II

An fast non-dominated sort algorithm is used in the NSGA-
II, as shown in Algorithm 2. A temporary set P ′ is initialized
and a first solution is entered into the set. Every solution x is
compared with all members in the set P ′ one at a time. If x

dominates any member of P ′, the member is removed from
P ′. If x is dominated by any member in P ′, the solution is
ignored. If x is non-dominated to all the remaining members

Fig. 6 Frontier plots for the 12 problem
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Table 7 Summary of
experimental results (CD and
Cmax ) with L = {12, 24} and
o = 3

LPT VEGA MOGA NSGA-II

L p CD Cmax μCD μCmax μCD μCmax μCD μCmax

12 2 22 38 0 37.2 0 37 0 37

12 6 45 38 3.2 39 3.4 37 3 37

12 10 62 38 10.8 39.4 9.6 37.8 9.2 37.6

24 4 43 80 0 80.6 0 80 0 80

24 12 160 80 8.6 85 11.6 80.2 7.6 80.2

24 20 216 80 25.8 82.8 24.2 82.4 21 81.4

All units are in seconds

in P ′, then it enters into P ′. The first iteration gives the
non-dominated solutions of the current population and gives
them a rank of 1. All solutions in P ′ are then ignored and
to rank the rest of the population, the procedure is repeated,
with each iteration producing a next non-dominated front
and then discounting them for the remaining solutions.

Algorithm 2 Sort algorithm in NSGA-II

1: Initialize population P. r=1.
2: Sort solutions in a decreasing order of one objective

function and create sorted lists.
3: Initialize a set P ′ and add the first solution in the sorted

list to P ′. Remove the solution from P.
4: For every solution x (other than the first solution),

compare solution x to every solution in P ′

(a) If any solution in P ′ dominates x, move on to the
next solution

(b) If x is non-dominated to all solutions in P ′, add
solution x to P ′. Remove the solution from P.

(c) If P ′ becomes empty, immediately add the solution
x to P ′. Remove the solution from P.

5: Return P ′ as the non-dominated set and Pareto front, all
solutions in P ′. r=r+1

6: Repeat Steps 3 - 5 until P is empty.

In NSGA-II, a crowding distance is implemented to
spread solutions more evenly along a frontier. After ranking
the population, the crowding distance of each solutions is
set as ∞, and then it is calculated by Eq. 12.

cdz(x[i,z]) = yz(x[i+1,z]) − yz(x[i−1,z])
Mz − mz

(12)

where i is the ith solution in the rank, z is the objective
index, Mz is the maximum value found for objective z, mz

is the minimum value found for objective z, and yz(x) is
the fitness value for solution x in objective z. The crowding
distance for a solution, x, is then cd(x) = ∑

z cdz(x). The
advantage of the crowding distance measurement is that it
does not require a user-defined parameter such as σshare in
Eq. 11.

4.3 Crossover

The single point crossover method is applied to reproduce
children. The crossover operator randomly select a cut point
in a parent, dividing the job sequence into two. The portion
of jobs before the cut will remain the same on the child. The
portion of jobs after the cut will be taken from parent 2 in the
same sequence the remaining jobs appear. The step-by-step
procedure is presented in Algorithm 3:

Algorithm 3 Three-tuples chromosome crossover

1: Randomly select two parents Pa1 and Pa2 from popu-
lation set P.

2: Randomly determine a cut point for Pa1 and for Pa2
3: Begin crossover

3.1 Child 1 takes the sequence of jobs and machines
from Pa1 before the cut.

3.2 Identify the jobs in Pa2 that are not yet in Child 1.
This set of jobs in the sequence they appear in Pa2
is appended to the end of Child 1

3.3 Child 2 takes the sequence of jobs and machines
from Pa2 before the cut.

3.4 Identify the jobs in Pa1 that are not yet in Child 2.
This set of jobs in the sequence they appear in Pa1
is appended to the end of Child 2

4: Evaluate the fitness of the newly created solutions

4.4 Mutation

Mutation is a procedure to improve diversity of the pop-
ulation by simply replacing part(s) of the population with
random individual(s). Mutation occurs with a low probabil-
ity because it is not desirable to change the entire population
frequently. A common form of mutation is swap muta-
tion, where two genes within a chromosome are randomly
selected and their positions are swapped, as shown in Algo-
rithm 4. This is equivalent to having two jobs selected
and then having their positions in the sequence switched.
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Table 8 Summary of
experimental results (σ and
computational time) with
L = {12, 24} and o = 3

VEGA MOGA NSGA-II

L p σCD σCmax CT σCD σCmax CT σCD σCmax CT

12 2 0 0.45 44.72 0 0 797.54 0 0 752.73

12 6 0.45 3.94 53.00 0.55 0 1297.58 0 0 907.25

12 10 2.17 3.36 47.93 2.61 0.84 1025.42 2.49 0.55 969.89

24 4 0 1.34 53.77 0 0 977.33 0 0 950.50

24 12 5.13 4.06 68.73 5.51 0.45 1690.22 2.07 0.45 1294.10

24 20 3.90 2.95 83.59 6.14 2.88 1735.26 1.87 1.14 1329.48

All units are in seconds

A pair wise exchange is applied as the mutation operator.
Jobs are randomly selected and swapped from within a sin-
gle chromosome, which allow the possibility of the order
of jobs being processed to be changed while the machine
assignment stays the same.

Algorithm 4Mutation

1: For each child created as a result of crossover, deter-
mine if mutation will occur. If mutation does occur,
randomly select two jobs

2: Swap the positions of the two jobs. The swapped jobs
are assigned to the other’s machine

3: Re-evaluate the fitness of the solution due to the swap-
ping of jobs

5 Experimental results and analysis

Three multi-objective genetic algorithms with a three-
tuples chromosome design, including VEGA, MOGA, and

NSGA-II, are implemented to minimize the CD and
makespan. Experiments are performed with different prob-
lem sizes to study their impact on the genetic algorithms’
performances. The genetic algorithms are evaluated by com-
paring their results to each other and also to the results
obtained by the LPT heuristic, which will be used as a
baseline solution. The LPT is a commonly used scheduling
heuristic when trying to minimize makespan. A set of orders
and jobs are randomly initialized and used for the whole
experiments. There are three cases of different job num-
bers, L = {12, 24, 120}. In each case, the jobs are grouped
by orders and a processing time for each is assigned. It is
assumed that the number of jobs in an order will not exceed
the number of machines; for example, if there are three
machines, then there can only be a maximum of three jobs
in an order. The different number of jobs are used to study
the effect of job size on the solution quality of the genetic
algorithms.

The heuristics’ parameters are fine tuned based on
taguchi method for each case, which is summarized in
Table 6. Three genetic algorithms (VEGA, MOGA, and
NSGA-II) are run and terminated when no progress to find

Fig. 7 Frontier plots for the 24 jobs problem
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Fig. 8 Frontier plots for different number of multi-medication orders

better ranked solutions is made within 5 · p · m generations.
All data sets are shaped for a three machine situation. The
processing time for each job follows the discrete uniform
distribution from 1 to 20 s. After fixing the number of orders
having a single job, half of the remaining jobs belong to
2-job orders and the other half belong to 3-job orders. For
example in the 120–100 job problem, 100 of the jobs are a
part of a multi-medication order. Fifty of the jobs will be a
part of 2-job orders, and the other 50 will be a part of 3-job
orders. However, since 50 is not a multiple of 3, more orders
are created to be 2-job orders until the remainder of jobs is
a multiple of 3. In this case, 52 jobs are used to create 2-job
orders, and the remaining 48 jobs are used to create 3-job
orders. Initial randomized population size for each GA is
set to 2000 with the exception of MOGA. Preliminary tests
show that with an initial population size of 2000, MOGA
is frequently unable to complete a run before reaching the
time limit. It is desirable to keep a large mutation rate so
that different assignments can be explored. The main per-
formance metrics are the non-dominated CDs and Cmax in
the Pareto frontier. Additional experiments are conducted
to analyze the impact of the number of multi-medication
jobs, p, and the number of machines, o.The data sets are
obtained from [18].

The LPT method of scheduling is used to provide a solu-
tion that does not take into account the CD, but a heuristic
to minimize makespan. The lower bound is determined by∣
∣
∣
∑

Pij

o

∣
∣
∣. If it matches the makespan from the experimental

results, then the makespan obtained is optimal. If the CD is

0, then it is the optimal CD. The mean and standard devia-
tion of the CD(μCD, σCD), makespan (μCmax , , σCmax ), and
computational time (CT) are measured from 10 independent
runs of each case. Cmax obtained is considered optimal if
the result is equal to the sum of the processing times for all
jobs divided by the number of machines,

∑m
i=1

∑n
j=1 pij /o,

and then rounded up to the nearest whole number. All
performance metrics are measured in seconds. All genetic
algorithms are developed in Matlab R2013a, and the exper-
iments are conducted on a PC with an Intel Core i7-3770
CPU @ 3.4 GHz and 16 GB RAM.

5.1 Analysis of small job-size problems

The GAs are applied to smaller job size problems with L =
12, 24 on three parallel machines (o = 3). The experimental
results are shown in Tables 7 and 8 and Figs. 6 and 7.

The GAs save the CD by 82.58−−100 %, but increase
the makespan by 0−−6.25 %. The VEGA is relatively sim-
ple to implement and run the fastest among all three GAs,
which is terminated in less than 2 min on average. While
VEGA can provide competitive results in the 12 − −2 and
12 − −6 problems, it is quickly surpassed by MOGA and
NSGA-II as the number of multi-medication jobs or total
number of jobs is increased. It is able to obtain less CD val-
ues than LPT, but it has the only advantage in computational
time compared to other GAs. In terms of stability of solu-
tions, VEGA has the highest standard deviation in both CD
and Cmax compared to the other GAs. MOGA among all

Table 9 Summary of
experimental results (CD and
Cmax) with L = 120, o = 3,
and different amounts of
multi-medication orders, p

LPT VEGA MOGA NSGA-II

p CD Cmax μCD μCmax μCD μCmax μCD μCmax

20 1735 402 12 416 21.4 403.8 9.8 406.6

60 3721 402 101.2 444.2 79.8 403.8 58 404.6

100 6585 402 258.8 441.2 238.6 402.4 180 405.8

All units are in seconds
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Table 10 Summary of
experimental results (σ and
computational time) with
L = 120, o = 3, and different
amounts of multi-medication
orders, p

VEGA MOGA NSGA-II

p σCD σCmax CT σCD σCmax CT σCD σCmax CT

20 5.34 20.93 248.06 7.27 2.68 2878.12 3.63 3.21 2539.74

60 27.71 26.83 428.18 15.01 2.95 4424.72 4.74 2.30 4082.14

100 52.49 26.68 544.60 25.56 0.89 7205.32 21.55 3.03 5926.66

All units are in seconds

three GAs takes the longest time to be terminated for every
case. Despite a small population size, MOGA is able to pro-
duce better results than VEGA, but takes a longer time to
be terminated. The transition from 12 jobs to 24 jobs, how-
ever, shows that the MOGA struggles to produce better CD
values. The NSGA-II is able to run the 12 − 2 and 12 − 6
jobs problem with optimal results. There is no variation in
the solutions for any runs. In the 12 − 10 job problem, the
NSGA-II had more difficulty in producing a more stable
CD. Overall, NSGA-II is able to obtain the least Cmax with
the least CD and variance.

For the 12 job problems, the optimal Cmax = 37. In
the 12 − 2, all GAs obtains the same result in CD and the
optimal Cmax with the exception of VEGA, which has a
Cmax that is 0.54 % larger. In the 12 − 6 problem, MOGA
and NSGA-II obtain the optimal Cmax, while VEGA has a
5.41 % increased Cmax. NSGA-II obtains an average CD = 3
with MOGA having a 13.33 % increase and VEGA having
a 6.67 % increase in CD. In the 12 − 10 problem, NSGA-II
obtains an average CD of 9.2 with MOGA having a 4.35 %
increase and VEGA having a 17.39 % increase in CD.
NSGA-II obtains a 1.62 % increased Cmax over the optimal,
while VEGA’s Cmax is larger by 6.49 % and MOGA’s Cmax

is larger by 2.16 %. For the 24 job problems, the optimal
Cmax = 80. In the 24 − 4 job problem, all GAs obtain the
same result in CD and the optimal Cmax with the exception
of VEGA, where the Cmax is 0.75 % larger. In the 24-12
problem, NSGA-II and MOGA obtain an average Cmax that
is 0.25 % larger than optimal, while VEGA has a Cmax that

is 6.25 % larger. NSGA-II obtains an average CD = 7.6 with
MOGA having a 52.63 % larger average CD and VEGA
having a 13.16 % larger average CD. In the 12-10 prob-
lem, NSGA-II obtains an average CD of 21 with MOGA
having a 15.24 % larger average CD and VEGA having a
22.86 % larger average CD. NSGA-II, MOGA, and VEGA
have an average Cmax that is 1.75, 3.00, and 3.50 % larger
than optimal, respectively.

When the percentage of multi-medication jobs is low and
the total job number is low, as in the 12-2 and the 24-4
problems, the GAs are able to achieve a CD and Cmax that
is optimal in both respects. The result is CD = 0 and
Cmax = 37 in the 12 job problem and CD = 0 and
Cmax = 80 in the 24 job problem. There is no variation in
the runs, all results come to the same CD and Cmax value
with the exception of VEGA having a slight variation in the
Cmax.

Figure 5 shows an example of a population before and
after VEGA processes. Figure 5a indicates that the initial
randomly generated population are categorized into ranks 1
to 5 with the non-dominated frontier. The points in the same
frontiers are connected with lines in the same color. After
one iteration run of VEGA, the ranking graph is shown in
Fig. 5b. In subsequent graphs, the non-dominated frontiers
are generated by selecting the non-dominated frontier (rank
1) in each experiment.

The non-dominated frontiers generated from GAs show
in Figs. 6 and 7. All three GAs are able to find the point
that is non-dominated compared to all other points (CD = 3,

Fig. 9 Frontier plots for the 120-o machine job problem
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Table 11 Summary of
experimental results (CD and
Cmax) with L = 120 and
p = 60 on different numbers of
machines, o

LPT VEGA MOGA NSGA-II

o CD Cmax μCD μCmax μCD μCmax μCD μCmax

2 6,633 603 111.6 605.4 101.8 603.8 101.4 603.2

3 3,721 402 101.2 444.2 79.8 403.8 58 404.6

4 3,240 302 81.2 333.4 68.8 302.4 52.4 303.2

All units are in seconds

Cmax=37), as shown in Figs. 6a and 6b. In the 12–10 job
problem, Fig. 6c indicates that MOGA is in one instance
able to find a better CD value than VEGA or NSGA-II.
All three GAs are able to reach the optimal Cmax of 37.
Figure 6a shows that all GAs are able to find the best
non-dominated point with an optimal Cmax.

5.2 Analysis of different amounts of multi-medication
orders

In the CFP, multiple medications orders influence the CD.
To study the impact of multi-medication orders on the CD,
the job size and number of machines are fixed. The varying
factor is the number of jobs belonging to an order. For these
scenarios, the job size is n = 120, with p being the amount
of jobs that are part of a multi-medication order. The Cmax

for this problem is 402. Due to the larger size of the prob-
lem, the computational time limit is set as 2 h. A summary
of the experimental results is shown in Tables 9 and 10 and
Fig. 8.

The GAs save the CD by 96.07−−99.44 %, but increase
the makespan by 3.48−−10.50 %. The Cmax found by
LPT is the optimal makespan of 402. In these experiments,
NSGA-II is able to obtain the best CD out of all three
GAs. NSGA-II has the best average CD and Cmax for all
three cases. In the 120–20 problem, MOGA has the worst
CD,which is 118.37 % larger. In the 120–60 and 120–100
problems, VEGA has the worst average CD, which is 74.48
and 43.78 % larger than NSGA-II’s average CD, respec-
tively. MOGA is able to obtain the best average Cmax in
all cases and VEGA the worst. VEGA’s Cmax is larger
than the optimal by 3.48, 10.50, and 9.75 % for the 120–
20, 120–60, and 120–100 problems, respectively. MOGA’s
Cmax is larger than the optimal by 0.45, 0.45, and 0.01 % for
the 120–20, 120–60, and 120–100 problems, respectively.
NSGA-II’s Cmax is larger than the optimal by 1.14, 0.65,
and 0.95 % for the 120–20, 120–60, and 120–100 problems,
respectively.

It can also be seen that having a larger amount of multi-
medication orders is correlated with a larger CD. There is
an increase in CD from 20 to 60 multi-medication jobs
and a further increase from 60 to 100 multi-medication
jobs. Computational time also increases as the number

of multi-medication jobs increases. When standard devi-
ation increases across the board as the number of multi-
medication orders increases, this indicates that it becomes
more difficult to obtain better solutions. From 20 to 100
jobs, VEGA’s computational time climbs from 248.058 to
544.596 s, the fastest of the three GAs, while MOGA’s
computational time increases from 2878.12 to 7205.32 s.
MOGA reaches a solution in the longest amount of time
with a time difference of 72 min between 20 and 100 jobs,
compared to VEGA which had a time difference of 5 min.

In Fig. 8, NSGA-II has the least CD solution in the 120–
60 and 120–100 job problems. VEGA appears to have a
good solution of performance in Fig. 8a on the low amount
of multi-medication jobs. However, the best frontier of
VEGA falls off when the number of multi-medication jobs
increases. In this problem, all three GAs are able to obtain a
point that had an optimal Cmax.

5.3 Analysis of different amounts of parallel machines

CFP operation involves many automatic pharmaceutical dis-
pensing machines. There needs to be enough machines
working in parallel in order to satisfy the prescription
demands. The sensitivity of the CD and Cmax is analyzed
with respect to the amount of machines available. In this
section, the number of jobs has been fixed at 120 with 60 of
the jobs being part of a multi-medication order. The amount
of machines has been varied from 2 to 4. The optimal Cmax

is 603, 402, and 302 for 2, 3, and 4 machines, respectively.
The amount of multi-medication jobs in one order remains
at 3, and the computational time limit is set as 2 h. A sum-
mary of the experimental results is shown in Tables 11 and
12 and Fig. 9.

The GAs save the CD by 97.28−−98.47 %, but increase
the makespan by 0.40−−10.50 %. As the number of
machines increases from 2 to 4, the CDs found by all
three GAs decrease and there are more opportunities for
the multi-order jobs to be scheduled such that there is
no CD for that order. VEGA’s CD increases from 111.6
to 81.2, MOGA’s CD increases from 101.8 to 68.8, and
NSGA-II’s CD increases from 101.4 to 52.4. The MOGA
and NSGA-II also obtain near optimal values of Cmax with
603, 402, and 302 being the optimal Cmax at 2, 3, and 4
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machines, respectively. NSGA-II has the best average CD
in all cases. For the 2 machine problem, VEGA has a larger
average CD by 10.06 % and MOGA had a larger average
CD by 0.39 %. For the 3 machine problem, the CD obtained
by VEGA is 74.48 % larger in average, and the CD obtained
by MOGA is 37.59 % larger in average. For the 4 machine
problem, the CD obtained by VEGA is 54.96 % larger in
average, and the CD obtained by MOGA is 31.30 % larger
in average. VEGA has the worst performance out of all three
GAs in terms of CD and Cmax, while MOGA has the best
with the exception of the 2 machine case where NSGA-II
had a better average Cmax. VEGA’s Cmax is larger than the
optimal by 0.40, 10.50, and 10.40 % for the 2 machine, 3
machine, and 4 machine problems, respectively. MOGA’s
Cmax is larger than the optimal by 0.13, 0.45, and 0.13 %
for the 2 machine, 3 machine, and 4 machine problems,
respectively. NSGA-II’s Cmax is larger than the optimal by
0.03, 0.65, and 0.40 % for the 2 machine, 3 machine, and 4
machine problems, respectively.

Figure 9 indicates the non-dominated frontiers for a
varying number of parallel machine as scenario. In the 2
machine case, both MOGA and VEGA have a point with
a better CD. However, all GAs can reach the same level of
Cmax in each case. The majority of VEGA’s frontier is dom-
inated by either MOGA’s or NSGA-II’s frontier in the 3 and
4 machine cases. In those problems, NSGA-II has the best
frontier.

6 Conclusions and future work

In this paper, the CD problem is studied as the multi-
objective optimization problem in MOPAD systems, which
provide a set of solutions for the management decision.
The makespan and CD are conflicting objectives. When the
CD is minimized by adding the idle time, the makespan
increases. Three multi-objective genetic algorithms (VEGA,
MOGA, and NSGA-II) are applied to minimize both CD
and makespan. Various job sizes, number of machines, and
number of multi-medication jobs are considered. In the
small job size and low multi-medication order count prob-
lems, all three GAs are able to find the optimal CD and
makespan (Cmax). All outperform the common sequencing

rule of longest processing time (LPT) heuristic in CD for all
problem cases. In terms of makespan, LPT is able to achieve
optimal or near optimal results. Based on the experimen-
tal results, three objective genetic algorithms save the CD
by 95.67 % on average, but only increase the makespan by
5.62%. In all instances, VEGA is able to reach a solution the
fastest, but it has the worst performance of the three GAs.
MOGA takes the longest amount of time to reach a solu-
tion but comes in second compared to VEGA and NSGA-II.
NSGA-II provides the best frontier at the larger job sizes
and larger number of multi-medication jobs. NSGA-II also
has the least amount of variation in solutions. It becomes
difficult for multi-objective GAs to find optimal solutions
for the CD in large job size problems. The frontiers gener-
ated for each GA are often small, usually 1 − −2 points,
which indicates that the makespan can be minimized but the
optimal CD is difficult to obtain in many cases. If a solu-
tion can achieve the optimal makespan and CD, the frontier
will be only a single point, which is shown in the 12 − −2
and 24 − −4 problems. At the larger problem sizes, there
is more variability in the solutions found and the frontier is
more developed when the CD is much more difficult to opti-
mize. Overall, NSGA-II is the most stable of the GAs and
also has the best performance, especially at larger job sizes
or when there are a larger number of multi-medication jobs.
In small size problems, VEGA or MOGA has more chance
to find a better CD in a single run, but their σ is much higher.
The computational time for each GA is on the scale of min-
utes to hours. In the 12 − −10 job problem, MOGA takes
the longest computational time to process with an average
time of 1735.26 s and for the 120-3o-60 job problem took
on average 4424.72 s. VEGA takes the least amount of
time with the 1210 job problem taking on average 83.594 s
and 120-3o-60 job problem taking on average 544.596 s.
NSGA-II falls in between MOGA and VEGA, but closer to
MOGA’s computational time. This research can be applied
to MOPAD system of CFPs. It also can be applied to other
distribution or manufacturing systems which have collation
processes.

However, many researches can be conducted to advance
our investigations and findings. One of the important
assumptions is that all auto-dispensing machines are iden-
tical, such that each medication job would be processed on

Table 12 Summary of
experimental results (σ and
computational time) with
L = 120 and p = 60 on
different numbers of machines,
o

VEGA MOGA NSGA-II

o σCD σCmax CT σCD σCmax CT σCD σCmax CT

2 17.84 5.37 252.83 20.43 0.84 5537.70 9.97 0.45 3524.02

3 27.71 26.83 428.18 15.01 2.95 4424.72 4.74 2.30 4082.14

4 9.94 8.56 428.26 8.93 0.548 3117.06 14.15 1.30 5319.92

All units are in seconds
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any machine and the processing time is the same. However,
in the real MOPAD system, the auto-dispensing machines
contain the specified medications. To increase the effi-
ciency of the MOPAD system, an appropriate medication
assignment and allocation can increase the dispensing effi-
ciency and productivity. The demand of medications and
the medications combinations can be analyzed and uti-
lized to optimize the medication assignment and allocation
to dispensing machines. When the medication of auto-
dispensers are specified, the CD problem will become a
parallel dedicated machines problem. Moreover, medication
dispensing times vary depending on dispensing machine
types and medication characteristics (e.g., shape, weight,
capsule types, etc.). A different distribution may have been
more appropriate and can improve the scheduling quality in
MOPAD systems . Furthermore, it is assumed that the num-
ber of multi-medication jobs in an order would not exceed
the number of parallel auto-dispensing machines. The order
separation rules may be studied on how to split orders such
that the CD and makespan can be minimized when the
multi-medication jobs in an order exceed the number of
machines.
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