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Abstract This paper deals with the experimental study of the
tool life transition and the wear monitoring during the turning
operation of AISI D3 steel workpiece using coated carbide
tool inserts (TiCN/Al2O3/TiN). A hybrid method, based on
the combination of wavelet multi-resolution analysis
(WMRA) and EmpiricalModeDecomposition (EMD), is pro-
posed to analyze vibratory signals acquired during the ma-
chining process. Using the mean power and the energy as
main scalar indicators, the proposed method has been opti-
mized and evaluated in several configurations including the
cutting speed, the feed rate, and the depth of cut. The results
show that the proposed hybrid method (WMRA/EMD) gives
better evaluation of the tool state and the wear monitoring
compared to the application of WMRA or EMD alone.

Keywords Vibration signal . Tool wear . Intrinsic mode
function .Wavelet transform . Empirical mode decomposition

Nomenclature
Aj Approximations
ap Depth of cut, mm

Di Details
E Energy
EMD Empirical mode decomposition
F Feed rate, mm/rev
FS Sampling frequency
IMFs Intrinsic mode functions
Pm Mean power
Ra Arithmetic mean roughness, μm
Rt Total roughness, μm
Rz Mean depth of roughness, μm
T Cutting time, s
VB Flank wear, mm
Vc Cutting speed, m/min
WMRA Wavelet multi-resolution analysis

1 Introduction

Monitoring cutting tool’s wear via vibration analysis has long
been practiced, modern methods are only more sophisticated
extensions of the earliest investigations. Recent technological
advances, particularly in signal processing, have made the
acquisition and the analysis of vibratory signals a useful tool
for monitoring the degradation state of the cutting tool. This
degradation affects the quality of the machined surfaces, the
imposed geometrical tolerances, the tool behavior, and gener-
ates high forces. One of the serious consequences of a not
controlled and brutal wear is the stop of the cutting process,
causing the breakage of the tool and the mobile bodies of the
machine, and consequently the productivity fall. Numerous
methods have been proposed for the tool wear monitoring,
these methods are based on the analysis of various physical
quantities; acoustic emission, cutting forces or vibration sig-
nals that can be detected bymachining, by direct control of the
cutting tool, or by estimating its state [1–5].
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In the literature, Mer and Diniz [6] carried out experiments
for correlating the variation of the tool vibration, tool wear, tool
life, and surface roughness in the finish turning operation using
coated carbide tools. Dimla [7] described a good cutting tool
condition monitoring system in a metal turning operation using
vibration features. The monitoring revealed that the vibration
signals features are related to the wear qualification of the
cutting tool. Das et al. [8] have demonstrated the interest of
measuring the cutting force and the feed force to the force of
repression. The magnitude of the cutting force and the feed
force increases significantly with the development of the cut-
ting tool wear, while the magnitude of the force discharge
remains almost constant. Haili et al. [9] studied the rupture of
a turning tool by analyzing the acoustic emission signals in
time and time-frequency domains. The tool breakage is clearly
detectable and is characterized by a significant increase in the
amplitude. Ravindra et al. [10] developed a methodology for
detecting the flank wear through the study of the acoustic sig-
nal spectrum. It has been shown that the RMS value of the
measured signal is sensitive to the tool state. It reduces in the
phase of break-in, remains stable in the stabilization phase, and
increases significantly in the phase of accelerated wear. This
parameter has the same behavior under different cutting con-
ditions chosen in this study. This address the limits of the
spectral analysis, time-frequency methods, namely wavelet
analysis, enables a local view of the signal instead of the Fou-
rier analysis that gives only global view. Several applications
of the wavelet analysis for the tool wear prediction have been
proposed in continuous and discrete versions [11, 12]. Some
other applications proposed an automatic detection using dif-
ferent architectures of neural networks [13, 14].

Wavelets being non-adaptive, however, have its own dis-
advantage that their analysis results depend on the choice of
the wavelet base function. The empirical mode decomposition
is a new method proposed as a legitimate successor of the
wavelet analysis. EMD is a self-adaptive decomposition of
the signal; any complex signal can be decomposed into sev-
eral intrinsic mode functions (IMF) representing the natural
oscillatory modes embedded into the signal [15].

The aim of this paper is to identify the tool life transition
and then to detect the rupture of the cutting edge in its earliest
state using coated carbide tool during aggressive machining of
AISI D3 steel. The vibratory signals measured during the ma-
chining are then processed by wavelet multi-resolution analy-
sis (WMRA), empirical mode decomposition, and a hybrid
method based on the combination of the two mentioned
methods (WMRA/EMD).

2 Cutting tools monitoring

The cutting tool life represents the actual productive time dur-
ing which the cutting edge is directly related to wear. The wear

manifests itself on the cutting tool in several forms dependent
of the cutting conditions, the material being machined, the
material of the cutting tool and its geometry. In normal cutting
conditions, flank wear (VB) is considered to assess the dom-
inant wear of the cutting tool life [16]. The development of
this type of tool wear is not a random phenomenon. In prac-
tice, and also theoretically, the flank wear (VB) follows the
pattern represented by Fig. 1 and presents three wear phases:
(A) Break-in phase, (B) Wear stabilization, and (C) Acceler-
ated wear.

The device of cutting tool monitoring allows the measure-
ment of a representative signal of the tool state, the treatment of
this signal, and the detection of possible anomaly. To this end,
the good choice of a data measurement and processing device
is essential for an on line monitoring system of the cutting
tools. This treatment is made according to the sensor and the
quality of the taken signals. The extraction of useful informa-
tion built-in in these signals is carried out by analysis or by
filtering; this allows identification of the tool life transition.

2.1 Wavelet multi-resolution analysis theory

The wavelet transform is a mathematical transformation
which represents a signal s(t) in term of shifted and dilated
version of singular function called wavelet mother ψ(t). This
can be written mathematically by [17]:

Zþ∞

−∞

ψ tð Þdt ¼ 0 ð1Þ

ψa;b tð Þ ¼ 1ffiffiffi
a

p ψ
t−b
a

� �
ð2Þ

With a and b the scale and the translation parameters,
respectively.

Noting byψ*(t) the conjugate ofψ(t), the continuous wave-
let transform (CWT) of the signal s(t) is defined by:

CWT a; bð Þ ¼ 1ffiffiffi
a

p
Zþ∞

−∞

s tð Þψ* t−b
a

� �
dt ð3Þ

Fig. 1 Theoretical tool wear
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A practical version of this transform, called wavelet multi-
resolution analysis (WMRA), was introduced for the first time
by Mallat in 1989 [18]. He had the idea to consider the wave-
let analysis as a decomposition of the signal by a waterfall of
filters, associating a pair of filters in each level of resolution
(Fig. 2). The decomposition consists to introduce the signal
s(t) in low-pass (L) and high-pass (H) filters. In this level, two
vectors will be obtained, cA1 and cD1. The elements of the
vector cA1 are called approximation coefficients, they corre-
spond to the low frequencies of the signal, while the elements
of the vector cD1 are called detail coefficients and they corre-
spond to the highest of them. The process of decomposition
can be repeated n times, with n the number of levels. During
the decomposition, the signal s(t) and vectors cAj undergo a
downsampling, this is why the approximation cAj and detail
cDj coefficients pass through two new reconstruction filters
(LR) and (HR). Two vectors result; Aj called approximations
and Dj called details.

2.2 Empirical mode decomposition theory

The technique of empirical mode decomposition is a recent
signal processing method. It allows breaking up any signal
into a series of oscillating components extracted directly from
this one in an adaptive way. In other words, EMD method is
developed from the simple assumption that any signal consists
of different simple intrinsic modes of oscillations. Each mode
should be independent of the others. In this way, each signal
could be decomposed into a number of IMFs. These IMFs
components are interpreted like non-stationary forms of
waves. This method has been used in several works [19–23].
IMF is an innovation concept proposed by Huang and his
colleagues in Empirical Mode Decomposition, which is de-
fined as a function that satisfies the following definition [24]:

1. In the whole data set, the number of extrema and the
number of zero-crossings must either equal or differ at
most by one;

2. At any point, the mean value of the envelope defined by
local maxima and the envelope defined by the local min-
ima is zero;

The IMF represents the simple oscillation mode involved in
the signal s(t). Empirical mode decomposition is a sifting pro-
cess used to extract the IMFs as follow (Table 1). To clarify the
decomposition processes, Fig. 3 shows the procedure of EMD.

3 Experimental procedure

3.1 Material

The material used in this study is steel with high chromium
content designated by AISI D3. It has an excellent behavior
with wear and applied for the manufacture of matrices, punches
blanking, stamping, drawing die, rollers profilers and wood
tools, and combs for nets rolling. Its chemical composition (in
wt%) is given as follows: 2 % C, 11.50 % Cr, 0.30 % Mn,
0.25 % Si and 0.70 % Tun. Some physical properties of AISI
D3 are given as follows: density 7.7 kg/m3; elastic modulus
21.10 MPa, and thermal conductibility 20 W/m °C. The work-
pieces are used in the form of round bars having 80 mm and
300 mm in diameter and in length, respectively. The machining
experiments were performed under dry conditions using a con-
ventional lathe type SN 40C with 6.6 kW spindle power.

3.2 Cutting tool and tool holder

Coated carbide inserts of International Organization for Stan-
dardization (ISO) geometry SNMG 120408-MF 2015
manufactured by Sandvik are used throughout the investiga-
tion. The CVD coating is a multilayer of TiCN/Al2O3/TiN
formed on a cemented carbide substrate. It consists of a thick,
moderate temperature (MT) CVD of TiN for heat resistance
and providing low friction coefficient. Despite the fact that
TiCN offers a good resistance to wear and thermal stability,

Table 1 EMD Algorithm

(1) Initialize : r0=x(t), and i=1;

(2) Extract the ith IMF

(2.1) Initialize: hi(k-1)=ri, k=1

(2.2) Identify the local extrema and minima of hi(k-1)
(2.3) Interpolate the local extrama and the minima by cubic spline lines to

from upper and lower envelopes

(2.4) Designate the mean mi(k-1) of upper and low envelopes

(2.5) Let hi(k−1)−mi(k−1)=hik
(2.6) If hik becomes an IMF then IMFi=hik, go to step (2.2) with k=k+1

(3) Define ri – IMFi=ri+1
(4) At the end of the decomposition process we have a residue rn and a

collection of n IMFs, ci (i=1,2,….,n). is finished and ri+1 is the residue
of the signal.

(5) Summing up all IMFs and the final residue rn, we obtain :

x tð Þ ¼ ∑
n

i¼1
ci þ rn

A1

L

H

L

H

D1

A2

D2

L
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D3
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Fig. 2 Waterfall decomposition at three levels
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a layer of Al2O3 is required to bear effects resulting from high-
temperature conditions, hot hardness, and crater wear damage.
By now, it is well confirmed that this combined top coating
and associated gradient substrate confer excellent behavior
during dry machining [25]. The ISO tool holder reference is
PSDNN 2525 M12 and the tool geometry is characterized as
follows: χ=+75°; α=+6°; γ=−6° and λ=−6°.

3.3 Measurement setup

The components of the acceleration signals acquired through-
out 116 s are measured on three channels (x, y, z), the setup
used in the experiments is schematically shown by Fig. 4. The
acquisition of the signals generated during machining was
carried out using a 4524B Brüel & Kjaer type triaxial accel-
erometer, which makes it possible to record the acceleration in
real time in the three principal directions for a sampling fre-
quency of 32768 Hz, each measured signal contains 16,384
samples. Collected data was stored directly on the PC hard
drive by the Pulse Lab shop® software. The increase of the
cutting insert wear is measured after each machining pass by a
Visual 250 type optical microscope (optical magnification:
0.7×4.5×actual size) using the Visual Gage software. Quickly
and accurately this software is also distinguished by its ease of
use, graphical interface and flexibility when creating

measurement reports. The measurement is performed by plac-
ing the wafer on a micrometer cross table, a digital display is
performed on the graphical interface. After each test, the cut-
ting insert is dismounted from the tool carrier and cleaned. It is
finally placed on the table of the microscope to measure the
flank wear from the new to the end state of the tool life. A 2D
Surftest 301 Mitutoyo type roughness meter was used to mea-
sure the three surface roughness (Ra, Rt, and Rz). It consists of
a diamond point (probe) with a 5 mm radius and moves line-
arly on the working surface. Roughness values were obtained
without disassembling the workpiece in order to reduce un-
certainties due to resumption operations. The measurements
are repeated three times on the surface of the workpiece at
three reference lines equally positioned at 120°, and the final
result is an average of these values. The experimental results
are given in Table 2. For each cutting condition, four types of
responses are recorded.

4 Tool life transition and wear study

4.1 Vibratory responses for wear monitoring

Statistical study was conducted by machining workpieces
with three inserts from the same batch. The machining tests

Fig. 3 Flow chart for empirical
mode decomposition (EMD)
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were performed without lubrication and stop when flank wear
reaches or exceeds the value of 0.3 mm, which is synonymous
of tool lifespan. At this value, the cutting insert is in the wear
acceleration phase corresponding to a critical zone of the ma-
chining quality.

Figure 5 shows an example of a concatenation of the vibra-
tion acceleration signals over the entire service of the cutting
tool life. According to this figure, it is observed that there are
three principal phases of the tool life: break-in period, wear
stabilization, and accelerated wear where its rate increases
until the rapid aging of the tool occurs. In particular, the tran-
sition to the acceleration phase is certainly detectable in the
radial direction, this observation is the same on all

Fig. 4 Experimental setup

Table 2 Experimental data for AISI D3

Tool life (s) Wear (mm) Roughness (μm)

Runs T VB Ra Rt Rz

Vc=175 m/min, ap=0.2 mm, f=0.12 mm/rev
1 116 0.077 0.48 4.12 3.52
2 348 0.289 1.54 7.96 7.82
3 464 0.373 2.49 11.21 10.53
4 580 0.488 2.76 12.61 11.46
5 696 0.628 5.23 20.19 19.63
Vc=250 m/min, ap=0.2 mm, f=0.12 mm/rev
1 116 0.091 0.80 4.01 4.00
2 232 0.218 1.21 6.45 6.24
3 348 0.359 3.06 12.82 12.50
4 464 0.920 7.90 35.99 34.62

Int J Adv Manuf Technol (2016) 82:2017–2028 2021



acquisitions. The analysis tends to enable the detection of the
transition point from the stabilization phase to the accelerated
wear phase. The importance of determining this transition
point is fundamentally linked to the beginning of aging before
the total collapse of the cutting tool.

4.2 Evolution of roughness and flank wear (VB)

The characterization of the quality of themachined surface has
been limited to the criteria of arithmetic mean roughness (Ra),
total roughness (Rt), and mean depth of roughness (Rz). The
results of the roughness as a function of wear shows that the
increase of flank wear degrades the quality of the machined
surface. It should be noted here that, as irregular wear does not
exceed the permissible value VB=0.3 mm, surface roughness

(Ra) changes very slowly and the surface state is acceptable.
Beyond this value, the roughness undergoes an abrupt
increase.

Table 2 shows that for a cutting speed of 175 m/min the
flank wear regularly develops between 0.077 mm (Ra=
0.48 μm) and 0.289 mm (Ra=1.54 μm) before expanding
with time reaching a value of 0.373 mm and Ra=2.49 μm.
One can also note at the end of the trial and after 11 min of
machining that a collapse has formed on the tool nose with a
wear VB=0.620 mm and Ra=5.23 μm. This latter is due to
thermo-mechanical stresses on the tip of the tool, which
shows the cutting high-temperature abrasive power causing
rapid tool wear.

At 250 m/min within 2 min of machining, the insert un-
dergoes an accelerated wear caused by temperature increase,
chipping is observed on the rake surface. After 8 min with
VB=0.920 mm, small collapse of the tool nose is noted.
Machining lasted with chipping on the rake surface that
propagates along the diagonal direction of the insert.
Grooves, resulting from high abrasive wear, are also located
while wear VB is generating on tool flank. At this stage, the
increase in cutting speed raises the friction and the deforma-
tions and consequently the temperature in the cutting zone.
Mechanical and thermal stresses on the cutting edge increase
and lead to a catastrophic failure. The machining in these
cutting conditions becomes unstable; it is accompanied by
the increase in vibration, which returns it almost impossible
and led to restrict the range of cutting speed.

During the tests, the machine is stopped constantly and
the flank wear on each insert is evaluated according to the
procedure recommended by ISO 8688-1. The experimental
results of the morphology of the flank wear are shown in
Fig. 6. For a cutting speed of 175 m/min, at the beginning,
there was no difficulty in machining, the wear on flank sur-
face is regular. When increasing the machining time, after

a) Vc = 175 m/min; f = 0.12 mm/rev;  ap = 0.2 mm 

b) Vc = 250  m/min; f = 0.12 mm/rev;  ap = 0.2 mm 
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vibratory answers

Fig. 6 Progression of flank wear (Zn insert nose zone, Zf flank face zone)
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11 min, the wear VB expands in width and increases to be-
coming irregular with VB=0.628 mm. Chippings are observed
on the tool rake surface following the high stresses generated
from the cutting process. The rapid evolution of VB and KT
led to the collapse of the tool nose. This collapse has the effect
of increasing the roughness of themachined surface and affects
the dimensional accuracy. The analysis of these results shows
that the cutting speed has a major influence on wear.

5 Tool wear monitoring using hybrid method
WMRA/EMD

Several researchers proposed the combination of several
methods, on one hand to compare them, and on the other hand
to amalgamate the sources of information. In this context, the
wavelet multi-resolution analysis is first used as a pre-
treatment of the signal to be analysed. The empirical mode
decomposition is then applied on the filtered signal obtained
by WMRA. The suggested approach is that the application of
the EMD on a signal previously filtered by WMRA provides
better results than its application on the original signal. The
procedure of the proposed approach is summarized as shown
in the flowchart of Fig. 7.

The energy and the mean power are used as optimisation
and evaluation criteria. The energy of a signal S with N sam-
ples is given by:

E ¼
XN
k¼1

S2k ð4Þ

The mean power is defined by [26]:

Pm ¼ Fs

N

XN
k¼1

S2k ð5Þ

Where Fs is the sampling frequency.

5.1 Choice of the optimal decomposition signal
of the WMRA

Using the waterfall algorithm, the measured signal is
decomposed by theWMRA into several details, corresponding
to the high frequencies, and the approximations corresponding
to the lowest of them. The details are actually narrow band
signals, the question to be asked is which detail is the optimal
one. Figure 8 represents an acceleration signal and its decom-
position usingWMRA on four levels. Daubechies (db5) wave-
let is used as analyzing function. The mean power and the
energy values of each decomposition vector are calculated;
Fig. 9 shows the obtained results for two cutting speeds.

It is easy to note that the highest values are obtained for the
detail 1 (D1). That means that the concentration of the vibra-
tory energy is present in this detail. For this reason it will be
considered as the optimal decomposition vector, called recon-
structed signal. The same results are obtained using other sca-
lar indicators, like the RMS and the peak value, which con-
firms the assumption put before.

Moreover Fig. 10 shows the FFT spectrum of the detail
(D1) considered as the reconstructed signal. The spectrum

Fig. 7 Chart for the proposed method
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Fig. 8 Acceleration signal and its decomposition using WMRA
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shows that the frequency band of the detail (D1) covers the
tool’s natural mode appearing in the band 3500–5500 Hz that
has been previously identified by modal analysis. In our pre-
vious investigations, it has been shown that the tool’s natural
frequency is the principal component allowing the monitoring
of the tool’s wear (the best frequency indicator) [27].

5.2 Choice of the optimal Intrinsic Mode Function
of the EMD

It has been shown in section (3.2) that the Empirical Mode
Decomposition approach decomposes the signal into several
Intrinsic Mode Functions (IMF). Obviously, only the first
three IMFs are the real components of the signal and the others
are the pseudo-components that have low frequency and will
be represented as low-frequency components. Therefore, the

first IMFs are true signal components and have relative good
correlation with the original signal, whereas the other compo-
nents are in the pseudo-low-frequency range and have only
poor correlation.

To confirm this, the same approach applied for the optimal
choice of the wavelet decomposition vector is used here.
Figure 11 represents an acceleration signal and its decompo-
sition by EMD method in 15 IMFs and the residue (just the
first five and the latest IMFs are presented). Figure 12 repre-
sents the energy and the mean power for the first four IMFs, it
shows that the IMF1 has the highest values for the two con-
sidered cutting speeds. For this reason, it will be considered as
the optimal one. Since the IMF1 is a high-frequency compo-
nent of the signal and the more representative one, its spec-
trum covers the tool’s natural frequency previously identified
bymodal analysis and by the spectrum of the detail (D1) of the
WMRA (Fig. 13).

Vc = 250 m/min; f = 0.12 mm/rev; ap = 0.2 mm

Vc = 175  m/min; f = 0.12 mm/rev; ap = 0.2 mm 

1 2 3 4
0

1

2

3

4

5

6
x 106

Level of Details

S
ca

la
rs

 in
di

ca
to

rs

Energy
Mean power

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 106

Level of Details

S
ca

la
rs

 in
di

ca
to

rs

Energy
Mean power
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Moreover, it is very interesting to note that the variation of
the energy and the mean power of the IMF1 according to the
wear (VB) has the same variation than that of the theory, the
three wear phases are clearly identified. For the cutting speed
Vc=250m/min (Fig. 14), one can note that in the first phase, the
energy is equal to 1.580E+06 for VB=0.091 mm. In the sec-
ond phase of wear stabilization, it decreases and remains almost
constant and equal to 3.59E+05 for VB=0.359 mm, before
increasing one more time in the last phase corresponding to
the wear acceleration reaching 3.26E+06 for VB=0.92 mm.
The same findings are observed for the mean power.

a) Vc = 175  m/min; f = 0.12 mm/rev; ap = 0.2 mm

b) Vc = 250 m/min; f = 0.12 mm/rev; ap = 0.2 mm
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Fig. 12 Energy and mean power for the first four IMFs
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Fig. 13 FFT spectrum of the IMF1
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5.3 Obtained results

Tables 3 and 4 represent the energy and the mean power cal-
culated for the entire tool life for a cutting speed of 175 and
250 m/min, respectively. These indicators are calculated for
the original signal, and the signals reconstructed from

WMRA, EMD, and the proposed hybrid method
WMRA/EMD. For the cutting speed 175 m/min (Table 3),
the WMRA and the EMD alone give almost the same results
and which remain not significant since the scalar indicators
have not been improved compared to those of the original
signal. Whereas the proposed hybrid method shows weak

Table 3 Scalar indicators for Vc=175 m/min

Tool life (s) Scalar indicators

Original signal WMRA EMD Proposed method

Energy M. Power Energy M. Power Energy M. Power Energy M. Power

8.718 3.945E+5 6.019E+5 3.787E+6 5.778E+5 3.787E+6 5.778E+5 4.131E+6 6.304E+5

26.13 3.671E+6 5.602E+5 3.548E+6 5.413E+5 3.548E+6 5.413E+5 3.809E+6 5.812E+5

52.27 4.046E+6 6.174E+5 3.905E+6 5.959E+5 3.905E+6 5.959E+5 4.174E+6 6.368E+5

87.11 3.961E+6 6.044E+5 3.829E+6 5.843E+5 3.829E+6 5.843E+5 4.140E+6 6.318E+5

122.0 3.214E+6 4 .904E+5 3.075E+6 4.690E+5 3.075E+6 4.691E+5 3.326E+6 5.076E+5

148.1 2.789E+6 4.256E+5 2.634E+6 4.020E+5 2.630E+6 4.020E+5 2.850E+6 4.348E+5

217.8 2.508E+6 3.980E+5 2.450E+6 3.738E+5 2.450E+6 3.738E+5 2.668E+6 4.071E+5

270.0 2.449E+6 3.737E+5 2.323E+6 3.544E+5 2.323E+6 3.544E+5 2.495E+6 3.807E+5

322.3 1.833E+6 2.796E+5 1.690E+6 2.579E+5 1.690E+6 2.579E+5 1.821E+6 2.779E+5

348.3 1.899E+6 2.897E+5 1.780E+6 2.716E+5 1.780E+6 2.716E+5 1.923E+6 2.934E+5

409.3 1.335E+6 2.037E+5 4.165E+6 1.849E+5 1.212E+6 1.849E+5 1.309E+6 1.997E+5

453.0 6.797E+6 1.037E+6 6.597E+6 1.007E+6 6.597E+6 1.007E+6 7.111E+6 1.085E+6

496.5 7.163E+6 1.093E+6 6.930E+6 1.057E+6 6.930E+6 1.057E+6 7.459E+6 1.138E+6

557.5 8.121E+6 1.239E+6 7.368E+6 1.124E+6 7.368E+6 1.124E+6 7.842E+6 1.197E+6

670.7 9.664E+6 1.475E+6 8.894E+6 1.357E+6 8.894E+6 1.357E+6 9.585E+6 1.463E+6

Table 4 Scalar indicators for Vc=250 m/min

Tool life (s) Scalar indicators

Original signal WMRA EMD Proposed method

Energy M. Power Energy M. Power Energy M. Power Energy M. Power

7.260 8.990E+4 1.715E+4 6.643E+6 1.267E+6 6.840E+6 1.305E+6 6.971E+6 1.330E+6

21.78 1.331E+4 2.538E+4 1.211E+7 2.309E+6 1.214E+7 2.316E+6 1.246E+7 2.377E+6

43.56 8.396E+4 1.601E+4 6.889E+6 1.314E+6 7.183E+6 1.370E+6 7.156E+6 1.365E+6

65.34 1.077E+6 2.054E+4 8.921E+6 1.702E+6 8.944E+6 1.706E+6 9.280E+6 1.770E+6

108.9 1.025E+5 1.955E+4 9.761E+6 1.862E+6 9.925E+6 1.893E+6 1.014E+7 1.935E+6

152.5 4.807E+4 9169 1.357E+6 2.589E+5 1.367E+6 2.607E+5 1.491E+6 2.844E+6

210.5 3.605E+4 6875 1.824E+6 3.479E+5 1.866E+6 3.559E+5 1.965E+6 3.749E+5

261.4 4.104E+4 7828 1.437E+6 2.740E+5 1.462E+6 2.789E+5 1.571E+6 2.996E+5

312.2 3.907E+4 7451 1.305E+6 2.488E+5 1.346E+6 2.567E+5 1.438E+6 2.743E+5

334.0 3.889E+4 7418 1.134E+6 2.163E+5 1.137E+6 2.169E+5 1.260E+6 2.404E+5

348.5 6.170E+5 1.177E+5 1.090E+7 2.078E+6 1.004E+7 1.914E+6 1.149E+7 2.191E+6

377.5 7.989E+5 1.524E+5 1.522E+7 2.902E+6 1.468E+7 2.799E+6 1.588E+7 3.029E+6

406.6 6.027E+5 1.149E+5 1.337E+7 2.551E+6 1.333E+7 2.543E+6 1.377E+7 2.626E+6

421.1 1.135E+6 2.165E+5 1.414E+7 2.696E+6 1.424E+7 2.716E+6 1.482E+7 2.826E+6

450.1 7.608E+5 1.451E+5 1.315E+7 2.507E+6 1.310E+7 2.498E+6 1.380E+7 2.633E+6
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improvement of the scalar indicators compared to those of the
original signal and those obtained from WMRA and EMD
alone. For the cutting speed 250 m/min (Table 4), the scalar
indicators have been improved using WMRA and EMD, and
especially using the proposed hybrid method that gives the
highest results. It can be noted that the application of the
proposed method for high cutting speeds gives better results.

On the other hand, Fig. 15 shows the evolution of the scalar
indicators (energy and mean power) for the original signal and
the reconstructed signal obtained from the proposed hybrid
method over the entire tool life. Besides the improvement of
the scalar indicator values ensured by the hybrid method, the
three wear periods are clearly shown in this case. It is very
easy to locate the break-in period until 120 s of machining, the
wear stabilization period from 120 to 340 s, and finally the

wear acceleration zone from 340 s. For the original signal, the
variation of the same scalar indicators do not allows locating
clearly the three zones, especially the transition from the
break-in to the wear stabilization which seem as the same
zone.

6 Conclusion

This paper presents an experimental study of the tool life
transition and wear monitoring using hybrid method based
on wavelet multi-resolution analysis and empirical mode de-
composition. Vibratory signals have been measured during
dry turning of steel workpieces (AISI D3) using coated car-
bide tool inserts (TiCN/Al2O3/TiN). The measured signals
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Fig. 15 Evolution of the scalar indicators (energy and mean power) for the original signal and the reconstructed signal obtained from the proposed
hybrid method at Vc=250 m/min; f=0.12 mm/rev; ap=0.2 mm. a Energy, b mean power
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have then been analysed using wavelet multi-resolution anal-
ysis and the empirical mode decomposition alone, and using a
proposed hybrid method WMRA/EMD. Two scalar indica-
tors, the energy and the mean power, were used to optimize
the proposed method and to evaluate the obtained results.

First, it is to be noted that the vibratory signature in the
radial direction is the most significant for wear study; more-
over it is very sensitive to the cutting conditions. The most
distinguished wear phenomenon is abrasion that appears by
grooving on the tool flank face.

Using the scalar indicators, the two components of the pro-
posed method, namely the WMRA and the EMD are opti-
mized. An optimal choice of the WMRA’s decomposition
vector and the best representative IMF resulting from the
EMD has been performed. The results show that the applica-
tion of the proposed method improve the sensitivity of the
used scalar indicators compared to those of the original signal
and those obtained from the WMRA and EMD alone. More-
over, the variation of the scalar indicators for the signals ob-
tained from the proposed method allows locating clearly the
three wear phases. These phases were not obvious to detect
from the original signal.
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