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Abstract This research investigates detection and classi-
fication of two types of the surface defects in extruded
aluminium profiles; blisters and scratches. An experimental
system is used to capture images and appropriate statisti-
cal features from a novel technique based on gradient-only
co-occurrence matrices (GOCM) are proposed to detect and
classify three distinct classes; non-defective, blisters and
scratches. The developed methodology makes use of the
Sobel edge detector to obtain the gradient magnitude of the
image (GOCM). A comparison is made between the sta-
tistical features extracted from the original image (GLCM)
and those extracted from the gradient magnitude (GOCM).
This paper describes in detail every step of the image
processing with example pictures illustrating the method-
ology. The features extracted from the image processing
are classified by a two-layer feed-forward artificial neu-
ral network. The artificial neural network training is tested
using different combinations of statistical features with dif-
ferent topologies. Features are compared individually and
grouped. Results are discussed, achieving up to 98.6 % total
testing accuracy.
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1 Introduction

The aluminum 6000 series of alloys have as primary
alloying elements magnesium (Mg) and silicon (Si). They
are used extensively for extrusions today because they
have good corrosion resistance, surface finish, formabil-
ity and medium strength, thus they can be perfect candi-
dates for architectural sections and structural applications.
Magnesium silicide (Mg2Si) makes the 6000 alloys heat
treatable and capable of achieving medium strength in the
T6 condition [23].

The extrusion process is a complex one with many
variables, some can be controlled (temperature, extrusion
speed, lubrication) while others cannot. The final product is
affected by those variables, resulting in different character-
istics. Some of those characteristics appear on the surface
in forms of defects (undesired results). The surface defects
found in the literature are blisters, die-lines, pick-up, tear-
ing, color streaks, weld lines, black lines and scratches
[1, 19]. Some of those defects are exaggerated after anodiz-
ing or powder coating. The die and its quality are the most
important factors of surface quality (and also geometry).
This research paper will focus on blisters and scratches.
Blistering is a result of entrapped air or lubricants below
the surface. The contaminants can be trapped during upset-
ting due to the difference in diameter of the billet and the
container. When temperature rises locally (due to friction),
the gas expands and forms a blister [20, 23]. Accord-
ing to Sheppard, a ‘burp cycle’ is often used to prevent
this phenomenon by removing the ram pressure momen-
tarily after upset to allow the air to escape [23]. Scratches
are made during the handling of the extruded products by
human error. They appear as a long line on the aluminum
surface with a certain depth, which is the result of mate-
rial being removed from the surface and are detrimental
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to the quality when the extruded aluminum is painted (pow-
der coated or anodized). The layer of paint is uneven and can
lead to severe discolorations due to its varying thickness.

Machine vision is tailored to the particular inspection
application, thus the possibilities of integration are end-
less. Over the past two decades, many machine vision
systems have been installed in different areas for quality
inspection. Image analysis techniques have already been
applied for automated visual inspection, product quality
control and materials characterization of a variety of prod-
ucts in industry. For the metalworking industry, extruded
aluminum surfaces have not received a lot of attention.
Extruded aluminum can be described as highly reflective,
which leads to problems with illumination. A review about
illumination techniques on metallic surfaces and application
selection was conducted by Pernkopf and O’Leary, and sug-
gests intensity imaging in this case [16]. A recent research
on aluminum surface quality inspection was performed by
Garbacz and Giesko [4]. In this research, without publishing
any results, they discussed about possible ways of detect-
ing defects with a strong emphasis on surface temperature
distribution via an infrared camera. On a similar subject,
Caleb-Solly and Smith have created an adaptive surface
inspection system via interactive evolution [2]. The systems
was applied in the hot-rolled steel industry and amongst
the techniques used are image segmentation, self organiz-
ing map neural network, multi-layer perceptron classifier
and evolutionary algorithms. Thresholding techniques are
widely used in the literature to segment regions of interest.
It is a technique that is widely used for automated visual
inspection of defects. In real-world inspection cases, defects
are either present of absent; they can also have a wide vari-
ety of sizes, creating a diversity not easily countered by
thresholding techniques. One of the widely used automated
thresholding technique is the Otsu method [15]. Ng was not
satisfied with the results provided by this method for small
defects, so he modified it developing the valley-emphasis
method [12]. Especially for scratches in metal sheets, the
valley-emphasis had 0.006 misclassification errors while
Otsu had 0.192. Using similar methods, Shafeek et al.
have written their own program in Microsoft Visual C++
for assessing defects in radio-graphs of welds [21]. Their
method consisted of the following steps; histogram stretch,
histogram equalization, median filter, histogram specifica-
tion, thresholding, chain code algorithm, defect extraction.
Performing a blob analysis, they were able to measure
the area, perimeter, length and width of the defects with
camera calibration (each pixel corresponded to 123 m).
Zheng et al. approached the inspection of metallic surface
defects in aluminum casting samples, with 91 % accu-
racy for hole defects and 86 % accuracy for crack defects;
using genetic algorithms in combination with median filter,
closing top-hat operation, segmentation threshold operation

and noise removal via elimination of areas smaller than a
defined value [29]. Jia et al. developed a defect detection
system for the steel industry capable of detecting a defect
in less than 6msec for one megabyte image [9]. They used
a rough filtering algorithm based on a horizontal gradient
operator to detect the edges of the seams on the hot rolled
steel. Support vector machine algorithms were trained to
learn complex decision boundaries in the presence of noise.
Xue-Wu et al. developed a system for inspection of sur-
face defects on strongly reflective metals [28]. They used
wavelet transformations along with Sobel filter and thresh-
olding to obtain five features from texture spectral measures
of copper strips. The classification was done with a support
vector machine and with an accuracy of 76.8 to 91.3 %.

Investigating techniques found in literature focused on
heavily textured materials such as cork, glass surfaces, solar
wafers and textiles; many important contributions are made
during the last decade. Georgieva and Jordanov investigated
a sample dataset of 700 cork tiles, which were used to
produce a set of 33 features, using co-occurrence matrices
measures and Law’s filter masks [5]. Principal component
analysis (PCA) and linear discriminant analysis (LDA) tech-
niques were used and compared to reduce the dimensional-
ity of the problem, along with GLPτS training method for
neural networks resulting in a testing success rate of up to
95 % for seven different sample classes. A further investi-
gation by Petrov et al., using part of the same dataset and
additional features such as Entropy, tested the performance
of self-organizing maps with success rates up to 88 % on
PCA and 98 % on LDA [18]. Concerning cork classifi-
cation, Oliveira et al. used stepwise discriminant analysis
to build predictive classification models to characterize the
surface of cork stoppers and cluster them into three quality
classes, analyzing the contribution of each porosity feature
in the classification [13]. A difficult task was for Tsai and
Chao to detect defects in sputtered glass surfaces, since
the nature of those surfaces is random and anomalies are
observed [25]. They developed an improved anisotropic dif-
fusion scheme, specifically tailored for detecting defects,
which smooths the background texture and preserves
those anomalies of the in-homogeneously textured surfaces.
The anisotropic diffusion scheme was first presented by
Perona and Malik [17]. Tsai and Chao’s method was supe-
rior to Gaussian and median filters because it did not falsely
detect defects in clear surfaces and was also accurate at
detecting them without including too many noisy pixels.
The same technique, anisotropic diffusion, was used by
Tsai et al. for the inspection of micro-cracks in hetero-
geneously textured solar wafers [26]. They modified the
approach by subtracting the diffused image from the orig-
inal gray-level image. The earlier approach was to smooth
the original gray-level image and enhance the defective
region in the diffused image. On the subject of fabrics,
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Kumar has surveyed 166 sources for computer vision based
defect detection and classification, providing an exhaustive
review on the different methods used to approach clas-
sification [10]. Such methods for fabric defect detection
were also reviewed by Shanbhag et al. [22]. Ortiz-Jaramillo
et al. evaluated different texture classification methods,
commonly used by researchers in the field, and provided
results with good evidence that power spectrum, local
binary patterns, the texture spectrum, Gaussian Markov ran-
dom fields, auto-regressive models and the pseudo-Wigner
distribution are good measures of fine changes in global
texture [14].

For this investigation, a data set of 145 extruded alu-
minum surface images was collected. Three classes, non-
defective, blister and scratches, are defined and attempts
are made to classify them with high accuracy suitable for
industrial application. Further investigation is made on fea-
ture selection and the resulting accuracy. Section 2 briefly
covers the inspection system, illumination, image acquisi-
tion; discusses the methodology, while providing example
figures, the equations used and a step by step procedure to
follow the proposed approach to feature extraction. Section
2 covers the results from the combinations of different fea-
tures and resulting ANN topologies. Finally, Section 4 con-
cludes this paper and provides directions for improving this
research.

2 Methodology

2.1 The typical inspection system

The typical components of a machine vision system include
[3]:

• One or more digital cameras;
• Illumination suitable for the application;
• A processor which can be either a general purpose PC

or a DSP;
• Sensors which trigger certain actions or trigger upon

certain conditions
(to start or stop acquiring images, to alarm the operator,
to reject a defective part, etc);

• Machine vision software (either a commercially avail-
able package or a complete scratch build incorporating
pattern recognition and classification methods);

• Data storage.

2.2 Aluminum defect inspection issues
and considerations

The reflective properties of aluminum are to be considered,
limiting the illumination options. A suitable system must

enhance the defects and provide as little noise as possible
to the captured image. Intensity imaging should be used as
per Pernkopf’s and O’Leary’s suggestions [16].

Another consideration is the speed of the extrusion which
is ranging from 5 to 80 m/min. Therefore, suitable cameras
with adequately fast frame rate should be used when cap-
turing images during the extrusion process (on-line). The
cameras can be of either type: area scan or line scan, but
to select the optimal performance type, additional consid-
erations are necessary to choose the appropriate frame rate,
process speed, captured area (for area scan), etc.

2.3 Image acquisition

The cameras, the lenses and the illumination system are
the core of the image acquisition system. Each of the
components has to be selected to match the requirements
of the specific application and to complement each other.
The purpose of the camera is to provide the resolution
needed to detect defects and the frame rate to match the
speed of the moving aluminum profile. For our application,
a Basler Scout 1 mega-pixel gray-scale camera was used.
The camera uses a CCD (charged-coupled device) sen-
sor which is widely adopted in the industry because of its
reliability and low cost.

For the purpose of this research, the samples were pro-
vided by a local company specialized in aluminum extru-
sions in a precut length of approximately 30 cm. The system
consisted of fluorescent illumination, extending lengthwise
more than the sample size, parallel to the direction of extru-
sion. The whole capturing system was enclosed in a box
with the camera and the illumination to avoid environmen-
tal light pollution. A polarizer had to be fitted to the camera
lens to suppress the polarized light. It was impossible to
have an on-line capturing system due to the lack of nec-
essary resources, so the whole process was done offline
focusing strictly on the methodology.

2.4 Image capture

The procedure starts by reading the image from the cam-
era or the disk drive. The picture is converted to gray-scale
image using 8bit precision, which translates into 256 pos-
sible gray-scale value variations (0 to 255, with 0 being
black and 255 white). The image is then separated in mul-
tiple regions of interest (RoI) of fixed width and length.
This method allows for precise recognition as it identifies
the position on the workpiece of the possible defects on the
aluminum surface. For example, if an image is 1000 pix-
els wide, it can be separated into 10 RoIs having a width of
100 pixels. Similar segmentation is made for the length of
the image. Thus, if a defect is identified the operator will be
notified of its location on the workpiece.
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Table 1 Low-pass filter 3x3

2.5 Noise removal and gradient magnitude calculation

On the next step, the gray-scale image is convoluted with a
low-pass filter size 3 x 3. The convolution with a low-pass
filter is used to remove noise from the image. Convolution is
a process of multiplying two arrays of numbers of different
sizes (most of the times) to produce a third array with the
same dimensionality as the original. The first array is the
gray-scale RoI. The second array is called the ‘kernel’. In
this algorithm, a 3 x 3 low-pass filter is used as shown in
Table 1.

Following the noise removal, a Sobel edge detection
operator is used (Fig 1). Two kernels are used in the Sobel
operator (Table 2) [6, 24]. The edge magnitude obtained by
the Sobel operator will be used to calculate the features of
the sample data. The calculation is done using Eqs. 1 and
3, instead of using Eq. 2 which is the most used, Sobel sug-
gests that the mathematically correct way is to divide G by
4, although a loss of low order significant bits can occur

[24]. The image gradients were converted to uint8 format
(converted to integers) in order to be useful in processing
statistical features of co-occurrence matrices.

Gx =
⎡
⎣

−1 0 +1
−2 0 +2
−1 0 +1

⎤
⎦∗A and Gy =

⎡
⎣

+1 +2 +1
0 0 0

−1 −2 −1

⎤
⎦∗A,

(1)

where A is the original image.

G =
√
Gx

2 + Gy
2 (2)

G = |Gx | + |Gy |
4

(3)

2.6 Statistical GLCM features

The feature set for the sample classification is extracted
from typical measures of co-occurrence matrices, but the
proposed methodology requires it to be extracted from the
gradient magnitude, which is a result of the Sobel operator.
Co-occurrence matrices are a commonly applied statistical
approach for texture feature extraction that considers rel-
ative distances and orientation of pixels with co-occurring
values [3, 5, 7, 8]. A co-occurrence matrix is a matrix that is

Fig. 1 Non-defective surface
(a), blister defect (d), scratch
defect (g) with their
transformations after noise
removal (b, e, h) and Sobel edge
magnitude (c, f, i) (the Sobel
images are brightness enhanced
by 30 % for clarity)
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Table 2 The kernels of the Sobel operator, for horizontal changes on
the left and vertical on the right

defined over an image to be the distribution of co-occurring
values at a given offset and direction. Mathematically, a co-
occurrence matrix C is defined over an n ∗ m image I ,
parametrized by an offset (�x, �y), as:

C(�x, �y)(i, j) =
N,M∑

p,q=1

⎧⎨
⎩
1 if I (p, q) = i and

I (p + �x, q + �y) = j

0 otherwise

(4)

where i and j are the image intensity values, p and q are
the spatial positions in the image I and the offset (�x, �y)

depends on the direction θ used and the distance d at which
the matrix is computed. The value of the image is originally
referred to the gray-scale value of the specified pixel, but it
could be anything, from a binary 0/1 value to 32bit color
and beyond.

Properties are such as Contrast, Homogeneity, Energy
and Correlation are derived from co-occurrence matrices.
This research uses combinations of those properties as fea-
tures of the neural network input. An optimal combination
will be selected in the following section. The first property,
Contrast , measures the intensity contrast between neigh-
boring pixels. Homogeneity measures the closeness of the
distribution of elements in the co-occurrence matrix to its
diagonal. Energy calculates the sum of squared elements
in the co-occurrence matrix and Correlation measures the
linear dependency of grey levels on neighboring pixels. For
the purposes of our research, those four features were used
with directions of 0 and 90◦ and a spatial relationship of

neighboring pixels (d = 1) in both directions, with the gray
values scaled to a 6bit depth (26), resulting in N = M = 64
for the following equations.

Contrast =
N,M∑
i,j

(i − j)2Ci,j (5)

Homogeneity =
N,M∑
i,j

Ci,j

1 + (i − j)2
(6)

Energy =
N,M∑
i,j

C2
i,j (7)

Correlation =
N,M∑
i,j

(i − μi)(j − μj )Ci,j

σiσj

(8)

2.7 Novel feature extraction process–GOCM

In summary, the process followed to extract features using
the proposed methodology is:

• Remove noise. A Low-pass filter was used.
• Calculate the gradient magnitude. The Sobel method is

a generally accepted good performing method. For the
calculation of the gradient, Eq. 3 was used.

• Convert the gradient magnitude to integer values.
Unsigned 8bit integer was used.

• Compute the co-occurrence matrix from the integer
gradient magnitude.

• Extract the statistical features needed for the applica-
tion. In this research, we calculated four of the proposed
Haralick’s features [8].

It is very crucial to convert the gradient to an inte-
ger because it is impossible to calculate a co-occurrence
matrix when values are numbers with decimal points. The

Fig. 2 Box-and-whisker
diagram of the feature matrix
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Fig. 3 Bi-plot of principal component coefficients and scores for first two principal components

proposed image conversion suggested by this research is
uint8, unsigned 8bit integer, such as to correspond to the
image’s gray-level scale. To avoid confusion with existing
spatial dependence matrices like gray level co-occurrence
matrix (GLCM) and gray-level gradient co-occurrence
matrix (GLGCM), we will call this matrix gradient-only
co-occurrence matrix (GOCM). The difference between
this and GLGCM is that the values i and j in our pro-
posed method belong to the gradient of the image, while in
GLGCM i belongs to the gray-level image and j belongs to
the gradient [27].

2.8 Sample set

The sample set comprises of 145 images of 150 x 150
pixels in 8bit gray-scale with eight features each, dis-
tributed in three categories: non-defective (40 %), blis-
ters (37 %) and scratches (23 %). The samples are sur-
face images of industrial produced aluminum from a hot
extrusion factory. MVTec Halcon version 9.0 (an indus-
trial machine vision tool) was used to process the images
and extract the feature matrix. Matlab version 2012b was
used to process the feature matrix and allow different
combinations of features to be used. The dataset was
normalized to minimum and maximum values—1 and 1
respectively.

3 Experimental results

The box-and-whisker diagram represents the feature values
(Fig 2); suggesting that Homogeneity and
Homogeneity90 are the least important features, which
can be attributed to the low extend of the whiskers (their
variance is the lowest). If the dimensionality of the problem
was to be reduced, those are the first feature candidates to

Fig. 4 Scree plot of the principal components with 95 % total variance
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Fig. 5 Scatter plots of a random selection of features

consider eliminating. This can be further investigated using
principal components analysis and exploring how the fea-
tures affect the most important principal components. The
scree plot (Fig. 4) depicts the principal components that
explain 95 % of the total variance.

The first principal component accounts for 75.99 % of
the total variance and the second component for 12.72 %, to
a sum total of 88.71 % of the total variance. From the bi-plot
(Fig. 3), an observation can be made that Energy, Energy90,
Homogeneity, Homogeneity90 have approximately the
same effect on the first two principal components, due to
same direction, approximately same vector size and similar
angles.

The assumption from the previous evidence suggests that
five features will give enough performance for the classifi-
cation. Supposedly, the selection ofContrast ,Contrast90,
Energy, Correlation, Correlation90 will provide the
same results as the full feature set of eight features. Prior
to the classification, an investigation of whether the features
are linearly separable or not has to be performed, in order
to select an appropriate classification technique. One of the
ways to present the results is via scatter plots, in which
random features from all three classes were selected to be

plotted against each other (Fig. 5). The data are non linearly
separable suggesting that multi-layer perceptrons or sup-
port vector machines are possible candidates for successful
classification.

The selected classification technique was two-layer feed
forward neural network with sigmoidal transfer functions,
utilizing a scaled conjugate algorithm [11]. The input was
a 145x(1–8) matrix, 145 samples and (1–8) for the fea-
tures, which was divided in two stages. The first stage was
to keep 50 % of the data separate in order to retest each
network’s performance in presence of new data, while the
second stage was to use the remaining data divided by 85 %
for training and 15 % for validation. The same test sample
group was kept separate from any training or validation for
all the neural networks trained and tested in this research
paper. This was done in order to have objective compar-
isons between the different neural network topologies and
inputs. The topology used for testing each individual fea-
ture was 1-2-3 (first number is the input features, second is
the hidden neurons, third is the outputs). The hidden layer
size was tested empirically and Inputs + 1 was performing
well in the experiments. The outputs were in binary for-
mat (1-0-0 for Non-Defective, 0-1-0 for Blisters and 0-0-1

Table 3 Artificial neural
network topology table with
MSE and accuracy values over
an average of 100 tested ANNs
for each feature

ANN topology Features GLCM GOCM

MSE Accuracy MSE Accuracy

1-2-3 Contrast 0.1900 56.2 0.1851 60.3

1-2-3 Contrast90 0.1790 61.6 0.1745 65.8

1-2-3 Correlation 0.1881 64.4 0.1186 78.1

1-2-3 Correlation90 0.1777 61.6 0.0859 87.7

1-2-3 Energy 0.2046 49.3 0.1781 63.0

1-2-3 Energy90 0.2023 53.4 0.1884 57.5

1-2-3 Homogeneity 0.1992 47.9 0.1861 61.6

1-2-3 Homogeneity90 0.2026 54.8 0.1935 56.2
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Table 4 Artificial neural
network topology table with
MSE and accuracy values over
an average of 100 tested ANNs
for each feature group

ANN topology Features GLCM GOCM

MSE Accuracy MSE Accuracy

2-3-3 Cr,Cr90 0.1682 65.8 0.0353 98.6

3-4-3 Cr,Cr90,C 0.1631 63.0 0.0356 97.3

3-4-3 Cr,Cr90,C90 0.1568 63.0 0.0385 98.6

3-4-3 Cr,Cr90,E 0.1604 65.8 0.0456 97.3

3-4-3 Cr,Cr90,E90 0.1545 63.0 0.0385 97.3

3-4-3 Cr,Cr90,H 0.1656 64.4 0.0362 97.3

3-4-3 Cr,Cr90,H90 0.1697 63.0 0.0360 97.3

4-5-3 C,C90,E,E90 0.1579 64.4 0.1406 74.0

4-5-3 C,C90,H,H90 0.1452 71.2 0.1366 76.7

4-5-3 C,C90,Cr,Cr90 0.1490 65.8 0.0232 97.3

5-6-3 C,C90,E,Cr,Cr90 0.1218 78.1 0.0224 97.3

6-7-3 C,C90,H,H90,E,E90 0.1430 75.3 0.1229 82.2

6-7-3 C,C90,E,E90,Cr,Cr90 0.1287 78.1 0.0201 97.3

8-9-3 C,C90,H,H90,E,E90,Cr,Cr90 0.1182 79.5 0.0244 97.3

C contrast, C90 contrast90, E energy, E90 energy90, H homogeneity, H90 homogeneity90, Cr

correlation, Cr90 correlation90

for Scratches). Before proceeding with the final results, the
features were calculated individually using the traditional
GLCM approach, where the features are extracted directly
from the original image’s statistical texture measures. To
make a direct comparison, a calculation of the features from
the edge magnitude of the image followed (GOCM). The
results provided are over an average of 100 training ses-
sions, with the average Mean Squared Error and Accuracy
presented in Table 3.

The most interesting feature is Correlation obtained
using θ = 0◦, d = 1 and θ = 90◦, d = 1. The Correlation,
Correlation90 and Contrast90 obtained from GLCM
provide the highest accuracy, which implies they are
the strongest features. Similar performance to those fea-
tures is obtained from Contrast , Contrast90, Energy

and Homogeneity in the GOCM case. Correlation and
Correlation90 have exceptionally high accuracy when
they derive from the edge magnitude.

Table 4 summarizes the tested networks with the statis-
tical features’ combinations and resulting topologies. The
best performing combination of GLCM features is 8-9-3
with an accuracy of 79.5 %. It is observed that the accu-
racy increases while more features from the GLCM are
introduced. On the contrary, there is an interesting obser-
vation to be made for GOCM features, Correlation and
Correlation90 in pair are the best performing combination
regarding accuracy 98.6 %. None of the other combina-
tions achieves this high accuracy because the information
provided by the other data proves to be redundant. The com-
putational load for each image of 150x150 pixels using 6bit
scale for the eight statistical features of GOCM matrices

with the Sobel calculation for the gradient was on average
30 ms on an Intel 4770 k processor at 4.1 GHz.

4 Conclusions—discussion

In this paper, a computer vision-based system for inspec-
tion of surface defects on aluminum profiles was developed.
The study focused on two defects, blisters and scratches,
and classified them in three classes (non-defective, blister,
scratch). We performed a feature selection for this appli-
cation, which resulted in 98.6 % accuracy using only two
features. This high detection accuracy is achieved combin-
ing the current literature on the field with a novel approach
on selecting and manipulating variables, such as obtaining
values from the statistical features of co-occurrence matri-
ces on the gradient magnitude of the image as a result of
the Sobel operator. We called this matrix GOCM to be
able to distinguish it between the traditional GLCM and
GLGCM approaches. Even if the nature of the aluminum
surface texture is near-stochastic, which makes defect detec-
tion especially difficult, we have proven that using statistical
features from the GOCM is more suitable in extruded
aluminum surface inspection.

This research can be further enriched by adding more
samples for different types of defects such as die-lines,
pick-up, tearing, color streaks, weld lines and black lines.
For the classification of more defects, the accuracy is
expected to drop when using only two features, because
they will lose some of their discrimination ability. Dif-
ferent types of cameras and measuring equipment can be
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used to obtain data able to distinguish better amongst
similar type of defects. Another possibility of future
research is to test the performance of different classifica-
tion systems such as support vector machines and compare
them to neural networks’ performance. Last direction of
future research, but not least important, would be to test
the proposed GOCM methodology using standard texture
benchmarks.
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