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Abstract In this study, a dual response surface model-based
multi-objective robust optimization method is introduced to
deal with the uncertainties in the tube hydroforming process.
The objective of this study is to maximize the protrusion
height and minimize the thinning ratio; meanwhile, the varia-
tions of the objectives should be minimized. A valid finite
element model obtained from experimental result and LS-
DYNA is employed to simulate the T-shape tube
hydroforming process. To improve computation efficiency,
radial basis function combined with Latin hypercube and or-
thogonal design sampling strategies is employed to construct
dual response surface model, which are the mean and standard
deviation response of the hydroforming process, respectively.
The robust Pareto solutions can be obtained using NSGA-II;
meanwhile, the ideal point method is used to obtain the most
satisfactory solution from the Pareto solutions for the design
engineers. As a conclusion, a significant improvement of the
robustness can be achieved; however, the mean performance
of the protrusion height has to be sacrificed.

Keywords Tube hydroforming . Loading path .

Multi-objective robust optimization . Dual response surface
model

1 Introduction

Tube hydroforming (THF) process has been widely used in
the automotive and aircraft as well as sanitary industries in
recent years due to its advantages as compared to conventional
manufacturing via stamping and welding. These advantages
include part consolidation, weight reduction, the increase of
the strength and stiffness, the decrease of the workpiece cost
and tooling cost, more uniform thickness distribution, etc. [1,
2].

THF is a complex metal forming process that involves
material properties, geometric characteristics, and process pa-
rameters, such as strength coefficient, initial tube thickness,
and friction coefficient, etc. Extensive research has been per-
formed analytically, numerically as well as experimentally to
analyze the effect of the material properties, geometric char-
acteristics, and loading parameters on the forming quality
[3–8]. Yang et al. [9] investigated the effect of the loading path
on the forming result and gave a reasonable range of the load-
ing path in THF process. Hwang et al. [10] conducted a series
of experiment to test the effect of different loading paths on
the formed parts, and they pointed out that the branch heights
of the formed products with and without a counter punch were
also compared to manifest the merit of using a counter punch
during tube hydroforming. Alaswad et al. [11] compared the
results, such as protrusion height, thickness distribution, and
so on, between single and bi-layered THF process under the
same conditions. Due to the complexity of the THF process,
the loading path should be optimized to better control the
process and guarantee the hydroformed parts with desired
specification.

During the past decades, a number of papers have been
published to search for the optimal loading path in the THF
process. Yang et al. [12] dealt with sensitivities analysis and
optimal process design of the THF process using the finite
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element method (FEM) combined with an optimization tool.
Fann and Hsiao [13] proposed an optimization strategy based
on conjugate gradient method and FEM to determine the op-
timal loading path in the THF process, and they also pointed
out that the loading path generated by sequential mode is
better than that generated by the batch mode. Li et al. [14]
developed a method to analyze the effect of the material prop-
erties, geometric characteristics, and loading parameters on
the product quality using Taguchi method and FEM, and the
optimal combination of the internal pressure and the friction
coefficient was obtained by using goal attainment method.
Ben and EI [15] provided a deep comparison between the
quadratic polynomial response surface (RS) model and radial
basis function (RBF) as surrogate techniques to construct sur-
rogate models for global sensitivities and multi-objective op-
timization of the THF process, and they found that the RBF
showed its superiority over the quadratic polynomial RS mod-
el to deal with nonlinearities proved through analytical test
function and practical THF process. An et al. [16–18] used a
multi-objective optimization algorithm combined with design
of experiment (DOE) and FEM to determine the optimal load-
ing path in the THF process. Kadkhodayan and Moghadam
[19, 20] established a new method to optimize the loading
parameters in the T-, X-, Y-shape THF process based on
Taguchi method and the RS model. Aue-U-Lan et al. [21]
studied the self-feeding and the adaptive simulation tech-
niques as the optimization strategies to optimize the loading
parameters. Mirzaali et al. [22, 23] used the simulated anneal-
ing algorithm to find the loading parameters in the THF pro-
cess. Abedrabbo et al. [24] optimized the loading path in the
THF process with experimental verification. Li et al. [25]
proposed an adaptive simulation approach integrated with a

fuzzy logic control algorithm to maximize the protrusion
height for the T-shape THF process, and they used the forming
limit curve and a simple geometry method to predict the neck-
ing and wrinkling. Teng et al. [26] optimized the loading paths
for T-shape THF process based on a fuzzy control algorithm
and FEM, and the result was validated against the experimen-
tal work. Manabe et al. [27] used an intelligent technique to
determine the optimal loading paths for the T-shape THF pro-
cess with a counter punch. Di Lorenzo et al. [28] proposed a
gradient decomposition method, which aimed to reduce the
number of the evaluations of the FE simulation, to optimize
the internal pressure and counter punch action in Y-shape THF
process. Ingarao et al. [29] applied the RS model and Pareto
optimal solution search techniques to design a complex Y-
shape THF process. Imaninejad et al. [30] discussed the effect
of single-, double-, and quadruple-stroke axial displacement
on the optimal results and the influence of the use of high and
low internal pressure on the thickness variation.

The aforementioned strategies have been successfully ap-
plied for optimizing the THF process; however, most practical
THF processes involve some degree of uncertainties in the
material properties, geometric characteristics, and process pa-
rameters. It must be noted that usually, a deterministic optimi-
zation tends to push a design toward one or more constraints
until the constraints become active, thereby leaving very little
or no room for tolerances in modeling, uncertainties, and/or
manufacturing imperfections. Therefore, the design could be-
come misleading or even unacceptable when considering the
perturbations of the design variables or the uncertainties of the
process parameters. To tackle this problem, some progresses
have been developed to deal with the uncertainties in the THF
process [31–37]. Li et al. [31–33] studied the reliability of the
THF process based on the stochastic frame and fuzzy pro-
gramming. Abdessalem et al. [34] increased the stability of
the THF process under stochastic frame. Ben et al. [35]
discussed the reliability-based design optimization of the
THF process. Kim et al. [36, 37] proposed a statistical ap-
proach to evaluate forming limit diagram based on first-
order reliability method, Monte Carlo simulations, and Hill
plastic instability criteria.

It can be seen from the literature review, there have been
few reports available regarding multi-objective robust optimi-
zation of the loading path in the THF process. In this study, a
multi-objective optimization method based on the dual RS
model is introduced to deal with the uncertainties in the T-
shape THF process. The remainder of paper is organized as
follows: In Section 2, the FE model is presented and validated

Fig. 1 A quarter of the FE model used for numerical simulation

Table 1 The geometric
characteristics of the FE model Tube

length(mm)
Tube outer
diameter(mm)

Tube
thickness(mm)

Die corner
radius(mm)

Branch tube
diameter(mm)

121 24 1.3 3 24
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against the experimental results. The dual RS model, which
are the mean and standard deviation response of the
hydroforming process, respectively, combined with Latin hy-
percube and orthogonal design sampling strategies is intro-
duced in Section 3. Multi-objective robust optimization prob-
lem is formulated and the obtained results are analyzed and
discussed in Section 4. Section 5 draws some conclusions on
the presented work and future research direction are proposed.

2 FE model validated against the experimental
results

2.1 FE Model

Due to the symmetric character of the T-shape THF process,
only a quarter of the model is used to simulate the T-shape
THF process and the nodes at the symmetry edges are re-
strained in the appropriate directions. Figure 1 shows a quarter
of the model. It is composed of the die which represents the
final desired part, the punch, which has the role of bringing
matter to the expand zone at the end and avoid the premature
plastic instability of the tube, and the tube. The total model is
composed of 2256 shell elements. The tube is modeled using
4800 Belytschko-Tsay elements with five integration points
through thickness, and the die and the punch are modeled as
rigid bodies. The explicit dynamic FE code LS-DYNA [38] is
adopted to simulate the T-shape THF process; a coulomb

friction coefficient of 0.15 is used to simulate the friction
behavior between the contact surface of the tube and the die.
The geometric characteristics of the FE model are listed in
Table 1.

2.2 Material properties

The annealed copper tubes are used to manufacture the T-
shape tube part; Swift hardening law is adopted to characterize
the material behavior

σ ¼ Kε
n ð1Þ

where σ and ε are the effective stress and effective strain,
respectively, K is the strength coefficient, and n is the strain
hardening exponent. The material properties are shown in
Table 2 [39].

2.3 The definition of the loading path

The loading path (the internal pressure versus the axial
feeding) used for the THF process simulation is set accord-
ing to the experimental procedures [39]. The maximum
axial feeding is 23.5 mm. The loading path used in the
FE simulation is shown in Fig. 2, and the simulation time is
set to 0.01 s.

Table 2 The material properties of the tube

Yield stress
(MPa)

Density
(kg/m3)

Poisson’s
ratio

Young’s
modulus
(GPa)

Strength
coefficient
(MPa)

Hardening
exponent

116.37 8900 0.31 119.86 425.7 0.2562
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Fig. 2 The loading path used in the FE simulation

Fig. 3 The experimental result

Fig. 4 The simulation result
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2.4 The result validated against the experiment

Figures 3 and 4 show the wall thickness distribution of the
experiment and the simulation, and Fig. 5 shows the wall
thickness distribution of the experiment and the simulation
in zy-plane along the curvilinear length of the tube. The wall
thickness plot at the end of the tube is ignored due to the
presence of the punch, and the definition of the curvilinear

length can be referred to reference [39]. From Figs. 3, 4 and
5, it can be found that the simulation result shows a good
agreement with the experimental result. Besides, the protru-
sion height of the experiment and simulation are 17.7 and
17.07 mm, respectively, and the relative error is −3.56 %.
The protrusion height comparison also indicates that the ac-
curacy of the FE model is acceptable. Thus, the FE model can
be used for the optimization of the loading path in the THF
process. It should be pointed out that the difference between
the experimental and simulation results may be due to the
boundary condition during the THF process, the error in mea-
surement of the wall thickness and the inaccuracy of the ma-
terial properties.

3 The dual RS model combined with DOE

The optimization of loading path in the THF process often
requires large computational time, even when using reduced
FE model. Implicit functions have to be evaluated for many
times to explore the search space. To save the computation
time, the use of the RSmodel is a preferable strategy. However,
the conventional RS model only focuses on the mean value of
the response without considering the variance. Therefore, only
constructingmean response model may not be adequate and an
optimization could become misleading [40]. While dual RS

model allows constructing two models, the mean ~f
μ
xð Þ and

standard deviation ~f
σ
xð Þ of the response of the system is

~f
μ
xð Þ ¼

X
aiϕi xð Þ

~f
σ
xð Þ ¼

X
biφi xð Þ

ð2Þ
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Fig. 5 The wall thickness distribution along the curvilinear length
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Fig. 6 The flow chart of constructing dual RS model

Table 3 The cross array design

Inner array

U1 1 1 …… 3
U2 1 2 …… 3
U3 1 2 …… 2
U4 1 2 …… 1

Outer array X1 X2 X3
13 1 5 f1,1 f1,2 … f1,9
4 9 13 f2,1 f2,2 … f2,n
… … … … … …

12 18 2 f20,1 f20,2 … f20,9

Table 4 The ranges of loading parameters

P1(MPa) P2(MPa) D(mm)

Lower bound 30 40 20

Upper bound 40 46 26
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3.1 RBF model

Jin et al. [41] systematically compared several popular sur-
rogate techniques, namely polynomial regression, kriging
method, multivariate adaptive regression splines, and
RBF; they pointed out that RBF performs the best when
both average accuracy and robustness are considered.
Hence, the RBF is used to construct the dual RS model.
RBF [41] has been developed for the interpolation of
scattered multivariate data. This method uses linear combi-
nations of radially symmetric functions based on the Eu-
clidean distance or other such metric. A RBF model can be
expressed as

~f xð Þ ¼
XN

j¼1

wjh r• j
� � ð3Þ

where wj represents the unknown coefficients, N is the
number of the sampling points, h is the radial basis
function, and r•j=||x−xj|| represents the Euclidean dis-
tance between the estimate point and the jth sampling point.
Some of the most commonly used basis functions include lin-
ear, cubic, thin plate spline, multi-quadric, inverse multi-quad-
ric, and Gaussian, etc. In this study, the Gaussian function is

selected as the basis function due to its effectiveness in surro-
gate model

h rð Þ ¼ e−cr
2 ð4Þ

where c is a constant to be optimized. At the ith sampling point
xi, the predicted value can be expressed as

~f xið Þ ¼
Xn

j¼1

wjh ri j
� � ð5Þ

where rij denotes the Euclidean distance between the ith sam-
pling point and the jth sampling point, and Eq. (5) can be
transformed in matrix notation as follows:

f ¼ Hw ð6Þ
where H is a matrix:

H ¼
h r11ð Þ h r12ð Þ ⋯ h r1Nð Þ
h r21ð Þ h r22ð Þ ⋯ h r2Nð Þ
⋮ ⋮ ⋱ ⋮

h rN1ð Þ h rN2ð Þ ⋯ h rNNð Þ

2
664

3
775 ð7Þ

If the inverse of H exits, the unknown coefficient vector
can be obtained as

w ¼ H−1 f ð8Þ
It has been proven that the matrixH is always invertible for

arbitrary scattered sampling points [42].

3.2 DOE

When using the RBF model to construct dual RS model, the
sampling points should be carefully located. In this study, the
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Fig. 7 The preliminary loading
path

Table 5 The ranges of uncertain parameters

K(MPa) n μ t0(mm)

Lower bound 383.13 0.23058 0.135 1.17

Upper bound 468.27 0.28182 0.165 1.43
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Latin hypercube design (LHD) [43] method is selected to
locate the outer sampling points, while the orthogonal de-
sign is used to collect the inner sampling points. The flow
chart [44] of constructing dual RS model is shown in
Fig. 6. The calculation of the dual RS model can be described
as follows:

Step 1 Define the problem and determine the design vari-
ables and the uncertain parameters.

Step 2 Construct the cross array to locate the sampling points,
where the design variables are arranged in the outer
array while the uncertain parameters are arranged in
the inner array. As an example shown in Table 3, LHD
is used to locate 20 sampling points of design vari-
ables and orthogonal design is used to collect 9 sam-
pling points of uncertain parameters.

Step 3 Run experiments using numerical simulations, such
as FEM. It should be noted that each experiment
at outer array is repeated 9 times corresponding to
the inner array to simulate the mean and standard
deviation due to the uncertain parameters. As is
shown in Table 3, fi, j is the response at ith row of
the outer array and jth column of the inner array.

Step 4 Calculate the mean and standard deviation of the
response according to Eq. 9:

f μi xð Þ ¼ 1

n

Xn

j¼1

f i; j xð Þ

f σi xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn

j¼1

ð f i; j xð Þ− fi μ xð ÞÞ2
vuut

ð9Þ

where fi
μ(x) and f i

σ(x) are the mean and standard
deviation of the response at the ith sampling point
in the outer array, n is the number of the sampling
points in the inner array.

Step 5 Construct the dual RS model according the
Eqs. (2)–(8).

Step 6 Evaluating the performance of the dual RS model
according Eq. (10) and Eq. (11):

MRE ¼ Max
~f i− f i
f i

�����

������ 100% ð10Þ

R2 ¼ 1 −

XN

i¼1

f i − ~f i
� �2

XN

i¼1

f i − f i
� �2

ð11Þ

Table 6 The protrusion height of the FE simulation

Design variables Uncertain parameters

K 383.13 383.13 383.13 425.70 425.70 425.70 468.27 468.27 468.27

n 0.2306 0.2562 0.2818 0.2306 0.2562 0.2818 0.2306 0.2562 0.2818

t0 1.17 1.30 1.43 1.43 1.17 1.30 1.30 1.43 1.17

No. P1 P2 D μ 0.135 0.150 0.165 0.150 0.165 0.135 0.165 0.135 0.150

1 39.14 40.26 23.27 22.698 21.126 19.849 18.57 21.149 19.803 18.612 17.734 19.941

2 32.46 42.00 23.38 21.479 20.098 18.978 17.863 20.121 18.954 17.879 17.041 19.075

3 37.46 44.88 25.11 24.34 22.653 21.221 19.849 22.636 21.168 19.903 18.958 21.313

4 30.45 42.97 21.46 20.224 18.918 17.779 16.68 18.91 17.735 16.696 15.955 17.862

5 36.43 41.74 24.78 23.125 21.599 20.397 19.135 21.618 20.352 19.209 18.311 20.484

6 30.71 40.56 20.61 19.224 17.989 16.984 15.886 17.979 16.928 15.895 15.23 17.049

7 33.52 43.13 22.58 21.473 20.055 18.926 17.654 20.062 18.876 17.685 16.895 18.984

8 33.18 41.48 24.40 22.095 20.726 19.523 18.405 20.725 19.511 18.425 17.662 19.67

9 35.02 44.78 22.71 22.31 20.747 19.471 18.156 20.735 19.405 18.193 17.288 19.535

10 36.84 43.56 20.28 21.033 19.52 18.244 16.956 19.522 18.209 16.983 16.123 18.329

11 34.51 40.61 21.63 20.573 19.242 18.106 16.97 19.237 18.069 16.998 16.251 18.179

12 39.57 42.49 22.38 22.771 21.101 19.756 18.412 21.128 19.709 18.453 17.534 19.847

13 32.54 45.41 22.06 21.581 20.064 18.859 17.507 20.056 18.802 17.545 16.75 18.918

14 38.46 43.71 24.91 24.2 22.48 21.12 19.763 22.488 21.077 19.805 18.833 21.22

15 31.30 44.21 21.14 20.461 19.074 17.895 16.74 19.067 17.854 16.737 15.918 17.969

16 31.65 44.18 24.16 22.326 20.859 19.599 18.412 20.841 19.579 18.44 17.661 19.721

17 34.39 42.13 25.44 23.069 21.61 20.426 19.219 21.633 20.389 19.249 18.413 20.522

18 35.73 45.24 25.73 24.341 22.669 21.273 19.937 22.659 21.237 19.986 19.104 21.409

19 37.93 41.08 20.44 20.8 19.336 18.138 16.868 19.354 18.091 16.894 16.069 18.208

20 38.93 45.74 23.69 24.106 22.28 20.869 19.354 22.292 20.812 19.403 18.475 20.95
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where MRE is the maximum relative error between
the predicted response and the actual response, R2 is
the coefficient of the determination, f is the actual

mean or standard deviation of the response, ~f is the

predicted value and f is the average value. N is the
number of the sampling points in the outer array.
Generally speaking, the smaller the MRE and the
larger the R2, the better the performance of the
dual RS model can be obtained.

Step 7 Repeating the steps above until the errors become
acceptable.

4 Multi-objective robust optimization

In the T-shape THF process, there are several, possibly con-
flicting, objectives, such as the maximum thinning ratio and
the protrusion height. Therefore, all the objectives cannot be
simultaneously optimized. For instance, for typical T-shape
THF process, the maximum thinning ratio and the protrusion
height are two competing objectives; there is a need to
maximize the protrusion height while the maximum thinning
ratio maintaining a reasonable value. Besides, uncertainties

associated with material properties, geometric characteristics,
and loading parameters widely exist in the actual THF pro-
cess. Therefore, it is necessary to introduce a multi-objective
robust optimization method to deal with the uncertainties in
the THF process.

4.1 The definition of the objectives

In the T-shape THF process, the primary objective is to man-
ufacture the part with the maximum protrusion height without
any failure happening. Among three main failure modes,
namely bursting, wrinkling, and buckling, involved in the
THF process, bursting failure is irrevocable while other fail-
ures are revocable [45]. Although there are many different
criteria for predicting bursting in the THF process, there is
no clearly a preferred approach. In this study, the maximum
thinning ratio is used as a measure of product quality. The
maximum thinning ratio can be defined as follows:

Thinning ratio %ð Þ ¼ t0−tmin

t0
� 100% ð12Þ

where t0 is the initial tube thickness and tmin is the
minimum thickness of the final hydroformed parts. As

Table 7 The maximum thinning ratio of the FE simulation

Design variables Uncertain parameters

K 383.13 383.13 383.13 425.70 425.70 425.70 468.27 468.27 468.27

n 0.2306 0.2562 0.2818 0.2306 0.2562 0.2818 0.2306 0.2562 0.2818

t0 1.17 1.30 1.43 1.43 1.17 1.30 1.30 1.43 1.17

No. P1 P2 D μ 0.135 0.150 0.165 0.150 0.165 0.135 0.165 0.135 0.150

1 39.14 40.26 23.27 16.942 14.115 11.474 6.891 14.004 11.390 7.073 6.290 11.762

2 32.46 42.00 23.38 14.232 11.906 9.771 5.901 11.950 9.715 6.151 5.348 10.074

3 37.46 44.88 25.11 19.258 15.652 12.592 7.533 15.241 12.325 7.695 6.811 12.676

4 30.45 42.97 21.46 15.124 12.520 10.087 5.987 12.461 10.023 6.328 5.453 10.471

5 36.43 41.74 24.78 15.331 12.766 10.676 6.371 12.757 10.600 6.732 5.885 10.898

6 30.71 40.56 20.61 12.831 10.857 8.870 5.254 10.828 8.875 5.493 4.755 9.325

7 33.52 43.13 22.58 15.829 13.117 10.831 6.351 13.106 10.770 6.618 5.803 11.044

8 33.18 41.48 24.40 13.904 11.754 9.595 5.833 11.613 9.544 5.980 5.321 9.979

9 35.02 44.78 22.71 18.418 14.953 12.174 7.211 14.786 11.999 7.391 6.452 12.212

10 36.84 43.56 20.28 18.272 15.184 12.261 7.197 15.015 12.131 7.426 6.523 12.540

11 34.51 40.61 21.63 14.185 11.828 9.711 5.917 11.863 9.756 6.121 5.518 10.095

12 39.57 42.49 22.38 19.067 15.648 12.757 7.564 15.542 12.609 7.794 6.926 12.922

13 32.54 45.41 22.06 18.882 15.043 12.178 6.968 14.897 12.006 7.271 6.374 12.265

14 38.46 43.71 24.91 18.508 15.109 12.340 7.436 14.918 12.090 7.588 6.720 12.453

15 31.30 44.21 21.14 16.970 13.776 11.043 6.632 13.707 11.025 6.753 5.804 11.413

16 31.65 44.18 24.16 16.780 13.711 10.998 6.428 13.439 10.771 6.678 5.956 11.166

17 34.39 42.13 25.44 14.613 12.324 10.279 6.161 12.240 10.083 6.360 5.594 10.379

18 35.73 45.24 25.73 18.881 15.311 12.235 7.207 14.905 11.973 7.523 6.680 12.423

19 37.93 41.08 20.44 16.999 14.242 11.623 6.820 14.219 11.560 7.004 6.243 11.873

20 38.93 45.74 23.69 21.603 17.026 13.783 8.073 16.884 13.508 8.212 7.345 13.881
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mentioned above, the protrusion height and the maxi-
mum thinning ratio are usually two competing objec-
tives. Thus, it forms a multi-objective optimization problem
to optimize the protrusion height and the maximum thinning
ratio.

4.2 The definition of the design variables
and the uncertain parameters

A successful THF process depends on a number of fac-
tors, such as the loading path (internal pressure vs. time,
the axial feeding vs. time), the lubrication condition, the
geometric characteristics, and the material properties.
Therefore, a suitable loading path is of great importance
to guarantee the stability of the THF process. In this
study, the variation of the internal pressure versus time
is modeled by two points (P1, P2), and the axial feeding
D is imposed as a linear function of time. The ranges
of the loading parameters applied in the T-shape THF

process are determined by running few numerical simu-
lations, and the ranges of loading parameters are given
in Table 4. The preliminary loading path is shown in
Fig. 7.

In this study, the strength coefficient (K), strain hardening
exponent (n), friction coefficient (μ), and tube thickness (t0)
are regarded as the uncertain parameters. The ranges of uncer-
tain parameters are given in Table 5.

Table 8 The actual and normalized values of mean and the standard deviation of the protrusion height and the maximum thinning ration

Design variables Actual values Normalized values

No. P1 P2 D fh
μ fh

σ ft
μ ft

σ fh
μ fh

σ ft
μ ft

σ

1 39.14 40.26 23.27 19.9425 1.5413 11.1045 3.6977 0.5485 0.5133 0.5193 0.4717

2 32.46 42.00 23.38 19.0542 1.3684 9.4498 3.0824 0.4608 0.3427 0.3508 0.3279

3 37.46 44.88 25.11 21.3380 1.6738 12.1982 4.2204 0.6864 0.6441 0.6306 0.5939

4 30.45 42.97 21.46 17.8623 1.3326 9.8282 3.3333 0.3431 0.3074 0.3893 0.3865

5 36.43 41.74 24.78 20.4699 1.4873 10.2241 3.2717 0.6006 0.4600 0.4296 0.3721

6 30.71 40.56 20.61 17.0184 1.2490 8.5654 2.8340 0.2598 0.2249 0.2608 0.2698

7 33.52 43.13 22.58 18.9566 1.4287 10.3855 3.4775 0.4512 0.4022 0.4461 0.4202

8 33.18 41.48 24.40 19.6379 1.3844 9.2804 3.0010 0.5185 0.3585 0.3336 0.3089

9 35.02 44.78 22.71 19.5379 1.5565 11.7327 4.0631 0.5086 0.5283 0.5832 0.5571

10 36.84 43.56 20.28 18.3245 1.5306 11.8390 4.0726 0.3887 0.5028 0.5940 0.5593

11 34.51 40.61 21.63 18.1806 1.3496 9.4438 3.0312 0.3745 0.3241 0.3502 0.3159

12 39.57 42.49 22.38 19.8568 1.6257 12.3143 4.1807 0.5401 0.5966 0.6424 0.5846

13 32.54 45.41 22.06 18.8981 1.5120 11.7651 4.2421 0.4454 0.4844 0.5865 0.5989

14 38.46 43.71 24.91 21.2206 1.6557 11.9068 4.0149 0.6748 0.6262 0.6010 0.5458

15 31.30 44.21 21.14 17.9684 1.4094 10.7914 3.7844 0.3536 0.3832 0.4874 0.4920

16 31.65 44.18 24.16 19.7154 1.4563 10.6585 3.7211 0.5261 0.4294 0.4739 0.4772

17 34.39 42.13 25.44 20.5033 1.4446 9.7816 3.1405 0.6039 0.4179 0.3846 0.3415

18 35.73 45.24 25.73 21.4018 1.6317 11.9042 4.1567 0.6927 0.6025 0.6007 0.5790

19 37.93 41.08 20.44 18.1954 1.4755 11.1758 3.7770 0.3760 0.4484 0.5265 0.4902

20 38.93 45.74 23.69 20.9491 1.7542 13.3682 4.8078 0.6480 0.7234 0.7497 0.7311

Table 9 Performance evaluation of the dual RS model

fh
μ fh

σ ft
μ ft

σ

R2 0.9993 0.9937 0.9956 0.9710

MRE (%) 0.3119 1.0521 1.2739 4.4266
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Fig. 8 Pareto frontiers of the protrusion height
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4.3 The multi-objective robust optimization problem

From the above discussion, the multi-objective robust optimi-
zation problem can be formulated as follows:

min f h x; uð Þ; f t x; uð Þf g
xl ≤x≤xu; ul ≤u≤uu

ð13Þ

where fh and ft are the protrusion height and the maximum
thinning ratio, respectively. xl and xu denote the lower and
upper bounds of the design variable x, ul and uu denote the
lower and upper bounds of the uncertain parameter u.

The objective of manufacturing the part is to maximize
protrusion height and minimize maximum thinning ratio;
moreover, the variation of the objective should be as small
as possible. Through the linear combination method, the
Eq. (13) can be converted as follows:

min ‐β f μh xð Þ þ 1−βð Þ f σh xð Þ;β f μt xð Þ þ 1−βð Þ f σt xð Þ� 	
xl ≤x≤xu

ð14Þ
where fh

μ and fh
σ are the mean and standard deviation of the

protrusion height, ft
μ and ft

σ are the mean and standard devi-
ation of the maximum thinning ratio, and β is the weight
coefficient to emphasize the mean or standard deviation of

the response. In this study, NSGA-II [46] is employed to solve
Eq. (14). Because NSGA-II is a well-studied optimization
algorithm, the description of the determination of the proper
parameters for a NSGA-II operation can be referred to refer-
ence [46].

4.4 Result and discussion

The design variables located with LHD are arranged in an
outer array with sampling points of 20. Experiments with or-
thogonal design are repeated nine times corresponding to the
outer array to simulate the mean and standard deviation due to
the uncertain parameters. The protrusion height and the max-
imum thinning ratio of the FE simulation results are listed in
Tables 6 and 7. The mean and standard deviation of the pro-
trusion height and the maximum thinning ratio are given in
Table 8. In order to avoid numerical magnitude difference, all
the mean and the standard deviation values are normalized to a
dimensionless value between 0.2 and 0.8. The normalized
value can be obtained according to Eq. (15):

Normalized value ¼ 0:2þ 0:8−0:2ð Þ � f •− f •min

f •max− f
•
min

ð15Þ

where f • is the mean or standard value of the protrusion height
or the maximum thinning ratio and fmin

• and fmax
• are the cor-

responding minimum and maximum value. The normalized
results are shown in Table 8. Based on the results in Table 8,
RBF is employed to construct dual RS model, which, respec-
tively, represents the mean and standard deviation.

Before optimizing the T-shape THF process, it is necessary
to evaluate the performance of the dual RS model. In this
study, the coefficient of the determination R2 and maximum
relative error (MRE) are used to evaluate the performance of
the dual RS model. Because the RBF model is an interpola-
tion, the performance evaluation of the dual RS model cannot
be obtained from the interpolation points. Therefore, five extra
sampling points are randomly selected to evaluate R2 and
MRE. Table 9 summarizes the error analysis results of R2

and MRE. From Table 9, it can be found that the performance
of the dual RSmodel is very good and allow us to carry out the
design optimization properly.

f1

f 2

Most satisfatory solution

Fig. 9 The most satisfactory solution

Table 10 The most satisfactory
solution fh

μ fh
σ ft

μ ft
σ

β=0.5 Design variable = [30.26,40.01,24.30] 18.7949 1.2417 8.1233 2.6974

Verified by the FE simulations 19.0879 1.1866 8.069 2.5896

Relative error (%) 1.5350 −4.6435 −0.6729 −4.1628
β=1.0 Design variable = [35.37,40.16,25.98] 20.8979 1.3734 9.1517 2.9526

Verified by the FE simulations 20.7573 1.4232 9.2607 3.0525

Relative error (%) -0.6727 3.4992 1.1914 3.9279
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The population size of NSGA-II algorithm is 100, the max-
imum iterations is 100, the cross fraction is 0.8, the migration
fraction is 0.2, and the Pareto population size is 50. Figure 8
presents the optimal Pareto frontiers of the mean and the stan-
dard deviation of the protrusion height for different weight
coefficient β. It can be found that the small weight coefficient
is set, the smaller standard deviation can be obtained, which
means that the more robust solution can be achieved, the mean
objective function becomes worse.

Although the Pareto solutions can provide design engineers
with a number of design solutions for their decision making at
the beginning step, the design engineers must make a decision
from the Pareto solutions. In this study, the ideal point method
[47] is used to obtain the most satisfactory solution. As

min D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i¼1

f i− f ibest
� �2

vuut ð16Þ

whereM is the number of the objectives, f i is the ith objective
function value, and fbest

i is the corresponding best value. The
geometrical meaning of the most satisfactory solution is
shown in Fig. 9.

As an example, the weight coefficient is set to 1 and 0.5;
the most satisfactory solution is obtained using multi-
objective robust optimization method and verified by FE sim-
ulations, and the results are listed in Table 10. It can be found
that the results obtained using multi-objective robust optimi-
zation method showed a good agreement with that obtained
from the FE simulations. The mean of protrusion height
corresponding to β=1 is higher. In other words, when set-
ting β=1, the maximum mean of the protrusion height of
the Pareto solutions can be obtained, while, when setting
β=0.5, a more robust mean of the protrusion height can be
obtained. Therefore, to obtain a robust solution, a smaller
weight coefficient is preferred. Besides, from Table 10, it
can be observed that when a larger protrusion height is
obtained, the maximum thinning ratio is also larger. It also
indicates that the protrusion height and the maximum thin-
ning ratio cannot be simultaneously optimized.

5 Conclusion

This study provides a multi-objective robust optimization
method based on dual RS model to obtain the robust Pareto
solutions for the T-shape THF process. To reduce computation
time, RBF is employed to construct the dual RS model, and
the accuracy of RBF is validated by five extra sampling points
due to the interpolation nature of the RBF. From the results
(Figs. 8 and 9), it can be found that the mean and the standard
deviation cannot be optimized simultaneously. Generally, a
more robust solution could sacrifice the mean performance

of the T-shape THF process. Therefore, the design engineers
should make a compromise between the mean and the stan-
dard deviation in practice. Finally, the ideal point method is
introduced to help design engineers choose a most satisfactory
solution from the Pareto solutions.

The direction of our future research is to consist in intro-
ducing other multi-objective robust optimization method,
such as multi-objective robust optimization method based on
interval analysis or convex model, to cope with limited infor-
mation. This will be done to compare the advantages and
disadvantages between the probability method and the non-
probability method in dealing with the uncertainties in the
THF process.
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