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Abstract Tool condition monitoring has found its importance
to meet the requirement of quality production in industries.
Machined surface is directly affected by the extent of tool
wear. Hence, by analyzing the machined surface, the informa-
tion about the cutting tool condition can be obtained. This
paper presents a novel technique for multi-classification of
tool wear states using a kernel-based support vector machine
(SVM) technique applied on the features extracted from the
gray-level co-occurrence matrix (GLCM) ofmachined surface
images. The tool conditions are classified into sharp, semi-
dull, and dull tool states by using Gaussian and polynomial
kernels. The proposed method is found to be cost-effective
and reliable for online tool wear classification.

Keywords Feature selection . Turning . GLCM . Surface
texture . Fisher discriminant analysis . Tool condition
monitoring . Support vector machines

1 Introduction

In machining operations, the condition of the cutting tool
plays a very important role on the quality of machined surface.
The quality of machined surface and the machine tool condi-
tion degrade with the wear of the cutting tool. One proposed
solution is the online monitoring of the tool condition so as to
monitor the tool wear level and hence replace the cutting tool
when it is worn beyond an acceptable limit. A number of
techniques have been proposed for tool wear monitoring with
the observation of different signals, viz., acoustic emission
(AE), cutting force, tool temperature, vibration signatures,
and machined surface roughness which are observable for
change due to variation of the degree of tool wear [1]. The
machined surface quality is directly dependent on various
types of tool wears, viz., flank wear, crater wear, nose wear,
fracture, and breakage. The cutting tool geometry is strongly
related with the quality of machined surface [2]. Hence, anal-
ysis of the image of machined surface could provide the in-
formation about the tool wear level. The main advantages of
this method over other methods of tool condition monitoring
are noninvasiveness, flexibility, and inexpensiveness [3].

The detection of progressive tool wear can be possible by
analyzing the machined surface images [2–10]. The texture of
the machined surface has been analyzed using column projec-
tion and run length statistical (RLS) techniques [2, 4]. Bradley
and Wong [5] did a performance comparison of gray-level
intensity histogram, frequency spectrum analysis, and image
segmentation techniques to detect progressive wear from end-
milled surface images. Kang et al. [6] studied the performance
of fractal analysis on end-milled surface images for progres-
sive detection of cutting tool flank wear. A speckle pat-
tern has been created on ground and milled surfaces, and
obtained speckle pattern images have been analyzed ac-
curately using autocorrelation technique. Finally, a
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comparison of the obtained features from image analysis
with measured surface roughness has been studied by
Dhanasekar et al. [7]. Recently, Dutta et al. [8] per-
formed gray-level co-occurrence matrix (GLCM) and
RLS-based texture analyses on end-milled surface images
taken through an optical microscope and found a high
correlation between tool flank wear and extracted texture
features. A Voronoi-tessellation-based texture analysis
technique was applied by Datta et al. [9] on turned sur-
face images to detect progressive wear. However, this
method can only be applied on binary images, and con-
sequently, the gray-level information was lost.

Various researchers have studied the first-order statistical
texture of machined surface images for correlating the ob-
tained features with surface roughness [10–14]. However,
the quantification of spatial relationship between gray-level
intensity values of image pixels is absent in first-order sta-
tistical analysis. Thus, there is a requirement to study the
second-order statistical texture analysis technique, viz., the
GLCM technique.

The co-occurrence information of gray-level intensities of im-
age pixels in a particular pixel pair spacing (s) and in a particular
direction (θ) has been accumulated in GLCM. Different features
to describe the co-occurrence can be extracted fromGLCM. The
gray-level intensities arewell distributed ormake a proper pattern
for smooth surfaces. Hence, most of the elements of GLCM lie
diagonally for surface images machined by sharp tool than that
by dull tool [15]. Thus, from that information, the machined
surfaces obtained using sharp and dull tools can be classified
with the GLCM technique. Ramana et al. [16] classify shaped,
milled, and ground surface images using the extracted features
from GLCM of machined surface images. Dutta et al. [17–19]
have detected the progressivewear of the cutting tool from turned
surface images using the GLCM technique. The proper selection
of pixel pair spacing and pixel pair direction parameters also
plays a very important role for obtaining accurate results of de-
tection which have been reported in [17], and an algorithm for
the method to detect the optimized pixel pair spacing parameter
has been developed by Dutta et al. [18].

There are also an increasing number of pieces of research
for classification of the tool conditions into two or three clas-
ses (i.e., sharp tool and dull tool or sharp tool, semi-dull tool,
and dull tool). Tool wear levels can be classified based on
observed trend of the feature levels obtained from different
types of signals measured from machining operation. A num-
ber of methods have been proposed for classification of tool
wear including neural network [20–23], fuzzy logic [24], and
pattern recognition [25]. Desirable results were achieved by
neural network (NN) to classify on the basis of acoustic emis-
sion and force signals in tool wear detection of a turning process
[20]. Tsai et al. [23] classified the surface roughness of shaped
and milled specimen by analyzing the Fourier power spectrum
of shaped and milled surface images using a NN tool. The

accuracy in this case depended on the sample data used for
training and testing. Kohonen’s self-organizing map is used to
project high-dimensional data into lower dimension by preserv-
ing the input relationships. Such feature map was used for tool
condition monitoring along with input feature scaling [26].
Among all the above-mentioned classification techniques, NN
is the most popular technique. However, back-propagation NN
(BPNN) algorithm converges very slowly and radial basis func-
tion NN (RBFNN) algorithm is less generalized algorithm due
to its empirical riskminimization principle. Thus, this method is
more error prone. Moreover, during machining, tool states fluc-
tuate often leading to data error. Such nonuniform data distri-
bution, during training or testing, adversely affects the NN
algorithm.

However, the support vector machine (SVM)-based classi-
fication technique has been gaining a high research interest
due to its good generalization capability for structural risk
minimization principle and also its computational efficiency
due to the capability for performingwith lesser number of data
as it considers only support vectors for classification. A
Bayesian support vector regression technique for tool wear
prediction has been applied to the selected features of force
signal, resulting from face milling operation by Dong et al.
[27]. Sun et al. [28] studied the performance of the SVM
approach using a soft margin technique to classify the fresh
and worn cutting tool states from the information of acoustic
emission signal obtained from the cylindrical turning opera-
tion. They have utilized an automatic relevance determination
(ARD) technique for feature selection. They also utilized a
function considering the manufacturing loss to evaluate the
misclassification rate in their tool condition monitoring
(TCM) system. Sun et al. [29] improved their tool state rec-
ognition technique by classifying the tool states into three
classes, viz., fresh, semi-worn, and worn states using a one-
versus-one approach in the SVM technique. With another
approach, Cho et al. [30] applied a support vector regres-
sion (SVR) technique for tool breakage detection using
cutting force and power signal in end milling operation.
They have studied that the success rate of the SVR tech-
nique was better than that of the multiple variable regres-
sion technique in their experiments. Bhattacharyya and
Sanadhya [31] predicted the cutting tool wear resulting from
face milling operation from force signal using an SVR tech-
nique with less than 5 % prediction error. In another work of
Sun et al. [32], features from AE signal resulting from turning
operation were selected by the ARD method coupled with the
SVM technique. They have utilized cutting speed, feed rate,
and depth of cut as input features. Using this approach, the
accuracy of classification of tool states has been improved to
85 %. Shi and Gindy [33] studied a good prediction perfor-
mance by applying a least squares (LS) SVM technique to
predict the wear of a broaching tool from the force signal
information. Salgado and Alonso [34] applied the LS-SVM
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technique for its better computational ability than standard
SVM for prediction of tool wear from the information of force
and current signals resulting from a turning operation. Study
of much better generalization capability of LS-SVM than that
of artificial NN (ANN) has been reflected in their work. Hsueh
and Yang [35] used a grid search technique for optimum se-
lection of penalty factor used in their SVM method for classi-
fying the damaged and undamaged tool states from force in-
formation resulting from a face milling operation. Chiu and
Guao [36] predicted the four states of a CBN grinding tool
using SVM on AE signal with 85 % accuracy. Karacal et al.
[37] proposed an approach for the classification of coated car-
bide tool condition using the SVM technique applied on the
smell signal resulting from chemical reaction during machin-
ing. Jiang [38] predicted surface roughness of milled speci-
mens using the LS-SVM technique with less than 8 % error.
Cho et al. [39] predicted and classified the condition of a mill-
ing cutter into five classes of wear, viz., fracture, breakage,
fresh, semi-worn, and worn states by combining the recogni-
tion results of multi-layer perceptron NN, RBFNN, and SVM
technique on the AE, force, and vibration signals with ensem-
ble accuracy of 97 %. The SVM technique outperformed
others, according to their study, with the highest accuracy of
95.9 %. Huang et al. [40] predicted the condition of the ball
nose end milling cutter by applying a different kernel-based
SVR technique on force signal and suggested that the polyno-
mial kernel was showing the best performance. Elangovan
et al. [41] compared the performance of decision tree, Naïve
Bayes, Bayes Net, ν-support vector classification (SVC), and
C-SVC for classifying the fresh tool, semi-worn tool, worn
tool, and broken tool using vibration signal resulting from a
turning operation. According to their study, C-SVC
outperformed other techniques for classification. Also, the
polynomial kernel of degree 2 used in the SVM technique
was proved to be computationally efficient and RBF kernel
was efficient in terms of classification accuracy, according
to their study. Brezak et al. [42] used a hybrid tool wear
estimation technique using analytic fuzzy classifier for
tool classification and an RBF-kernel-based SVM tech-
nique for wear estimation using feed force, feed current,
and AE signal resulting from end milling operation. Thus,
a dynamic feature selection process has been accom-
plished in their method. A performance comparison of k-
means clustering SVM, LS-SVM, spider SVM, and ANN
methods for prediction of surface roughness for turning
austenitic stainless steel material has been studied by
Çaydaş and Ekici [43]. Spider SVM was most successful
compared to ANN, as claimed by them.

However, the pieces of research associated with SVM
and TCM were done using either contact methods or one-
dimensional signal. Nowadays, there is a greater need for
noninvasive TCM for multi-classification of cutting tool
wear states. Research involving SVM on the features

extracted from the machined surface texture images has
not yet been performed. A method for multi-classification
of tool wear states using the kernel-based SVM technique
applied on the extracted features from GLCM of machined
surface images has been proposed in this work. In the pres-
ent scenario, there is a great demand for the application of
image processing in tool condition monitoring due to its
noninvasiveness, cost-effectiveness, and flexibility as com-
pared to any other techniques.

There are a number of applications of SVM for clas-
sification using GLCM features in the field of medical
science and remote sensing. In the field of medical sci-
ence, breast tumors were well segmented and classified
from the mammograms by incorporating SVM classifier
on GLCM features by Eddaoudi et al. [44]. Rode and
Patil [45] classified the brain MRI of a multiple sclero-
sis patient and that of a healthy person using SVM and
ANN classifier on the GLCM features extracted from
MRI images. Paneque-Gálvez et al. [46] studied that
the SVM technique outperformed other classification
methods, viz., parametric (ML), nonparametric (k-
nearest neighborhood), and hybrid classifier for the tex-
ture classification of different land cover images. They
have used homogeneity of GLCM as a feature. Pawade
et al. [47] classified different Brodatz textures using
different kernel-based SVM classifiers applied on the
feature data extracted from GLCM. They have found
that the radial basis function and exponential radial ba-
sis function kernels outperformed the other kernels, viz.,
second-degree polynomial, sigmoid, and odd-order B-
spline. Recent pieces of research show that SVM has
become popular in learning methods due to its excellent
generalization ability than any other traditional methods,
like ANN.

However, there are very few studies discussing the appli-
cations of SVM in TCM. No research is reported in the appli-
cation of SVM in online TCM by machined surface texture
analysis. In this paper, the condition of the cutting tool for
sharp, semi-dull, and dull states has been classified by the
kernel-based SVM technique using the GLCM features ex-
tracted from machined surface images.

Table 1 Experimental setup

Machine tool NH-26 lathe

Cutting tool insert SNMG 120408-QM

Camera Genie HM1024

Tele lens with polarizer Navitar zoom lens with macro-zoom,
focal length 18–108 mm

Image acquisition software SAPERA LT

Illumination system DC-regulated fiber-optic-guided
light (Navitar)
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2 Experimental setup

In this work, C-50 steel workpiece material has been turned
with uncoated carbide inserts in dry cutting condition. The
carbon and sulfur percentage of the material has been ana-
lyzed using a carbon-sulfur combustion analyzer (Horiba
EMIA 320 V). In this method of analysis, the chips obtained
from the cutting operation are heated through a high-
frequency induction furnace, and the filtered dust obtained
by heating the chip samples is passed through a dehydrator.
Finally, an infrared detector is detecting the carbon and sulfur
percentage from obtained CO, CO2, and SO2. The carbon and
sulfur percentage of the work material is 0.51 and 0.043 %,
respectively. After cutting full-length job (500-mm length),
the machined surfaces were imaged as 1024×768-pixel
gray-level digital images using an area scan monochrome
camera connected to a computer equipped with image acqui-
sition capability at five different positions on the machined
surface. The images of the machined surface were taken on
machine tool by illuminating the machined surface by a DC-
regulated fiber-optic-guided illuminator. The position of the
camera and the lighting source was made fixed with respect to
the workpiece surface. The corresponding average flank wear
(VBaverage) of the insert was also measured using an Olympus
microscope with ×10 magnification equipped with image ac-
quisition software, Olympus image analyzer. Simultaneously,
the average surface roughness (Ra) of turned surface was also
measured at the corresponding positions. Table 1 summarizes
the experimental setup of the turning operations applied to
C-50 steel workpiece and image acquisition hardware.
Table 2 summarizes the machining conditions. The experi-
mental setup is shown in Fig. 1. Each of the images was
cropped to 210×210-pixel image before processing. All im-
age processing were done in MATLAB® (version 7.8.0.347
R2009a) environment.

3 Methodology

In this work, the machined surface images have been
preprocessed using a contrast-limited adaptive histogram
equalization (CLAHE) technique for overcoming the effects
on images due to nonuniform illumination. And then, the
preprocessed images have been analyzed by using GLCM
technique. Fifteen features have been extracted from the
GLCM of each image and a Fisher discrimination technique
has been applied for feature selection. The selected features
have been used as the input to SVM for classification of tool
wear states as sharp (VBaverage<100 μm), semi-dull (100 μm
<VBaverage<300μm), and dull (VBaverage>300 μm) tool states
[48].

3.1 Pre-processing

The images of the machined surface were suffering from non-
uniform illumination due to a small change of lighting at the
time of image acquisition. Thus, a preprocessing step is required
to distribute the same level of illuminations in machined surface
images. So, to overcome this problem, the machined surface
images were preprocessed by adaptive histogram equalization
vis-à-vis enhancement of the contrast to bring out more details
using the CLAHE technique in this work. Histogram equaliza-
tion (HE) transformed a low-contrast image into a high-contrast
image [49]. Adaptive histogram equalization (AHE) technique
improves the HE technique by equalizing the histograms of
distinct sections of an image and by redistributing the gray-
level uniformly. However, there is a chance of over-
amplification of noises in AHE. CLAHE limits this over-
amplification of noise by limiting the contrast of an image
[50].The images of the turned surface before and after applying
the CLAHE are shown in Fig. 2a, b, respectively. The corre-
sponding histograms of Fig. 2a, b are also shown in Fig. 2c, d,
respectively. From the histogram of Fig. 2a, b, it can be inferred
that the pixel intensities are distributed uniformly in Fig. 2b
providing a clear contrast of the surface image, whereas in
Fig. 2a the pixel intensity is distributed more toward white.

3.2 Gray-level co-occurrence technique

Since, machined surface images are periodic texture images, a
statistical texture analysis using gray-level co-occurrence

Table 2 Machining conditions

Machining
conditions

Cutting speed
(m/min)

Feed rate
(mm/rev)

Depth of cut
(mm)

1 100 0.20 2

2 100 0.24 0.5

3 100 0.16 0.5

4 100 0.32 0.5
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Fig. 2 a Raw image, b
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image, c histogram of original
image, and d histogram of
preprocessed image



technique has been incorporated in this study. The GLCM tech-
nique has been proposed by Haralick et al. [51]. Each element
of the GLCM of an image is the number of co-occurrence of
corresponding pixel pair in a specified spacing (s) and a spec-
ified direction (θ). Formally, it can be shown in Eq. (1):

GLCM i; jð Þs;θ ¼ p1; p2ð Þfj jI p1ð Þ ¼ i; I p2ð Þ ¼ jgj ð1Þ

where (p1,p2)∈M×N and p2 is at the direction of θ at a spacing s
from p1. Here, p1 and p2 are representing the positions of two
image pixels. |.| represents the cardinality of a set. As the feed
marks of the turned surface images are lying vertically, the θ value
is taken in this work as 0°. The construction process of GLCM
from an original image fragment matrix is shown in Fig. 3a, b.

The co-occurrence of nine and seven gray-level intensity
values (Fig. 3a) is occurring for three times with spacing 1 and
direction 0°, which is shown with a circle in the GLCM of the
image fragment shown in Fig. 3b. This can also be stated as the
co-occurrence of 1 pixel in the x direction and 0 pixel in the y
direction. In this case, the selection of appropriate s for con-
structing the GLCM is important as the repetitive occurrence
of feed marks in turned surface images [18]. The appropriate
pixel pair spacing (s) values for different machining conditions
are calculated by using the technique applied by Dutta et al. [18]
and are given in Table 3.

After constructing the GLCM, 15 features, namely,
contrast(F1), energy(F2), correlation(F3), homogeneity(F4),
entropy(F5) , inverse diagonal moment (IDM)(F6) ,
dissimilarity(F7), mean(F8), variance(F9), maximum
probability(F10), diagonal moment(F11), second diagonal
moment(F12), coefficient of variation(F13), cluster
shade(F14) and cluster prominence(F15), have been extracted
[52, 53]. The normalized feature values for both raw and
preprocessed images of 15 features were extracted for all four
machining conditions. The feature values of machining con-
dition 1 for the preprocessed image are shown in Table 4.

3.3 Feature selection using Fisher discriminant ratio
analysis

The 15 parameters extracted by the GLCM technique pro-
vide a wide range of classification, but some features may

be too noisy resulting in poor classification. The presence
of large amount of data in every feature, using all the
features for classification, increases the computational time.
This is practically not feasible in real-time application for
online monitoring. Hence, it is necessary to select promi-
nent features which provide significant details of the image
and which are less affected by noise and other variations.
The extracted features were analyzed using Fisher’s dis-
criminant ratio (FDR) analysis. FDR is commonly
employed to quantify the discriminatory power of individ-
ual features between two equiprobable classes [54]. In other
words, it is independent of the type of class distribution.
The main reasons for selecting FDR analysis over other
methods are as follows:

& FDR provides an optimal representation in terms of max-
imizing the separation among several classes [55].

& FDR is simple and computationally fast.
& It focuses mainly on the statistical distribution of data

rather than other methods which focus on the variables
used in order to investigate the differences between groups
and create synthetic variables.

The dataset of every machining condition was divided into
two classes, the first half of the data was assigned as class 1
(sharp tool dominance), and the next half of the data was
assigned as class 2 (dull tool dominance). Let m1 and m2 be
the respective mean values and σ1

2 and σ2
2 the respective

variances associated with the values of a feature in two clas-
ses. The FDR is defined by Eq. (2) [54].

FDR ¼ m1−m2ð Þ2
σ1

2 þ σ2
2ð Þ ð2Þ

It can be observed from Eq. (2) that features having large
mean difference and small variance in each class get a
higher value. Thus, the higher the ratio of a feature, the
better it is for classification. FDR was calculated for each
feature extracted from both raw and preprocessed images for
all four machining conditions. The obtained FDR values for
raw and preprocessed images are given in Tables 5 and 6,
respectively. M1, M2, M3, and M4 refer to the machining

Table 3 Appropriate s
values corresponding to
the experiment numbers

Machining conditions
(as stated in Table 2)

Appropriate s
(in pixel)

1 10

2 16

3 10

4 19
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conditions 1, 2, 3, and 4 mentioned in Table 2, respectively.
For convenience, all the features are ranked in a descending
order. Investigating the results obtained by FDR analysis, it
was observed that only few features are stable in all the
machining conditions for both raw and preprocessed images.
Initially, those features, whose FDR values are greater than
one, are selected.

Analysis of features selected in raw data reveals that fea-
tures like contrast, IDM, CSH, and CPM show a highly
varied difference in the ratios and ranking of FDR analysis.
Contrast varies from 13.42 for M1 to 1.37 for M4, which is
a significantly large difference. IDM also varies from 8.29
for M4 to 1.21 for M1; CSH shows a variation from 12.0 for
M4 to 0.58 for M1. Similarly, CPM varies from 10 for M4
to 0.44 for M1. Cor, energy, Coeff, and Var are the lowest
ranked feature in most of the cases (M1, M3, and M4).
Entropy does not show such a high difference in the FDR
values but is tending to one in most of the cases (M1, M3,
and M4). Also, for all the four machining conditions, MPR
shows high ratio for M2, M3, and M4 but less than 1 for
M1. This analysis reveals that the features like CSH and
CPM are sensitive to external noise and vary with the ex-
perimental conditions. Thus, the features which are relatively
stable in all the four machining conditions are DiagM,
SDiagM, Dis, Homog, and Mean. DiagM, SDiagM, and
Dis did not show significant difference in the FDR ratio.
DiagM varies from maximum of 7.8 for M2 to minimum
of 6.07 for M1. SDiagm varies from 8.1 for M1 to minimum
of 6.4 for M2. Dis varies from 7.2 for M3 to 4.9 for M4.
Homog shows a variation from 8.2 to 5.8. Mean shows a
variation from 6.9 for M3 to 1.5 for M1, which was signif-
icant but tending to 1. Hence, Mean is the least considerable
feature out of selected five features.

The FDR analysis of preprocessed image shows that CSH
and CPM are the top ranked features in M3, M1, and M4.
DiagM and SDiagM do not showmuch variation in FDR ratio.
DiagM is also a predominant feature for all four machining
conditions as compared to CSH. Also, FDR of DIS varies
from maximum of 6.9 for M3 to minimum of 4.9 for M4.
Similarly, Mpr and Homogeneity do not show a much varia-
tion in FDR values. Again, Mean is the least feature to be
considered out of the other features. Var, Coeff, and energy
are the least ranked features in most of the cases. Entropy
shows a high variation from 5.2 for M2 to 0.8 for M3. Also,
Contrast varies from 5.5 for M1 to 1.1 for M4. Hence, CSH,
CPM, Diagm, SDiagm, DIS,MPR, Homog, andMean are the
acceptable features in this case.

From Table 6, it can be observed that the acceptabil-
ity of the number of features in the case of preprocessed
images has increased as compared to the case of raw
images. This is acceptable as the quality of the image is
increased due to preprocessing. Within the common fea-
tures selected in FDR analysis of raw image, CSH,T
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CPM, and Mpr were also prominent. This analysis
shows that these three features are sensitive to illumina-
tions as they became predominant only after preprocess-
ing since features like CSH depend on the asymmetry of
pixel intensity distribution which varies widely with the
illumination.

The four main features used for classification are di-
agonal moment, second diagonal moment, dissimilarity,
and homogeneity. These features are common among

raw and preprocessed images and are considered as
the significant features for classification. Since, mean
had an FDR closer to 1 in some cases, it is not con-
sidered for classification. These features are stable in
both the cases, which implies that they are least affected
by noise. Thus, the number of features is reduced from
15 to 4. This saves a lot of computational time and at
the same time increases the classification efficiency by
removing the noisy features.

Table 5 FDR analysis of raw images

Machining condition 1 (M1) Machining condition 2 (M2) Machining condition 3 (M3) Machining condition 4 (M4)

Features FDR Features FDR Features FDR Features FDR

Contrast 13.4209 Contrast 8.8825 Me 9.8037 Me 13.9244

SDiagM 8.1186 Me 8.7982 CPM 8.9869 CSH 12.0523

DIS 7.295 Diagm 7.8404 Diagm 6.4306 Mpr 10.6968

Me 6.194 SDiagM 7.6859 SDiagM 6.4089 CPM 10.0658

Diagm 6.0755 Homog 6.775 Homog 5.9391 IDM 8.2948

Homog 5.8437 IDM 5.6137 IDM 5.884 Homog 8.2886

Entropy 1.9606 Mpr 5.6051 Mpr 5.8561 SDiagM 6.6325

Coeff 1.5971 Energy 4.988 DIS 5.8359 Diagm 6.3002

IDM 1.2193 Entropy 4.6659 CSH 5.8359 Energy 4.7665

Var 0.8621 DIS 4.6659 Contrast 3.7643 DIS 4.5555

CSH 0.582 CSH 3.7446 Coeff 3.252 Coeff 3.0639

CPM 0.4454 CPM 2.8609 Energy 3.1086 Var 2.1959

Cor 0.4002 Cor 1.8373 Cor 2.9353 Entropy 1.8564

Energy 0.159 Coeff 1.3514 Entropy 1.2865 Cor 1.3742

Mpr 0.0378 Var 0.5088 Var 0.5398 Contrast 1.3742

Table 6 FDR analysis of preprocessed image

Machining condition 1 (M1) Machining condition 2 (M2) Machining condition 3 (M3) Machining condition 4 (M4)

Features FDR Features FDR Features FDR Features FDR

CSH 11.1386 Diagm 7.9556 CPM 14.466 CSH 14.67

CPM 8.241 CSH 7.503 CSH 13.6841 CPM 12.343

SDiagM 7.3651 SDiagM 7.4126 DIS 6.983 Homog 7.839

Diagm 5.5669 Homog 5.6981 SDiagM 6.5985 Diagm 7.7944

Cor 5.5134 Mpr 5.6415 Diagm 6.5941 IDM 7.6882

DIS 5.0407 IDM 5.6227 Homog 6.2995 Var 7.5669

Mpr 4.8345 DIS 5.4793 IDM 6.2598 Mpr 6.4861

Homog 4.4268 Entropy 5.2293 Mpr 6.242 SDiagM 4.9517

Me 1.5098 CPM 4.9979 Me 6.1892 DIS 4.9517

IDM 1.3211 Energy 4.9739 Contrast 5.644 Entropy 4.9514

Entropy 1.243 Contrast 3.8457 Coeff 3.6971 Me 4.2552

Contrast 0.7652 Me 2.9552 Energy 3.5219 Coeff 3.7844

Var 0.3963 Cor 2.6093 Cor 3.199 Energy 3.4507

Energy 0.1485 Coeff 0.9366 Var 1.2216 Cor 1.1925

Coeff 0.097 Var 0.5567 Entropy 0.8659 Contrastn 0.7091
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3.4 Support vector machine

SVM discriminates the data points into two classes. Each
data point belongs to one of the two classes separated by
a linear classifier with a hyperplane [56]. Figure 4a shows
different linear classifiers for separating the data points
into two classes. It is necessary to choose the hyperplane
with maximum margin between two classes for best clas-
sification. SVM picks the hyperplane with maximum mar-
gin to correctly classify the testing data points. This max-
imum margin hyperplane is determined by a subset of
data points called support vectors.

Figure 4b shows the maximum margin hyperplane based
on support vectors (encircled data points). Hence, only a few
data points (support vectors) are required to determine the
hyperplane, thereby making it computationally efficient. A
brief discussion on SVM is provided.

For a dataset:

D ¼ xi; yið Þf g i ¼ 1; 2; 3…l½ � where yi Є −1;þ1f g

The hyperplane f (x)=0 that separates the data is given by

f xð Þ ¼ wTxþ b ¼
XM
j¼1

wix j þ b ¼ 0 ð3Þ

where w is theM dimension vector and b is the scalar used to
define the position of separating hyperplane.

Thus, the width of the margin is 2
wj j, maximizing 2

wj j, which

implies minimizing 1
2 wk kj2.

Taking into account the noise with slack variables, ξi
(Fig. 4c) and the penalty for error, C, the best hyperplane
can be obtained using quadratic optimization by minimizing

1

2
w2 þ C

XM
i¼1

ξi ð4Þ

subjected to yi wTxþ b
� �

≥ 1 − ξi
� �� �

i ¼ 1; 2…:Mð Þξi≥ 0

where ξi is the distance between the margin and the data
points, xi, that lie on the wrong side of the margin. Simplifying
the above solution using Lagrangian dual problem, the deci-
sion function is

f xð Þ ¼ sign
XM
i; j¼1

αiyixix j þ b

 !
ð5Þ

where αi is the Lagrangian multiplier.
A nonlinear classification can be carried out by map-

ping function Φ (xi) to map the input space into a
higher dimensional space, so that the nonlinear hyper-
plane becomes linear. Hence, kernel trick K(xi,xj) is
employed to calculate the equivalent kernel value in
the input space (Fig. 4d).
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Fig. 4 a Linear classifier for two
classes, b hyperplane based on
support vectors, c classification
with error variables, and d
nonlinear kernel transformation



K xi; x j
� � ¼ Ф xið ÞTФ x j

� � ð6Þ

Gaussian and polynomial kernels were used in this work.
Their functions are given by

& polynomial: K(xi,xj)=(1+ xi
Txj)

p, p is the degree of
polynomial

& Gaussian: K xi; x j
� � ¼ exp − xi−x jj jj j2

2σ2

� �

To classify the data into three sets of classes, a one
versus one approach with a Max-Win voting strategy is
employed here. This approach constructs one binary
classifier for every pair of distinct classes. Hence, for

K number of classes, K K−1ð Þ
2 binary classifiers are con-

structed where each one is trained on data from two
classes. Since this approach is more suitable for

practical application and is computationally fast, we
have employed this approach in our multi-classification
for training data from ith and jth classes according to
binary classification problem.

Acco rd ing to the Max-Win s t r a t egy, i f s ign
sign((w)TФ(xi)+b) says that X is present in the ith class, then
the vote for the ith class is added by one. Else, the jth class is
increased by one. Thus, X is predicted in the class having the
largest vote.

4 Results and discussion

The four features selected among all other features for
classification of tool into sharp, semi-dull, and dull tool
classes are diagonal moment, second diagonal moment,
dissimilarity, and homogeneity. The variations of these
features with time are shown in Fig. 5a, b, c, d). It can
be observed that three features, namely, diagonal

Int J Adv Manuf Technol (2016) 83:1487–1502 1497

Fig. 5 a Variation of DiagM with time, b variation of SDiagM with time, c variation of Dis with time, and d variation of homo with time



moment, second diagonal moment, and dissimilarity in-
crease with machining time, whereas homogeneity de-
creases with machining time.

The four features considered for tool wear classifica-
tion would give an idea of tool state. The feature data
of the preprocessed image are used for classification
purpose as it is devoid of noise. Figure 6a, b, c, d)
shows feature state plots for all machining conditions.

Investigating the above feature state plots for all four
machining conditions, it can be observed that a certain
amount of noise or wrong classification data is present.
Classification data 9 in M1 showed wrong feature state
of two. Similarly, it is there in between 25 and 30 and
also at 35. This implies that all the four features had all
the noisy sets at this particular data. Moreover, it can be
inferred that the wrong classification goes either just
one state above or just one state below and has never
made a two-state jump which implies that the noisy data
that belong to state one may show a wrong class of two

but not three. This is because of the contribution from
all the four feature sets. It is not probable that all four
features would be noisy at the same time. Similarly,
data at three may have a wrong class of two but not
one. These noisy features are removed by the optimiza-
tion of SVM. Two different SVM classifications were
performed with four features for all machining condi-
tions. The first classification was between GLCM fea-
tures diagonal moment and dissimilarity; the second was
between second diagonal moment and homogeneity. The
SVM was trained using all the training data up to dull
tool wear condition. The testing data consisted of two
different time intervals T=21 min and T=30 min. At
every time interval, five values of all features are avail-
able, out of which two are used for training and three
are used for testing, and care has been taken to avoid
the merging of training and testing data. The mean of
all three test values is taken as test data to be classified.
This eliminated any noisy data out of the three test data
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Fig. 6 a Feature state plot for M1, b feature state plot for M2, c feature state plot for M3, and d feature state plot for M4



as the mean would always be close to the actual value,
thus minimizing the chance of misclassification. The
classification is carried out using two different sets of

kernels, Gaussian and polynomial kernels (with 7, 8,
and 9 degrees of polynomials). For multi-classification,
a one versus one method is used. Table 7 shows the

Table 7 Classification efficiency for Gaussian and polynomial kernel

Machining condition Gaussian kernel (% classification efficiency) Polynomial kernel (% classification efficiency)

Diagm versus Dis SDiagm versus Homo Diagm versus Dis SDiagm versus Homo

M1 training 86 86 99 99

Testing 80 80 96 96

M2 training 82 82 98 98

Testing 80 80 95 95

M3 training 77 77 96 96

Testing 74.5 74.5 94 94

M4 training 84 84 99 99

Testing 82 82 97 97
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Fig. 7 a Diagm versus Dis for Gaussian kernel at T=21 min for M1, b SDiagm versus Homo for Gaussian kernel at T=21 min for M1, c Diagm versus
Dis for polynomial kernel at T=21 min for M1, and d SDiagm versus Homo for polynomial kernel at T=21 min for M1



results of classification efficiency for Gaussian and
polynomial kernels. Training and testing data are classi-
fied by both kernels for all four machining conditions.

From Table 7 it is found that polynomial kernel
shows better consistency than the Gaussian kernel,
which implies that the GLCM features of tool wear
response follow a polynomial behavior than Gaussian.
Classification results for Gaussian and polynomial ker-
nels for machining condition M1 at T=21 min are
shown in Fig. 7a, b, c, d. Figure 8a, b, c, d shows
the results of classification of Gaussian and polynomial
kernels for machining condition M2 at T=30 min.

In the above images, the area where the triangle
markers (“▼”) belong is the sharp tool condition, the
area of square markers (“■”) represents semi-dull con-
dition, and the star marker points (“*”) represent the
dull tool condition data. The diamond marker (“♦”) in-
dicates the unknown data point at T=21 min/T=30 min,
respectively.

5 Conclusion

Condition monitoring of uncoated carbide tool for turn-
ing of a medium carbon steel workpiece has been per-
formed by processing the machined surface images
using the GLCM technique. Fifteen features have been
extracted from the GLCM of machine surface images.
FDR analysis has been performed for feature selection.
Observation of the results concludes that among all 15
features, diagonal moment, second diagonal moment,
dissimilarity, and homogeneity are selected features to
describe the tool condition. Then, the SVM classifica-
tion technique using Gaussian and polynomial kernels
has been utilized to classify sharp, semi-dull, and dull
tool. Polynomial kernel (degree 7, 7, or 9) can be cho-
sen for its higher efficiency. The method for tool con-
dition monitoring applied in the study is a noninvasive
and flexible technique which may be used for online
tool condition monitoring purpose.
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Fig. 8 a Diagm versus Dis for Gaussian kernel at T=30 min for M2, b SDiagm versus Homo for Gaussian kernel at T=30 min for M2, c Diagm versus
Dis for polynomial kernel at T=30 min for M2, and d SDiagm versus Homo for polynomial kernel at T=30 min for M2
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