
ORIGINAL ARTICLE

A novel model-driven approach to support development cycle
of robotic systems

Elisabet Estévez1 & Alejandro Sánchez-García1 & Javier Gámez-García1 &

Juan Gómez-Ortega1 & Silvia Satorres-Martínez1

Received: 30 December 2014 /Accepted: 5 June 2015 /Published online: 23 June 2015
Springer-Verlag London 2015

Abstract Currently, industrial robots are decisive in modern
production facilities, and in a near future, robots will also
become essential in daily life. In fact, the main aim of robotic
manipulator relies on the integration of robots into people’s
daily. To this purpose, there are a great number of physical
devices, such as sensors, actuators, auxiliary elements, tools
etc. which can be incorporated into a robot. Although integra-
tion, reuse, flexibility and adaptability are crucial characteris-
tics demanded by current robotic applications, there is a lack
of standardization in terms of hardware and software plat-
forms, providing incompatible task-specific and non-
reusable solutions. Consequently, there is a need for a new
engineering methodology to design, implement and execute
software systems. This work explores the advantages that
model-driven engineering provides for the development of
applications for robotic manipulators’ platforms. Specifically,
a modelling approach is developed to generate the target code
automatically. To validate the proposal, a tool that allows the
final code to be generated for most spread communication
middlewares in the robotics field is also presented.

Keywords Robotic armmanipulators . Model-driven
engineering . ROS—robotic operating system .

OROCOS—open robot control software

1 Introduction

In the never-ending effort of humanity to simplify their exis-
tence, the introduction of intelligent resources was inevitably
going to come up. One characteristic of these intelligent sys-
tems is their ability to adapt themselves to the variations in the
outside environment as well as to the internal changes occur-
ring within the system. In other words, these systems can be
considered dynamical systems. In this sense, robotics disci-
pline is closely related to the construction of such intelligent
systems because it has as its aim the construction of robots that
can work in an automatic way performing even difficult tasks
for humans. Robotics discipline is decisive in modern produc-
tion facilities and, in the near future, in daily life tasks. There
are many different kinds of robots available, each one created
for different tasks and behaviours, and to work on different
platforms. Robots can be built for entertainment, knowledge,
competitions, household chores, industrial uses etc. This work
is focused on robotic manipulator-based applications where
every robotic platform, besides the robot, also requires a set
of sensors to take information from the environment together
with controllers. [1, 2] are two application examples with very
different hardware and software solutions, required when a
manipulator arm has to interact with its environment. Authors
in [3] present a platform, based on contactless technology,
where a flexible robotic manipulator identifies and
characterizes different work pieces travelling on a conveyor.
In [4], a complete concept and design of a novel friction stir
welding robotic platform for welding polymeric materials is
presented. [5] defines a reconfigurable robot multi-axis ma-
chining system for machining complex ports of light materials
with lower tolerances, with freeform surfaces.

Regardless of the task, every robotic arm application needs
to get information, through sensors, from the varying and
unknown environment; later on, this information is used by

* Elisabet Estévez
eestevez@ujaen.es

1 Departamento de Ingeniería de Electrónica Automática, Universidad
de Jaén, Jaén, Spain

Int J Adv Manuf Technol (2016) 82:737–751
DOI 10.1007/s00170-015-7396-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-015-7396-4&domain=pdf

controller(s) or algorithm(s), which also include data about the
robot state (position, velocity, acceleration, torque …).

Although many elements, such as sensors, actuators,
auxiliary elements (e.g. processing algorithms), tools
etc., need to be added to a robot to make it more
flexible and adaptable, their integration and collabora-
tion is not easy to manage. Normally, the software de-
velopment methodology followed lacks crucial charac-
teristics such as reusability, i.e. the ease with which a
system can be modified to be used in applications or
environments that are different from those which it was
originally designed for. This is much related to flexibil-
ity, adaptability and standardization in terms of hard-
ware and software platforms [6]. According to this,
new robotic software infrastructures should allow devel-
opers to face up to the complexity which is imposed by
different issues such as hardware, software, real time
and distributed computing environments. Currently, two
major problems can be found. The first one is due to
the ad hoc solutions and closed products provided by
manufacturers. The second relies on the lack of stan-
dardization in terms of hardware and software platforms
to achieve the features demanded by applications. For
the latter, the fashion using of ICT Information and
Communication Technologies of Software Engineering
is starting to be adopted in the robotics field. In fact,
as in other fields, a strong movement toward software
engineering principles is also taking place in robotics
[7, 8]. For example, authors in [9] propose the use of
event-driven function blocks for robotics assembly tasks
in real time in order to improve the adaptability and
flexibility of robotic assembly systems. The use of the
component-based software engineering (CBSE) is not
new in the robotics field [10, 11]. The CBSE discipline
is used in order to tackle the complexity due to the
variability of hardware devices and software compo-
nents in robot-based applications. As is well known in
the software engineering community, the CBSE offers
mechanisms for increasing the abstraction level, so ap-
plications can be developed as a set of independent
modules which interchange information with each other
by their interfaces. [12–15] are examples of work which
present CBSE-based approaches offering a high rate of
reusability. The degree of reusability could be high once
the communication middleware is selected, i.e. the code
encapsulated in such components is middleware depen-
dent. Thus, CBSE-based approaches offer little flexibility for
assuring reusability even regardless of the communication
middleware.

The model-driven paradigm increases the abstraction layer,
allowing the description of applications completely regardless
of the software platform [16]. The key concept of this para-
digm is the model, where the main concepts of the systems are

detailed. Models are used in all phases of the system develop-
ment cycle, until the generation of the target code [17, 18].
Thus, models detail the information of an application from a
specific domain point of view but they also act as input and
output of every phase for the development cycle of the system
[19].

The use of such techniques is also being introduced in
robotics [14]. For example, [20] gives a demonstration for
the application of verification by model checking to substan-
tial control intensive application developed in a commercially
supported and widely used object-oriented (OO) development
process. [21] proposes a modelling language to formally mod-
el the solution space and to specify the quality attributes dur-
ing design time. Hence, this is a complementary approach that
helps in early analysis of quality attributes, to identify varia-
tions and act as a bridge between problem and implementation
space. [22] proposes two model-based programming tool that
generates a target source code for Robotino®mobile platform.
This tool allows users to define the functionality of the task
(application logic model) and the required hardware resources
for the specific platform of Robotino. Authors in [23] present
V3CMM—3 View Component Meta-Model in order to gener-
ate ADA skeleton code to control a Cartesian robot. More
recently, [24, 25] detail SmartSoft MDSD—model-driven
software development—toolchain for modelling robotic ap-
plications with SmartSoft component concept [26, 27]. The
generated target code runs specifically over CORBA
middleware [28], so this target code cannot run over any other
communication middleware.

Additionally, [29, 30] describe the main goal of BRICS—
best practice in a robotics—European project that consists of
structuring and formalizing the robot development process.
BRIDE (BRICS Integrated Development Environment) al-
lows defining the robotics applications to be defined using
OROCOS (open robot control software) components [31] or
ROS (robot operating system) nodes [32]. This is a very in-
teresting modelling approach but in this case also valid only
for ROS and OROCOS.

In order to achieve total reusability, this work goes one step
further. It is inspired by model-driven architecture (MDA)
standard [33], so firstly, the functionality of the application
is defined, i.e. a platform-independent model (PIM) that con-
tains what the system has to do independently of how and
where it will be running; afterwards, the hardware and soft-
ware platform features are fixed in the platform-specific mod-
el (PSM); finally, the target code could be automatically gen-
erated. Hence, the same functionality of a robotic application
can be executed in different platforms. The model-driven en-
gineering (MDE) discipline offers model to model (M2M)
transformation techniques as very powerful mechanisms for
generating the target PSM from the PIM. Hence, different
PSMs can be generated from a unique PIM. Furthermore,
model to text transformation techniques allow generating the

738 Int J Adv Manuf Technol (2016) 82:737–751

skeleton code to be generated automatically. In consequence,
the use of those mechanisms, offered by MDE, guarantees the
achievement of complete reusability, so the support of appli-
cation’s variability and interoperability is assured.

Moreover, the proposed approach, which is based on those
mechanisms, makes use of the UML (UnifiedModelling Lan-
guage) [34] standard notation to describe the system’s func-
tionality as well as its platform. [35, 36] propose a UML-
based robotics architecture for LEGO and Claw Car Robots
respectively. [37] uses UML notation for specifying the re-
quirements, documenting the structure and defining the rela-
tionships between objects especially in service robot systems.
This work extends to a previously mentioned work because
the information is also available in XMI (XML Metadata In-
terchange) [38] standard format model which acts as input
model to M2M and model to text (M2T) transformation tech-
niques, applied in order to generate the final source code.

In consequence, the main contributions of this paper are the
following: (1) a UML-based modelling approach for design-
ing robotic arm applications. This modelling provides support
to the design phase of the development cycle of such applica-
tions. The result of the design phase is a XMI model with
functionality and hardware/software (HW/SW) information.
(2) Identification and development of M2T transformation
rules to generate target source code. TheM2T transformations
allow the same functionality to be run over the most wide-
spread communication middlewares in the robotics communi-
ty. Thus, a complete development support for the robotic sys-
tem is achieved.

The remainder of this work is as follows: Section 2
describes a UML-based methodology for modelling robotic
arm applications. Section 3 presents the main features of most
widespread communication middleware in the robotics field.
This section concludes with the main rules for achieving the
automatic code generation. The proposed modelling approach
has been tested in Section 4 with two very different case stud-
ies, one for an industrial robot and the other for service robot.
Finally, Section 5 introduces the conclusions of this work.

2 Framework for modelling robotic arm applications

The general scenario of the proposed framework to provide
support of the development cycle for robotic arm industrial
production applications is illustrated in Fig. 1.

The first phase relies on the specification of functional and
non-functional requirements. The analysis phase (Fig. 1) is
responsible for selecting the application control strategies.
The codification of the devicemanagement in an isolated form
(i.e. without taking into account the logic/behaviour of appli-
cations) and software algorithmsmust also be done during this
phase. The latter are stored in a database.

Previous work of the authors analyses the main compo-
nents involved in every robotic arm application (e.g. sensors
for getting information from an unknown environment, ma-
nipulators and algorithms such as trajectory planners). A com-
mon interface tomanage each kind of component is detailed in
[39]. These interfaces provide designers with an abstraction of
manufacturer driver knowledge; thus, they give designers
common methods for managing the element in an application.
Figure 2 shows the common interface for image sensors
(cameras), where manufacturer-specific information is
highlighted in purple and common methods are highlighted
in green.

As mentioned above, the UML standard modelling lan-
guage has been used during the design phase. Because on
modelling proposed approach follows MDA guidelines, first-
ly, the behaviour of the application is defined (PIM), and sec-
ondly, the implementation of this behaviour, in terms of soft-
ware and hardware platforms, are detailed. Hence, the model-
ling approach consists of two main steps: (1) the definition of
the application functionality and (2) the characterization of the
platform where it will be deployed and is going to be running.

The following sub-sections detail the steps to follow in
order to provide support to the design phase in the proposed
framework (see Fig. 1).

2.1 Import of required atomic code interfaces to UML

This sub-section is required in order to supply the interfaces of
every atomic code, stored in a repository, to a UMLmodelling
tool. To do this, XMI standard notation has been used [40].
Object Management Group presented XMI standard to give
inter-changeability amongUML tools. Thus, XMI files collect
information about all UML elements as well as printing infor-
mation of diagrams in a markup language (ML) notation. In
consequence, the authors have selected this format to import

Management of
Pla�orm devices and

control algorithms

Applica�on modelling

Data
base

XMI

Middleware

…

TargetCode
Automa�c
Generator

…

…
Target

code

deployed to

2 Analysis Phase 3 Design Phase 4 Code Genera�on

2

3

4

(UML)

Fig. 1 General scenario of the model-based proposed framework

Int J Adv Manuf Technol (2016) 82:737–751 739

templates into the UML project before the start of the design of
a robotic arm application. In particular Altova Umodel UML
2.x compliant tools have been used. As UML is based on an
object-oriented (OO) paradigm, the meaning of UML class is
the same as any high level OO programming language (e.g.
C++, java). Table 1 illustrates how the main concepts of the
OO paradigm are expressed in XMI. The proposed approach
gets the information, is stored in a database and generates the
required XMI file to be imported by the UML modelling tool.

The structure of the generated XMI is the following: each
UML lexicon is expressed in XMI as packagedElement. The
xmi:type attribute’s value gives the semantics to the XMI

concept. For instance, class is a packagedElement with
xmi:type="uml:Class". Additionally, identifier (xmi:id), name
and isAbstract attributes characterize the class. The OO prop-
erties are expressed as ownedAttribute. Every property is
characterized by its name, identifier and visibility (public,
protected or private). OO operations are expressed as
ownedOperations. The inheritance is expressed with a gener-
alization element. The general attribute collects the identifier
of class the information is inherited from.

Figure 3a illustrates the XMI file highlighting the features
of Guppy F-080C code interface. Figure 3b shows the same
information once the XMI file is imported to UML tool.

Fig. 2 Interfaces of Guppy
F-080C and Prosilica GX1050

Table 1 Mapping between OO and XMI markup language notation

OO UML notation XMI notation

Class <packagedElement xmi:type="uml:Class" xmi:id="id"

name="ClassName" isAbstract="true"> </packagedElement>

Property <ownedAttribute xmi:type="uml:Property" xmi:id="id"

name="PropertyName" visibility="public| protected| private"/>

Operation <ownedOperation xmi:type="uml:Operation" xmi:id="id"

name="MethodName" visibility="public | protected | private"/>

Parameter <ownedParameter xmi:type="uml:Parameter" xmi:id="id"

name="paramName"/>

Inheritance <generalization xmi:type="uml:Generalization" xmi:id="id"

general="id_Class1"/>

740 Int J Adv Manuf Technol (2016) 82:737–751

2.2 Definition of application behaviour

This section defines the PIM for robotic arm applica-
tions. This behaviour has been specified with a UML
2.x component diagram. Each UML component, at the
end of the design phase, will represent software compo-
nent(s). Actually, the encapsulated code is expressed
with a UML class, imported from the database (e.g.
Fig. 3b). The ComponentRealization UML concept is
used for indicating the code that a UML component
encapsulates.

The communication (data flow) among components is
achieved with UML port and interface concepts. The former
provides the external accessibility point, and the latter indi-
cates the accessible information as well as the accessibility
permission (read, read-write). The accessibility of information
is achieved with UML InterfaceRealization. The write-only
external access permission is attained with UML usage con-
cept. A UML port uses a UML interface to update the
property’s value. Table 2 summarizes the UML elements that
comprise the modelling of the functionality of robotic arm
applications.

Fig. 3 Guppy F0808-C management interface in XMI (a) and UML (b) formats

Table 2 UML elements for modelling application logic

Provided

(InterfaceRealization)

UML concept Graphical Role in robotic arm application

notation modelling

Component Robotic application component

Port Provide external accessibility to protected properties

Interface

Read- only external access

Required

(Usage)
Write-only external access

Int J Adv Manuf Technol (2016) 82:737–751 741

2.3 Platform-specific feature modelling

This section details the main UML elements used for the defini-
tion of the hardware platform where the selection of the commu-
nication middleware is also included. A communication
middleware (MW) is responsible for guaranteeing communica-
tion among software components and applications independently
of where they are deployed. Thus, MW could be considered a
layer that lies between application code and runtime
infrastructure.

Table 3 illustrates the UML elements that comprise the
modelling of the deployment platform. The UML deployment
diagram is formed by as many UML device elements as de-
vices in the real platform. Additionally, at least one node,
where to deploy the software application, is required. The
communication protocols between devices and nodes are
expressed with CommunicationPath UML elements. The
artefactUML element is used to indicate the necessity of other
codes or libraries in a node; so in this work, the user (modeller)
should indicate information about the repository’s path that
collects atomic source code (see Fig. 1). Finally, the
ExecutionEnvironmentUML element is used to provide infor-
mation about the communication middleware.

3 Automatic generation of target code for robotic
arm applications

This section is centred on the code generation phase. MDE
recommendations have been followed which rely on the mod-
el and model transformation concepts in order to automate the
software development process. MDE defines two kinds of
transformations: model to model (M2M) and model to text
(M2T), and both have a model as input. In this case, the input

model to the transformer is an XMI file obtained as a result of
the design phase. Eventually, the generated target code should
be compiled and deployed into the corresponding platform.
Therefore, the definition of M2T transformation rules implies
having knowledge about the structure of XMI model as well
as about the particularities of selected MW.

The following sub-sections detail the main characteristics
of the XMI model and main features of the most widespread
communication middlewares in the robotics field. Finally, this
section concludes identifying the transformation rules which
are implemented by the proposed approach.

3.1 Structure of the input model

The input model, from which the code generator gets infor-
mation to automatically generate the target code, is obtained
exporting the resulting UMLmodel to XMI standard notation.

Table 4 summarizes how the elements used for
modelling the functionality and hardware platform of
the application are expressed in the ML according to
XMI meta-model.

Every application is formed by a set of interconnected com-
ponents which provide logic to the application. The encapsu-
lated code is indicated in realizingClassifier attribute of the
realization element. Those components are interconnected
via provided and required interfaces related with their output
and input ports, respectively. Port components are detailed in
XMI file as ownedAttributes. In order to know if a port is an
input or an output data port, the usage UML element is
checked.

Regarding platform-specific information, hardware
platform is defined by a set of UML nodes and devices.
The communication protocol between those elements
implies the use of communicationPath UML element.

Table 3 UML elements for modelling platform-specific model

UML concept
Graphical

notation
Role in robotic arm application modelling

Device Device of robotic arm platform

Node Node (e.g. PC) of robotic arm platform

Communica-

tionPath
Communication protocol between nodes, devices and

node-device(s)

Artefact Library with device's isolated management code

Execution

environment
Communication middleware

742 Int J Adv Manuf Technol (2016) 82:737–751

Finally, artefact and execution environment UML ele-
ments are used for detailing required libraries and se-
lected MW, respectively.

3.2 Main features of selected communication middleware

The M2T generator module also needs knowledge about
the target code structure and requirements. Section 2.1
of [41] summarizes the main characteristics of the most
widespread robotics-specific communication middleware
platforms:

& OROCOS general purpose modular framework for
robot and machine control [31]. This framework pro-
vides a set of libraries from which the real-time
toolkit (RTT) is the main one, providing the
infrastructure and functionality to build component-
based real-time (RT) applications.

& OpenRTM [42] is an open-source implementation of the
RT middleware specification and it is developed by AIST,
Japan. It provides three main specifications from which
the RT component framework is the principal that offers
a set of classes, which can be used to develop stand-alone
software components.

& Player is a software package developed at the University
of Southern California [43]. It can be viewed as an appli-
cation server interfacing with robot hardware devices and
user-developed client programmes.

& ROS [32] is a set of open-source software libraries and
tools that help to build robot applications. This began at
Stanford University and Willow Garage in 2007, which
has become one of the de facto standards of robotics plat-
forms. ROS-INDUSTRIAL [44] is based on ROS but
specifically for industrial robotics platforms.

The first three examples are component-based platforms.
Table 5 summarizes these concepts in terms of the interface of
components as well as their timing information. Every one
offers an interface for achieving synchronous and asynchro-
nous operations. Furthermore, OROCOS and OpenRTM offer
DataPorts in order to provide feasibility to data interchanging
while player offers DataInterfaces. Finally, those features
modifiable in runtime are defined as properties in OROCOS,
configuration interface in OpenRTM and service port in play-
er platform.

Although ROS is not a component-based platform, it is
also formed by modular programming units which are called
nodes. In order to give external accessibility, the topic concept

Table 4 XMI notation to be processed by code generator

Application functionality (PIM) Platform specific (PSM)

Functional module Node

Provided information Device

Required information

Communication bus

Libraries

MW

Int J Adv Manuf Technol (2016) 82:737–751 743

is provided. Also, the information exchange among nodes is
performed through messages. When many nodes are running,
it is convenient to render the peer-to-peer communications as a
graph. A node interested in making information accessible
publishes this data via topics. When another node is interested
in a certain kind of data, it will subscribe to the appropriate
topic.

This paper details the code generation for a
component-based platform; specifically, OROCOS plat-
form has been selected as a target example because this
is the most widespread component-based MW. As
commented above, RTT provides the core of OROCOS
component structure (TaskContext class) and how to
specify the functionality of component-based applica-
tions (Deployment ML document). Thus, on the one
hand, an OROCOS component for every UML compo-
nent must be generated, and on the other hand, the
logic of the application jointly with its scheduling fea-
tures must be detailed in the deployment document.

Task context class, offered by RTT library, fixes the inter-
face of OROCOS components which is defined by

& Methods required for defining the execution state of
components.

& Data ports in order to provide external accessibility to
components.

& Properties for configuration information can be modified
in runtime.

Figure 4 illustrates the templates for generating an
OROCOS header and source code.

In addition, the logic of the application and the
scheduling features are in deploymentComponent ML
file [45]. This file is the engine for OROCOS MW
because it collects all necessary information for running
robotic applications successfully. The main structure of
this file is illustrated in Fig. 5a, which is formed by
three main parts. First, the library path where OROCOS
components are located is indicated. Next, the informa-
tion interchanged among components has to be detailed.

Figure 5b details different examples of interchangeable
information defined as connection points. For instance,
visionValueConn is the connection point where the in-
formation captured by a camera is going to be stored.

Regarding scheduler, OROCOS offers two primitives,
one for RT scheduler (ORO_SCHED_RT) and the other
for the rest of the cases (ORO_SCHED_OTHERS).
Figure 5c illustrates an example of deployment informa-
tion for the image capturing by a camera. This is a
periodic activity where a camera provides an image
every 33 ms and the selected scheduler is RT.

3.3 Model to text transformation rules

This section identifies the main common transformation
rules for every component-based platforms but taking
OROCOS MW as an example of target platform.

& R1—rule 1 generation of application components for se-
lected MW (MW_App_Components).

& R2— ru le 2 provide externa l access ib i l i ty to
MW_App_Components’ information. Hence, the UML
ports of the UML components are transformed to buffered
or shared data in the case of MW_App_Components. R2
also processes UML interfaces to give the execution en-
gine the communication dialogue between middleware
application components.

& R3—rule 3 generation of synchronous methods and asyn-
chronous commands for MW_App_Components. Thus,
R3 rule is applied to every protected method of the
UML class that makes possible the UML component.

& R4—rule 4 generation of runtime modifiable information
of MW_App_Components.

& R5—rule 5 generation ofMWexecution engine’s required
information for setting-up MW_App_Components. To do
this, R5 processes the value of the sample property [39]. If
this value differs from zero, a periodic execution thread is
generated with this period. Otherwise, a non-periodic ex-
ecution thread is generated.

Table 5 Main properties of component communication MW

Concept Component-based middleware

OROCOS OpenRTM Player

Command (asynchronous) Operation – Command

Methods (synchronous) Service port –

Buffered/shared data (asynchronous) Data port Data port Data interface

Runtime modifiable parameters Property Conf. interface Service port

States of the component Preoperational, stop, running Created, inactive, active –

744 Int J Adv Manuf Technol (2016) 82:737–751

Table 6 shows the result obtained if the above-described
rules are applied to the XMI file, having OROCOS as the
target MW.

XSLT (XML Stylesheet Language Transformer) standard
[46] offered by W3C has been used for implementing the
generator. XML style sheets allow XML documents to be
filtered and processed by means of templates [47]. A XML
style sheet has been developed for transforming XMI.xml
input file into a set of MW_App_Components and
DeploymentComponent.xml file.

4 Case studies: industrial vs service robots

Robots can be classified into different categories de-
pending on their function and the market needs they
are designed for. This section presents two examples,
one for every major class of robots: industrial robots
and service robots. The former solves real industrial
problems and work in structured environments. The lat-
ter resolves quotidian tasks in non-structured, unknown
and humanized environments. These two examples have

Connec�on
points

Orocos
Components with
deployment

Import Library

(b) Connec�on points

(a) General overview

(c) Camera Orocos component
deployment informa�on

Fig. 5 Example of deployment
component file: a general
overview, b connection points
and c camera OROCOS
component deployment
information

namespace GRAV{
class OrocosNameOfAtomicClass: public TaskContext, public AtomicClass {
protected:

/* Ports defini�on */
[OutputPort | InputPort] PropertyType port_PropertyName;

public:
OrocosNameOfAtomicClass();
virtual ~OrocosNameOfAtomicClass ();
bool configureHook();
bool startHook();
void updateHook();
void stopHook();

};
}

From atomic
isolated code

From OROCOS
RTT Library

GRAV::OrocosNameOfAtomicClass

TaskContext

Atomic
class1 2

namespace GRAV{
OrocosNameOfAtomicClass::OrocosNameOfAtomicClass(const std::string name)

: RTT::TaskContext(name, PreOpera�onal),AtomicClass(){
this->addPort("label", port_PropertyName); // Publish Ports with a label
this->addOpera�on("label",&OrocosNameOfAtomicClass::setPropertyName, this,
RTT:OwnThread); // provide external access to protected proper�es
this->addProperty("label",propertyName); // add public proper�es}

bool OrocosNameOfAtomicClass ::configureHook(){configure(); return true;}
bool OrocosNameOfAtomicClass ::startHook(){start(); return true; }
void OrocosNameOfAtomicClass ::updateHook(){

//update the data to OutputPorts)
portPropertyName.write(this.getPropertyName());
// update value of the property with the value stored in inputPorts)
portPropertyName.read(aux); this.setPropertyName(aux);

}
void OrocosNameOfAtomicClass ::stopHook(){stop();}
}ORO_CREATE_COMPONENT_TYPE()
ORO_LIST_COMPONENT_TYPE(GRAV::OrocosNameOfAtomicClass);

1

2

(a)

(b)

Fig. 4 Templates for generating
the header (a) and source (b) files
of OROCOS components

Int J Adv Manuf Technol (2016) 82:737–751 745

been selected in order to remark the reuse of code re-
gardless of the task and the type of robot.

4.1 Industrial application: the assembly of the headlamps

Nowadays, a vehicle headlamp is a highly sophisticated de-
vice that has to pass exhaustive quality inspections, normally
demanded by the car manufactures [48]. One of the stages of
the production process of headlamps is the assembly of the
components where the main operation consists, basically, of
the positioning and fixing of the lens—made of polycarbon-
ate—over a black housing made of polypropylene (Fig. 6).
The rest of the components: reflector, lighting system and
bezel, are placed into the housing.

Because of the nature of the production process, the
dimensional variability of both housing and lens is rel-
atively high if it is compared with the position

requirements demanded by the car manufacturers. Obvi-
ously, this dimensional variation supposes a problem
during the assembly.

The experimental setup, implemented using the methodo-
logy developed in this paper, is the assembly of both compo-
nents using an industrial manipulator [49].

The idea is, considering the housing as a fixed ele-
ment and using its gum channel, to move the lens in-
side the channel with the robot—whose width is around
2 mm—in order to minimize the contact forces. For this
assembly task, two sensors were used: a wrist force
sensor attached to robot tip, which can determine the
forces and torques generated by the manipulator and
its contact point; and a vision sensor whose mission,
jointly with image-processing algorithms, is to deter-
mine the position of the gum channel. So, the assembly
procedure is as follows: once the gum channel is iden-
tified, the manipulator moves the lens to the housing
channel, and then, using the wrist sensor, the contact
point is determined, together with the forces and torques
exerted by the lens over the housing. Finally, the robot
goes to the position that minimizes the forces and
torques. An impedance algorithm has been applied as
a force controller. Hence, this behaviour is illustrated
in Fig. 7a with a UML component diagram. The select-
ed HW/SW platform is detailed in Fig. 7b. In this case,
the OROCOS communication middleware has been
selected.

The source code generator (M2T transformer) pro-
cesses the corresponding XMI file and generates the
application OROCOS components. Figure 8 illustrates,
as an example, the source for Guppy80 OROCOS
component.

Afterwards, these components are compiled with a
makefile mechanism generating a library. Additionally,
the M2T transformer also generates the correspondingFig. 6 Photograph of the assembly carried out by the robot

Table 6 Transformation rules for OROCOS MW

Rule OROCOS

R1 A MWapplication component for each UML component. The interface of the resulting components is fixed by the communication
middleware’s execution engine (i.e. OROCOS RTT library provides TaskContext concept that fixes the interface with these
six methods: constructor, destroy, configureHook, startHook and stopHook).

R2 UML ports transformed to buffered or shared data. This implies the generation of data ports. The R2 also processes UML interfaces
to give the execution engine the communication dialogue between middleware application components. This latter is expressed in
OROCOS in deploymentComponent file with connectionPoint concept.

R3 As a result of this transformation rule, a synchronous method for each getPropertyName method and an asynchronous command
for each setPropertyName method are added to the middleware’s application component.

R4 OROCOS middleware expresses these parameters as properties in a deploymentComponent file.

R5 To do this, it processes the value of the sample property. If this value differs from zero, a periodic execution thread is generated
with this period. Otherwise, a non-periodic execution thread is generated. Related to the scheduler, if possible, R5 transformation
rule provides the execution thread with a real-time scheduler (ORO_SCHED_RT).

746 Int J Adv Manuf Technol (2016) 82:737–751

deploymentComponent XML file for this robotic task.
As mentioned above, Fig. 5a shows the three main parts
of the XML file. Firstly, the path to import the previ-
ously obtained library, after the connection points and,
secondly, the deployment information for every
OROCOS component is indicated.

Specifically, six connection points have been genera-
ted, one for every UML interface of the application log-
ic (see Fig. 7a). Figure 5b details the characterization of
the connection points defined for this case study. All of
them behave as a shared long data type (value=0 and
type=long). Figure 5c illustrates the deployment infor-
mation for Guppy component. The execution thread in-
formation defines a periodic activity with priority=50,
period=0.003 and RT scheduler. Autoconf and Autostart
features are active, so the OROCOS task context in-
vokes automatically configureHook and startHook

methods. The output data port is connected to the cor-
responding connection point.

Finally, the real-time application starts running
under OROCOS MW with deployer-xenomai -s
deploymentComponentFileName.xml command.

4.2 Service application: the cleaning of a flat surface

The cleaning of flat surfaces such as windows, walls and ta-
bles are quotidian tasks that humans perform simply. Never-
theless, these tasks are not trivial for service robots because
they need to maintain a constant contact with the surface to be
cleaned without damaging this surface. This case study de-
scribes how a humanoid robot can perform a cleaning task
by applying an impedance control in order to orient the side
of the robot’s hand normally to the surface of a table. Besides,

namespace GRAV{
OrocosGuppy80::OrocosGuppy80(const std::string name): RTT::TaskContext(name,
PreOpera�onal),Guppy80(){

this->addPort("image", portImageRaw);
this->addPort("imageColor", portImageColor);
this->addPort("imageGray", portImageGray);
this->addOpera�on("setWidth",&OrocosGuppy::setWidth, this, RTT:OwnThread);
this->addOpera�on("getWidth",&OrocosGuppy::getWidth, this, RTT:OwnThread);
this->addOpera�on("setHeight",&OrocosGuppy::setHeight, this, RTT:OwnThread);
this->addOpera�on("getHeight",&OrocosGuppy::getHeight, this, RTT:OwnThread);
this->addOpera�on("setGain",&OrocosGuppy::setGain, this, RTT:OwnThread);
this->addOpera�on("getGain",&OrocosGuppy::getGain, this, RTT:OwnThread);
this->addOpera�on("setShu�er",&OrocosGuppy::setShu�er, this, RTT:OwnThread);
this->addOpera�on("getShu�er",&OrocosGuppy::getShu�er, this, RTT:OwnThread);

}
bool OrocosGuppy80::configureHook(){configure(); return true;}
bool OrocosGuppy80::startHook(){start(); return true;}
void OrocosGuppy80::updateHook(){

portImageRaw.write(this.getImageRaw()); portImageColor.write(this.getImageColor());
portImageGray.write(this.getImageGray());

}
void OrocosGuppy::stopHook(){stop();}
}ORO_CREATE_COMPONENT_TYPE() ORO_LIST_COMPONENT_TYPE(GRAV::OrocosGuppy80);

GRAV::OrocosGuppy80

TaskContext

Guppy80
imageRaw
imageColor
imageGray

image
imageColor
imageGray

Fig. 8 Source code of Guppy80
OROCOS component

Fig. 7 Assembly of the headlamps functionality (a) and platform (b) modelling

Int J Adv Manuf Technol (2016) 82:737–751 747

a computer vision system is required for locating the particles
that should be wiped from the table.

The experimental setup, that has been implemented using
the methodology developed in this paper, is the wiping of a
flat surface such as a table with the Meka humanoid robot.

The goal of this task is to remove a set of screws placed on
a fixed and flat surface. This implies not only the location of
the screws to be removed but also the contact force has to be
controlled for not damaging the surface.

For this cleaning task, two sensors were used: a force sen-
sor attached to robot wrist, which can determine the forces and
torques generated by the manipulator; and a vision sensor
whose mission, jointly with image-processing algorithms, is
to determine the position of the screws on the table surface.
Hence, the cleaning process is the following: first, the posi-
tions of screws and cloth are addressed (Fig. 9a). After, the
Meka manipulator moves the arm to the cloth (Fig. 9b), so at
this moment, the robot is ready to start the cleaning process. It
is worth noting, though, that making use of the information
provided by the ATI force sensor and an impedance algorithm
as force controller, the forces and torques exerted by the hand
are known. Finally, as the table is a flat surface, robot follows a
trajectory generated by a trajectory planner algorithm

(Fig. 9c, d). This trajectory is generated from the centre grav-
ity of the cloth and the screws to be cleaned.

Hence, this behaviour of the cleaning process itself is illus-
trated in Fig. 10a. The selected HW/SW platform is detailed in
Fig. 10b.

Figure 11 illustrates the source code for managing GX1050
Prosilica camera in OROCOS middleware.

As commented above, M2T generator finishes with the
generation of the corresponding deploymentComponent
XML file for this robotic task.

Figure 12a shows the three main parts of the XML file.
Concretely, six connection points have been generated, one
for every UML interface of the application logic. Figure 12b
details the characterization of two connection points for this
case study. The former contains the image captured by the
camera, and the latter the position of the screws to be cleaned.
Figure 12c illustrates the deployment information for GX1050
Prosilica and image-processing OROCOS components. In
both cases, the execution thread information defines a periodic
activity with priority=50, period=0.05 and no real-time
scheduler. Autoconf and Autostart features are active, so the
OROCOS task context invokes automatically configureHook
and startHook methods.

Fig. 10 The cleaning flat surface process: functionality (a) and platform (b) modelling

Fig. 9 Photograph of the wiping
carried out by the Meka robot: a
the positions of screws and cloth
are addressed, b the Meka
manipulator moves the arm to the
cloth and c, d robot follows a
trajectory generated by a
trajectory planner algorithm

748 Int J Adv Manuf Technol (2016) 82:737–751

5 Conclusions

This paper presents a framework that supports the develop-
ment cycle of robotic arm tasks. The model-driven engineer-
ing approach has been followed to provide support to the

design and coding phases of the development cycle. The mod-
el concept has been used for describing the functionality of the
robotic arm task, which takes place during the design phase.
Also, M2T transformation has been identified to generate the
target code for component-based communication framework.

(b) Connec�on points

(a) General overview

(c) Camera and posi�on Orocos components

Fig. 12 Deployment XML file for screws cleaning robotics task: a general overview, b connection points and c camera and position of OROCOS
components

namespace GRAV{
OrocosGX1050::OrocosGX1050(const std::string name): RTT::TaskContext(name,
PreOpera�onal),GX1050(){

this->addPort("image", portImageRaw);
this->addPort("imageColor", portImageColor);
this->addPort("imageGray", portImageGray);
this->addOpera�on("setWidth",&OrocosGuppy::setWidth, this, RTT:OwnThread);
this->addOpera�on("getWidth",&OrocosGuppy::getWidth, this, RTT:OwnThread);
this->addOpera�on("setHeight",&OrocosGuppy::setHeight, this, RTT:OwnThread);
this->addOpera�on("getHeight",&OrocosGuppy::getHeight, this, RTT:OwnThread);
this->addOpera�on("setGain",&OrocosGuppy::setGain, this, RTT:OwnThread);
this->addOpera�on("getGain",&OrocosGuppy::getGain, this, RTT:OwnThread);
this->addOpera�on("setShu�er",&OrocosGuppy::setShu�er, this, RTT:OwnThread);
this->addOpera�on("getShu�er",&OrocosGuppy::getShu�er, this, RTT:OwnThread);
this->addProperty(“ip",ip);

}
bool OrocosGuppy80::configureHook(){configure(); return true;}
bool OrocosGuppy80::startHook(){start(); return true;}
void OrocosGuppy80::updateHook(){

portImageRaw.write(this.getImageRaw()); portImageColor.write(this.getImageColor());
portImageGray.write(this.getImageGray());

}
void OrocosGuppy::stopHook(){stop();}
}ORO_CREATE_COMPONENT_TYPE() ORO_LIST_COMPONENT_TYPE(GRAV::OrocosGX1050);

Fig. 11 Source code of GX1050
OROCOS component

Int J Adv Manuf Technol (2016) 82:737–751 749

The authors’ proposed framework uses UML as a model-
ling language. Specifically, UML 2.x component and deploy-
ment diagrams have been used. The functional model is the
input model to M2T transformer that generates the target code
for communication middleware. As XMI is a standard nota-
tion, the proposed framework is valid for any UMLmodelling
tool that supports this import/export option. Furthermore, it is
important to note that this framework is compatible with the
general robot control system because it is based onwidespread
standards.

Finally, the proposed modelling approach has been validat-
ed with two case studies, one for an industrial robotics and
other for service robotics. These two examples are very rep-
resentative in order to note the achievement of the reusability
feature regardless of the task but also type of robot.

Acknowledgments This work was financed in part by the
MCYT&FEDER under DPI2011-27284 and by Andalusia Government
under AGR-6429.

References

1. Gil P, Pomares J, Puente ST, Candelas FA, Garcia GJ, Corrales JA,
Torres F (2009) A cooperative robotic system based on multiple
sensors to construct metallic structures. Int J Adv Manuf Technol
45(5):616–630

2. Edsinger A (2007) Robot manipulation in human environments.
Ph.D. Dissertation, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science

3. Marcos F, António Paulo M, Pedro N (2012) A low-cost laser
scanning solution for flexible robotic cells: spray coating. Int J
Adv Manuf Technol 58:103–1041

4. Mendes N, Neto P, Simão MA, Loureiro A, Pires JN (2014) A
novel friction stir welding robotic platform: welding polymeric ma-
terials. Int J AdvManuf Technol. DOI: 0.1007/s00170-014-6024-z.
[Online published]

5. Dragan M, Milos G, Nikola S, Zoran D, Sasa Z, Branko K,
Ljubodrag T (2011) Reconfigurable robotic machining system con-
trolled and programmed in a machine tool manner. Int J AdvManuf
Technol 53l:1217–1229

6. Chella A, Cossentino M, Gaglio S, Sabatucci L, Seidita V (2010)
Agent oriented software patterns for rapid and affordable robot
programming. J Syst Softw 83(4):557–573

7. Iborra A, Caceres DA, Ortiz FJ, Franco JP, Palma PS, Alvarez B
(2009) Design of service robots, experiences using software engi-
neering. IEEE Robot Autom Mag 16(1):24–33

8. Wahl FM, Kroger T (2009) Advances in robotics research: theory,
implementation, application. Springer-Verlag Berlin and
Heidelberg GmbH & Co. K

9. Lihui W, Bernard S, Mohammad G, Göran A (2014) Robotic as-
sembly planning and control with enhanced adaptability through
function blocks. Int J Adv Manuf Technol. doi:10.1007/s00170-
014-6468-1 [Online published]

10. Heineman GT, Councill WT (2001) Component-based software
engineering: putting the pieces together. Addison-Wesley

11. Sommerville I (2007) Software engineering, eight edition, Pearson
Education

12. Brooks A, Kaupp T, Makarenko A, Williams S, Oreback A (2005)
Towards component-based robotics. Proc IEEE Int Conf Intell
Robot Syst (IROS) pp: 163-168

13. Brugali D, Scandurra P (2009) Component-based robotic engineer-
ing (part I) reusable building blocks. IEEE Robot Autom Mag
16(4):84–96

14. Brugali D, Shakhimardanov A (2010) Component-based robotic
engineering (part II) systems and models. IEEE Robot Autom
Mag 17(1):100–112

15. Gamez J, Robertsson A, Gomez Ortega J, Johansson R (2008)
Sensor fusion for compliant robot motion control. IEEE Trans
Robot 24(2):430–441

16. Selic B (2003) The pragmatics of model-driven development.
Softw IEEE 20(5):19–25

17. Streitferdt D, Wendt G, Nenninger P, Nyßen A, Lichter H (2008)
Model driven development challenges in the automation domain.
Annual IEEE International Computer Software and Applications
Conference. Turku, Finland

18. Balasubramanian K, Gokhale A, Karsai G, Sztipanovits J, Neema S
(2006) Developing applications using model-driven design envi-
ronments. Computer 39(2):33–40

19. Schmidt D (2006) Guest editor’s introduction: model-driven engi-
neering. Computer 39(2):25–31

20. Sharygina N, Browne JC, Kurshan RP (2001) A formal object-
oriented analysis for software reliability: design for verification.
Lect Notes Comp Sci Fundam Approaches Softw Eng 2029:318–
332

21. Arun Kumar R, Bruno M, Adriana T (2014) Solution space model-
ing for robotic systems. J Softw Eng Robot (JOSER) 5(1):89–96

22. Geisinger M, Barner S, Wojtczyk M, Knoll A (2009) A software
architecture for model-based programming of robot systems. Lect
Notes Comput Sci Adv Robot Res pp. 135–146

23. Alonso D, Vicente-Chicote C, Ortiz F, Pastor J, Álvarez B (2010)
V3CMM: a 3-view component meta-model for model-driven ro-
botic software development. J Softw Eng Robot 1(1):3–17

24. SmartSoft MDSD Toolchain (2013) SmartSoft model driven devel-
opment software design toolchain, [Online] Available at: http://
smart-robotics.sourceforge.net/index.php

25. Christian S, Alex L, Matthias L, Dennis S, Inglés-Romero JF,
Cristina V-C (2013) Model-driven software systems engineering
in robotics: covering the complete life-cycle of a robot. Workshop
Roboter-Kontrollarchitekturen, Informatik 2013. Springer LNI der
GI, Koblenz, pp 2780–2794

26. Schlegel C, SteckA, Lotz A (2012) Robotic software systems: from
code-driven to model-driven software development. Robot Autom
Robot Syst Appl Control Program Intechopen pp:473-502

27. Schlegel C, Steck A, Lotz A (2012) Model-driven software devel-
opment in robotics: communication patterns as key for a robotics
component model. In: Introduction to modern robotics. iConcept
Press

28. Zahavi R (2000) Enterprise application integration with CORBA.
Wiley, New York

29. Brugali D, Gherardi L, Luzzana A, Zakharov A (2012) A reuse-
oriented development process for component-based robotic system.
In: Proc. of the 3rd International Conference on Simulation,
Modeling and Programming for Autonomous Robots (SIMPAR)

30. BRICS-Best Practice in Robotics Project, [Online] Available at:
http://www.best-of-robotics.org

31. Bruyninckx H (2001) Open robot control software: the OROCOS
project. In: Proc IEEE Int Conf Robot Autom (ICRA), pages 2523–
2528. Seoul, Korea

32. Russell J, Cohn R (2012) ROS (robotic operating system), VSD
33. Miller J, Mukerji J (2001). Model driven architecture (MDA).

OMG, ormsc/2001-07-01, Architecture Board ORMSC1,
July 2001

750 Int J Adv Manuf Technol (2016) 82:737–751

http://dx.doi.org/10.1007/s00170-014-6468-1
http://dx.doi.org/10.1007/s00170-014-6468-1
http://smart-robotics.sourceforge.net/index.php
http://smart-robotics.sourceforge.net/index.php
http://www.best-of-robotics.org/

34. Booch G, Rumbaugh J, Jacobson I (2005) The unified modeling
language user guide, 2nd Edition, Addison-Wesley Professional

35. Jones L, Fowler J, James S, Fu Y (2012) UML based design of
LEGO Robots. Proc Int Conf Softw Eng Res Pract pp:10-16

36. LayneA,MasonA, FuY,WagawM (2012)UMLmodel based design
of the claw car robot. Proc Int Conf Softw Eng Res Pract pp:3-9

37. KimM, Kim S, Park S, ChoiM-T, KimM, Gomaa H (2008) UML-
based service robot software development: a case study, Advances
in service robotics, Ahn HS (ed.), ISBN: 978-953-7619-02-2,
InTech, DOI: 10.5772/5947

38. OMG. Meta Object Facility (MOF) 2.x XMI mapping specifica-
tion. [Online] Available: http://www.omg.org/spec/XMI/ , Last
access in March 2014

39. Sanchez Garcia A, Estevez E, Gomez Ortega J, Gamez Garcia J (
2013) Component-based modelling for generating robotic arm ap-
plications running under OROCOS middleware. Proc IEEE Int
Conf Syst Man Cybern pp: 3633-3638

40. Salmini A, Tomba F (2011) Communicating with XML. Springer,
New York

41. Deliverable D-2.1 Best practice assessment of software technolo-
gies for robotics, [Online] Available: http://www.best-of-robotics.
org/pages/publications/BRICS_Deliverable_D2.1.pdf . Last
Access in May 2015

42. OPENRTM [Online] Website: http://www.openrtm.org/openrtm/
en/node/780 . Last Access in May 2015

43. Gerkey B, Vaughan R, Howard A (2003) The player/stage project:
tools for multi-robot and distributed sensor systems. In Proc. of the
International Conference on Advanced Robotics

44. ROS-INDUSTRIAL, [Online] Website: http://rosindustrial.org/.
Last Access in May 2015

45. OROCOS—the deployment component (2012). [Online]. http://
www.orocos.org/stable/documentation/ocl/v2.x/docxml/orocos-
deployment.html . Last Access in May 2015

46. Tidwell D (2001) XSLT, Ed. O’REILLY
47. Estévez E, Marcos M, Orive D (2007) Automatic generation of

PLC automation projects from component-based models. Int J
Adv Manuf Technol 35(5–6):527–5440

48. Satorres Martínez S, Gómez Ortega J, Gámez García J, Sánchez
García A, Estévez Estévez E (2013) An industrial vision system for
surface quality inspection of transparent parts. Int J Adv Manuf
Technol 68(5-8):1123–1136

49. Gomez Ortega J, Gamez Garcia J, Satorres-Martínez S, Sanchez
Garcia A (2011) Industrial assembly of parts with dimensional var-
iations. Case study: assembling vehicle headlamps. Robot Comput
Integr Manuf 27(6):1001–1010

Int J Adv Manuf Technol (2016) 82:737–751 751

http://dx.doi.org/10.5772/5947
http://www.omg.org/spec/XMI/
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf
http://www.openrtm.org/openrtm/en/node/780
http://www.openrtm.org/openrtm/en/node/780
http://rosindustrial.org/
http://www.orocos.org/stable/documentation/ocl/v2.x/docxml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/docxml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/docxml/orocos-deployment.html

	A novel model-driven approach to support development cycle �of robotic systems
	Abstract
	Introduction
	Framework for modelling robotic arm applications
	Import of required atomic code interfaces to UML
	Definition of application behaviour
	Platform-specific feature modelling

	Automatic generation of target code for robotic arm applications
	Structure of the input model
	Main features of selected communication middleware
	Model to text transformation rules

	Case studies: industrial vs service robots
	Industrial application: the assembly of the headlamps
	Service application: the cleaning of a flat surface

	Conclusions
	References

