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Abstract A procedure to find a unique solution for multi-
response optimization problems based on indexing is present-
ed. The procedure utilizes principal component analysis to
map the original data to a new vector of component scores,
transforming the original response variables into uncorrelated
principal components. This process involves loadings that are
the elements of the eigenvectors corresponding to the eigen-
values of response variables in the correlation matrix. It is
shown that for a given eigenvalue λ, its corresponding eigen-
vectors are not unique, which could lead to different “optimal”
parametric (factor-level) settings and will further mislead the
process or product improvement strategy. The proposed
indexing method will determine a unique optimal solution in
the presence of (2p)(p!) combinations of eigenvectors.
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1 Introduction

The objective of the robust design of experiments is to make a
product and a process robust against the influence of uncon-
trollable factors. This objective can be achieved through pa-
rameter optimization and design of experiments. Parameter
optimization and quality improvement based on the Taguchi
method have shown high effectiveness and robustness and
have been widely used in many areas. To meet the require-
ment of considering more than one quality characteristics in a

real industrial process, the traditional single-response method
has been expanded to multi-response optimization. Table 1
presents a typical multi-response experimental layout. Many
approaches for multi-response optimization such as assigning
weight to response variables [1], grey relational analysis [2],
and multiple regression model [3] have been proposed in re-
cent years.

Among these approaches, multi-response optimization
based on principal component analysis (PCA) has gained
more attention since it takes into account the possible correla-
tions between response variables without increasing the com-
putational complexity. Su and Tong [4] proposed the PCA-
based multi-response robust design procedure and trans-
formed a set of response variables to a set of uncorrelated
principal components by applying PCA so that the number
of responses is reduced and the optimal factor/level combina-
tion can be chosen based on these uncorrelated components.
The detailed procedure of this approach is shown in
“Section 2.”

In the PCA-based multi-response optimization process [4],
the components with eigenvalues larger than 1 are chosen to
replace the original response variables. When more than one
components with larger than 1 eigenvalues are selected, the
tradeoffs are needed, but there is no standard method for
selecting a feasible tradeoff solution. To overcome this short-
coming in the PCA-based method, Liao [5] proposed a
weighted principal component analysis (WPCA)-based
multi-response optimization approach which takes all the un-
correlated components into consideration in order to explain
all the response variables. Each component is multiplied by a
weight, which is the proportion of its corresponding variance
over the total variance. The weights are used to emphasize the
contribution of components based on their corresponding var-
iation. All the weighted components are combined into one
multi-response performance index (MPI) through summation,
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and the choice of optimal factor-level combination is based on
the value of MPI. The main procedures for applying multi-
response optimization based on WPCA are shown in
“Section 2.” This paper presents a detailed study and improve-
ment over the WPCA-based method.

However, one of the challenges in PCA is how to interpret
the principal components, and this problem also exists in prin-
cipal component-based multi-response optimization proce-
dures. Auer et al. [6] pointed out that PCA-based approach
is meaningful only if none of the elements in eigenvectors is
negative. In another study, Gauri et al. [7] discussed several
problems with the PCA-based multi-response optimization
approach, including the misleading results caused by the nor-
malization of input data and different results obtained by using
quality loss versus S/N ratio as input data. Moreover, different
optimal solutions are obtained from using different statistical
software packages.

In this paper, it is shown that each eigenvalue obtained
from the application of PCA in multi-response optimiza-
tion has a set of eigenvectors, and different eigenvectors
corresponding to each eigenvalue will lead to different re-
sults. To solve this problem, a method for determining the
optimal eigenvector combination is proposed. Once the
optimal eigenvector combination is determined, these ei-
genvectors are used to calculate the multi-response perfor-
mance indices, and then the optimal factor-level combina-
tion will be uniquely determined. “Section 2” presents the
detailed procedures of multi-response optimization based
on PCA and on WPCA. “Section 3” presents some details
concerning the usage of quality loss or S/N ratio as input
data. In “Section 4,” the problem caused by one eigenvalue
corresponding to more than one eigenvectors is stated and
analyzed. To solve this problem, a method for determining
the optimal eigenvector combination is proposed in
“Section 5.” To verify the proposed approach, a numerical
example is given in “Section 6.”

2 Multi-response optimization based on principal
components

In the application of Taguchi’s robust design experimentation,
a 2k factorial design problem with p response variables and n
replicates per experiment (run) is given in Table 1.

In Table 1, yijk is the jth response of the ith measurement
combination for the kth replication, i=1,2,…,m, j=1,2,…,p,
and k=1,2,…,n. The step-by-step procedures for executing
PCA-based multi-response optimization and WPCA-based
multi-response optimization are described below:

Step 1: Compute quality loss or S/N ratio for each response:

(a) Compute loss of the jth response in the ith measure-
ment combination (Lij) for the smaller-the-better
case,

Li j ¼ c
1

n

Xn
k¼1

y2i jk

 !

for the larger-the-better case,

Li j ¼ c
1

n

Xn
k¼1

1

y2i jk

 !

and for the nominal-the-better case,

Li j ¼ c
1

n

Xn
k¼1

yi jk−Ti

 !2

þ 1

n−1

Xn
k¼1

yi jk−
1

n

Xn
k¼1

yi jk

 !2
2
4

3
5

(b) Compute S/N ratio of the jth response in the ith mea-
surement combination (ηij) for the smaller-the-better
and the larger-the-better cases,

ηi j ¼ −10log10Li j

Table 1 Experimental data for multi-response optimization

Measurement
combination no.

Factor level Response

1st 2nd ⋯
k th Y 1 Y 2

⋯
Yp

1 − − ⋯ −
y111, y112, ⋯, y 11n y121, y122, ⋯, y 12n

⋯
y1p1, y1p2, ⋯, y 1pn

2 + − ⋯ −
y211, y212, ⋯, y 21n y221, y222, ⋯, y 22n

⋯
y2p1, y2p2, ⋯, y 2pn

3 − + ⋯ −
y311, y312, ⋯, y 31n y321, y322, ⋯, y 32n

⋯
y3p1, y3p2, ⋯, y 3pn

4 + + ⋯ −
y411, y412, ⋯, y 41n y421, y422, ⋯, y 42n

⋯
y4p1, y4p2, ⋯, y 4pn

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

m = 2k
+ + ⋯ +

ym11, ym12, ⋯, ym 1n ym21, ym22, ⋯, ym 2n
⋯

ymp1, ymp2, ⋯, ympn
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and for the nominal-the-better cases,

ηi j ¼ 10log10

1
n

X n

k¼1
yi jk

� �2
1

n−1

X n

k¼1
yi jk−

1

n

X n

k¼1
yi jk

� �2

2
6664

3
7775

Step 2: Normalize quality loss or S/N ratio of each response:

(a) If quality losses are used as input data, normalize
quality loss for each response,

L Nð Þ
i j ¼ Li j−min L1 j; L2 j;…; Lmj

� �
max L1 j; L2 j;…; Lmj

� �
−min L1 j; L2 j;…; Lmj

� �

(b) If S/N ratios are used as input data, normalize S/N
ratio for each response,

η Nð Þ
i j ¼

ηi j−min η1 j; η2 j;…; ηmj

n o

max η1 j; η2 j;…; ηmj

n o
−min η1 j; η2 j;…; ηmj

n o

The normalized data are summarized in Table 2.
Step 3: Perform PCA on normalized data of Table 2 to iden-

tify the elements of the eigenvector corresponding to
the lth largest eigenvalue λ(l)

al1; al2;…; alp

and the lth component for the ith measurement com-
bination (zil):

zil ¼ al1L
Nð Þ
i1 þ al2L

Nð Þ
i2 þ⋯þ alpL

Nð Þ
ip

or

zil ¼ al1η
Nð Þ
i1 þ al2η

Nð Þ
i2 þ⋯þ alpη

Nð Þ
ip

Step 4: Transform normalized quality loss or normalized SN
ratio into aMulti-response Performance Index (MPI)
statistics:

(a) For multi-response optimization based on PCA,
choose components with eigenvalue greater than 1
to replace the original responses and assign an index
(Ωl) to the eigenvector corresponding to the l th larg-
est eigenvalue, as shown in Table 3.

(b) For multi-response optimization based on WPCA,
the explained variance of each component is consid-
ered as weight (wl),

wl ¼ λ lð Þ

λ 1ð Þ þ λ 2ð Þ þ⋯þ λ pð Þ

and all components are combined into one MPI, as
shown in Table 4.

Step 5: Determine the optimal factor-level combination:
From the analysis of variance (ANOVA) of MPI,

the factor-level combination corresponding to the
optimal values of multi-response performance index
Ω is chosen as the optimal result.

Reasons for choosing between quality loss or S/N
ratio as input data and their effects on determining
the optimal solution in the process of PCA- and
WPCA-based multi-response optimization are pre-
sented in “Section 3.”

3 Criterion for using quality loss or SN ratio as input
data

It can be observed from the previous section that either quality
losses or SN ratios are used as an input data for multi-response
optimization analysis in the previous studies and applications.
In the PCA-based multi-response optimization approach pro-
posed by Su and Tong [4], they used quality loss as the input
data. Meanwhile, Antony [8] performed PCA on normalized
quality loss data in industrial experiments. The SN ratio, by
contrast, is widely accepted and used as a performance mea-
sure, especially in engineering applications, since “it com-
bines location and dispersion of a response variable in a single

Table 2 Normalized quality loss/SN ratio

Measurement combination no. Factor level Normalized quality loss/SN ratio

1st 2nd ⋯ k th Y1 Y2 ⋯ Yp

1 − − ⋯ − L11
(N) or η11

(N) L12
(N) or η12

(N) ⋯ L1p
(N) or η1p

(N)

2 + − ⋯ − L21
(N) or η21

(N) L22
(N) or η22

(N) ⋯ L2p
(N) or η2p

(N)

3 − + ⋯ − L31
(N) or η31

(N) L32
(N) or η32

(N) ⋯ L3p
(N) or η3p

(N)

4 + + ⋯ − L41
(N) or η41

(N) L42
(N) or η42

(N) ⋯ L4p
(N) or η4p

(N)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
m + + ⋯ + Lm1

(N) or ηm1
(N) Lm2

(N) or ηm2
(N) ⋯ Lmp

(N) or ηmp
(N)
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performance measure, whereas other methods examine mean
and variance as separate performance measures” and “SN ra-
tios are always expressed in decibels” [3]. However, Gauri
and Pal [7] pointed out that due to the replication variability,
it is possible that two response variables are highly correlated
whereas their SN ratios are not or two response variables have
small correlation, but their SN ratios result in a significant
correlation coefficient. If this happens, applying PCA on SN
ratios will mislead the optimization result since PCA provides
an orthogonal transformation based on correlation analysis.

Su and Tong [4] applied PCA in the multi-response opti-
mization first; they designed a procedure to transform re-
sponse variables into uncorrelated components which are used
for determining the optimal factor-level combination. In this
procedure, the quality loss for each response at each experi-
mental trail is computed, and PCA is performed on the basis of
the normalized quality losses. After the original response var-
iables are transferred into a set of principal components, the
original experimental values are projected into the new coor-
dinate system related to these components and denoted as the
multi-response performance index (MPI). The components
with eigenvalues larger than “one” are kept to replace the
original response variables. In the final step of determining
the optimal factor-level combination, they treated the factor-
level combination with the largest MPI value as the best solu-
tion, which has little or nothing to do with the theoretical basis
and could lead to an unreasonable solution. According to
Taguchi, the value of a loss function increases as the quality
characteristic moves away from a target. When the quality

characteristic is equal to a target value, the cost of deviating
from a target value is zero [9]. Therefore, the optimal factor-
level combination should be determined based on the smallest
MPI value when quality losses are used as the input data,
rather than the largest MPI value as stated by Su and Tong [4].

On the contrary, the S/N ratio measures the level of a de-
sired signal associated with the level of its background noise,
and thus, a higher value of the S/N ratio indicates more useful
information compared to false data. Therefore, when the S/N
ratio of quality loss is used as the input data instead of quality
loss, the factor-level combination with the largest multi-
response performance index should be considered as the op-
timal one. In the following sections, S/N ratio is used as pref-
erential input data as discussed by [3].

“Section 4” presents the reasons for different eigenvectors
leading to different optimal results in the principal
component-based multi-response optimization problem.

4 Choice of eigenvectors in WPCA-based
multi-response optimization

Gauri and Pal [7] pointed out that different software packages
may lead to a different optimal factor-level combination by
applying the same principal component-based methods on a
same data set. The reason for this problem is due to different
eigenvectors obtained by different software packages corre-
sponding to a same eigenvalue. Suppose matrix A has an
eigenvector v with its corresponding eigenvalue λ,

Table 3 Compute MPI for multi-
response optimization based on
PCA

Measurement combination no. Factor level Multi-response performance index (MPI)

1st 2nd ⋯ k th Ω1 Ω2 ⋯ Ωh

λ(1)>1 λ(2)>1 λ(h)>1

1 − − ⋯ − z11 z12 ⋯ z1h
2 + − ⋯ − z21 z22 ⋯ z2h
3 − + ⋯ − z31 z32 ⋯ z3h
4 + + ⋯ − z41 z42 ⋯ z4h
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
m + + ⋯ + zm1 zm2 ⋯ zmh

Table 4 Compute MPI for multi-
response optimization based on
WPCA

Measurement combination no. Factor level Multi-response performance index

1st 2nd ⋯ kth Ω

1 − − ⋯ − Ω1=w1z11+w2z12+⋯+wpz1p
2 + − ⋯ − Ω2=w1z21+w2z22+⋯+wpz2p
3 − + ⋯ − Ω3=w1z31+w2z32+⋯+wpz3p
4 + + ⋯ − Ω4=w1z41+w2z42+⋯+wpz4p
⋮ ⋮ ⋮ ⋮ ⋮
m + + ⋯ + Ωm=w1zm1+w2zm2+⋯+wpzmp
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Av ¼ λv

.
Obviously, if v is multiplied by any real number p, pv is

also an eigenvector ofA corresponding to the eigenvalue of λ,

A pvð Þ ¼ λ pvð Þ
.

Because the functions for computing eigenvectors of a ma-
trix include vector normalization in most software packages,
the eigenvectors obtained in different software are unit vectors
differing in +/− sign. Therefore, the eigenvectors’ differences
are with respect to their sign, while the absolute values of
elements in the eigenvectors are the same. In order to discuss
the effect of eigenvectors with different signs in the process of
determining optimal solution, a mathematical inference is
shown in the following section.

4.1 Problem due to eigenvectors with different signs

Suppose we have a 22 experiment with two response variables
as given in Table 5.

The eigenvectors and eigenvalues for the data of Table 5 are

obtained from the PCA and are shown in Table 6,where
a11
a12

� 	

is the eigenvector corresponding to the eigenvalue λ1, and
a21
a22

� 	
is the eigenvector corresponding to the eigenvalue λ2.

Based on the eigenvectors and eigenvalues above, the
multi-response performance indicesΩ are calculated as shown

in Table 7,where w1 ¼ λ1
λ1þλ2

and w2 ¼ λ2
λ1þλ2

are the weights

corresponding to the first component and the second compo-
nent, respectively.

When
a11
a12

� 	
is an eigenvector of eigenvalue λ1,

−a11
−a12

� 	
is

also the eigenvector corresponding to the same eigenvalue λ1.
Therefore, the calculation of multi-response performance in-

dices will be performed based on the eigenvectors
−a11
−a12

� 	

and
a21
a22

� 	
which will lead to a new set of multi-response

performance indices Ω', as shown in Table 8.
Without loss of generality, assume that in Table 7,

Ω1=max{Ω1,Ω2,Ω3,Ω4}, which means that combination
1 is the optimal solution, and consequently Ω1>Ω2,
where

Ω1−Ω2 ¼ w1e11 þ w2e12ð Þ− w1e21 þ w2e22ð Þ > 0

1

λ1 þ λ2

�
λ1 a11 η Nð Þ

11 −η Nð Þ
21

h i
þ a12 η Nð Þ

12 −η Nð Þ
22

h in o

þλ2 a21 η Nð Þ
11 −η Nð Þ

21

h i
þ a22 η Nð Þ

12 −η Nð Þ
22

h in o�
> 0

ð1Þ

Also,

Ω
0
1−Ω

0
2 ¼ −w1e11 þ w2e12ð Þ− −w1e21 þ w2e22ð Þ

¼ 1

λ1 þ λ2
λ1 −a11 η Nð Þ

11 −η Nð Þ
21

h i
−a12 η Nð Þ

12 −η Nð Þ
22

h in o
þ λ2 a21 η Nð Þ

11 −η Nð Þ
21

h i
þ a22 η Nð Þ

12 −η Nð Þ
22

h in o� �

Then,

Ω
0
1−Ω

0
2

� �
− Ω1−Ω2ð Þ

¼ −w1e11 þ w2e12ð Þ− −w1e21 þ w2e22ð Þ½ �− w1e11 þ w2e12ð Þ− w1e21 þ w2e22ð Þ½ �

¼
−2λ1 a11 η Nð Þ

11 −η Nð Þ
21

h i
þ a12 η Nð Þ

12 −η Nð Þ
22

h in o
λ1 þ λ2

ð2Þ

Table 5 A 22 experimental
design model with two response
variables

Measurement combination no. Factor levels Normalized response S/N ratio

A B Y1 Y2

1 – – η11
(N) η12

(N)

2 – + η21
(N) η22

(N)

3 + – η31
(N) η32

(N)

4 + + η41
(N) η42

(N)
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Since λ1+λ2 in Eq. 1 is positive, the numerator of Eq. 1 is
positive, but λ1{a11[η11

(N)−η21(N)]+a12[η12(N)−η22(N)]} is not neces-
sarily negative or zero. Thus, Eq. 2 is not necessarily positive
or zero, which means that Ω1

' −Ω2
' is not necessarily larger or

equal to Ω1−Ω2. Therefore, when Ω1 is larger than Ω2, Ω1
'

may be smaller than Ω2
' , which leads to a different optimal

solution.
The reason for the eigenvectors +/− signs affecting the

choice of optimal factor-level combination is: The opposite
direction of eigenvector alters the information of relative mag-
nitude of original data points. This is demonstrated from a
two-response example in an intuitive perspective. A two-
response example of experimental results with different eigen-
vectors leading to differentMPI is given next, and the problem
caused by eigenvectors in opposite signs is demonstrated in an
intuitive perspective.

4.2 Experimental design example

An example of an experimental design with four factors and
nine runs experiment is given in Table 9.

In the application of the PCA-based multi-response optimi-
zation method proposed by Su and Tong (1997), the eigen-
vector of the first principal component [0.707, 0.707] corre-
sponding to the eigenvalue λ1 is chosen.

The multi-response optimization indices Ωs are calculated
through

Ωi ¼ 0:707Y i1 þ 0:707Y i2

which are the depicted points on Fig. 1 after the transforma-
tion of the original data points (*).

Obviously, the point corresponding to the largestΩ value is
the 7th point, and its corresponding factor-level combination
should be chosen as the optimal solution.

[0.707, 0.707] is the eigenvector for PC1 with eigenvalue
λ1 and so is [−0.707, −0.707]. Now, the direction of the new
axis after performing PCA is horizontal opposite, and the Ω '
value is calculated through:

Ωi
0 ¼ −0:707Y i1−0:707Y i2

which are the depicted points on Fig. 2 after the transforma-
tion of the original data points (*).

Now, it can be seen that the point corresponding to the
largest Ω ' value is the 1st point, and its corresponding
factor-level combination should be chosen as the optimal so-
lution, which is different from what we obtained based on the
eigenvector [−0.707, −0.707].

“Section 5” presents a method for finding a unique optimal
solution through assigning indices.

5 Method for determining a unique optimal solution

In this section, a method for determining the optimal eigen-
vector combination is presented. A procedure for selecting a
combination of eigenvectors which represents a new coordi-
nate axes, such that the projections of original data in the new
coordinate system preserves the original information as much
as possible is developed. The original information is identified
as relative magnitudes, as discussed in “Section 5.1.” In a two-
response problem, the normalized S/N ratios for each response
are shown on the fourth and fifth column of Table 10.

The PCA is applied on the normalized S/N ratios, and the
projections of original data in the new coordinate system are
shown on the last two columns of Table 10. If η11

(N)>η21
(N) and

η12
(N)<η22

(N), it is expected that e11>e21 and e12<e22 after axes
rotation.

To achieve this objective, the idea of indexing is intro-
duced. For each response variable, the values of experimental
data are sorted in an ascending order and index 1 is assigned to
the smallest value, index 2 is assigned to the second smallest
value, and so on. Similarly, indices are assigned to the projec-
tion of original data points (after performing the PCA) in the
new coordinate system. The sum of the absolute differences
(SAD) of each pair of indices (indices of original data and

Table 6 Eigenvectors
and eigenvalues obtained
through performing PCA
on data in Table 5

PC1 PC2

a11 a21
a12 a22

Eigenvalue λ1 λ2

Table 7 Multi-response performance indices computed for the data of Tables 5 and 6

Measurement combination no. Factor levels Principal component Multi-response performance index

A B PC1 PC2 Ω

1 − − e11=a11η11
(N)+a12η12

(N) e12=a21η11
(N)+a22η12

(N) Ω1=w1e11+w2e12
2 − + e21=a11η21

(N)+a12η22
(N) e22=a21η21

(N)+a22η22
(N) Ω2=w1e21+w2e22

3 + − e31=a11η31
(N)+a12η32

(N) e32=a21η31
(N)+a22η32

(N) Ω3=w1e31+w2e32
4 + + e41=a11η41

(N)+a12η42
(N) e42=a21η41

(N)+a22η42
(N) Ω4=w1e41+w2e42
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components after PCA projection) is obtained first (see step 4
of “Section 5.1”), then the minimal SAD gives the optimal
eigenvector combination. It should be noted that the minimum
of SAD preserves the maximum characteristics of the original
response values. Then, the eigenvectors corresponding to the
minimum SAD are used to calculate the multi-response per-
formance indices in which the identification of optimal factor-
level combination is based (steps 4 and 5 in Section 2).

5.1 Indexing procedure

This section presents an indexing procedure in five steps for
an input data, which could be the normalized quality loss or
normalized S/N ratio, of a p response and m trail experiment.
By comparison of the effect of different sets of eigenvectors
(having different combinations of +/− signs), a set of eigen-
vectors among 2p sets which leads to an optimal solution is
identified.

Step 1: Calculate the variance of each response variable:
The components obtained through PCA are ar-

ranged in a descending order of their eigenvalues
(which is the contribution of the component’s expla-
nation of their variances). In order to increase the
efficiency of comparison, the response variables Y1,
Y2, …, Yp are sorted in a descending order of their

corresponding variances; σ2
Y 1
, σ2

Y 2
, …, σ2

Yp
.

Let

Y 1ð Þ ¼ Y l1 ; Y
2ð Þ ¼ Y l2 ; …; Y pð Þ ¼ Y lp

where l1, l2, …, lp=1, 2, …, p, l1≠l2≠⋯≠lp, and
σ2
Y 1ð Þ ≥σ2

Y 2ð Þ ≥⋯≥σ2
Y pð Þ . Now, Y

(1), Y(2), …, Y(p) form

the original coordinate system, as shown in Table 11.
Where Y(1) is called the first axis, Y(2) is called the
second axis, and so on.

After the indices are assigned for data points of
the new coordinate system, the indices are compared
within the same columns. For example, the calcula-
tion of differences between Y(1) indices and first prin-
cipal component indices and between Y(2) indices
and the second principal component indices … are
needed. Consequently, many unnecessary compari-
sons between all possible combinations are reduced.

Step 2: Assign indices 1, 2, 3, …, m to
y1l1 ; y2l1 ; y3l1 ; …; yml1 , such that

i 0ð Þ
il1

¼ k; i ¼ 1; 2; 3; …; m; k

¼ 1; 2; 3; …; m

Table 8 Multi-response performance indices based on the new set of eigenvectors

Measurement combination no. Factor levels Principal component Multi-response performance index

A B PC1 PC2 Ω '

1 − − −e11=−a11η11(N)−a12η12(N) e12 Ω '1=−w1e11+w2e12
2 − + −e21=−a11η21(N)−a12η22(N) e22 Ω '2=−w1e21+w2e22
3 + − −e31=−a11η31(N)−a12η32(N) e32 Ω '3=−w1e31+w2e32
4 + + −e41=−a11η41(N)−a12η42(N) e42 Ω '4=−w1e41+w2e42

Table 9 Experiment for four factors, with two response variables

Measurement
combination no.

Factor level S/N ratio of responses

A B C D Y1 Y2

1 1 1 1 1 1 1.5

2 1 2 2 2 3 2

3 1 3 3 3 4 4

4 2 1 2 3 6 5

5 2 2 3 1 5.5 2

6 2 3 1 2 2.5 3

7 3 1 3 2 6.5 6

8 3 2 1 3 2 1

9 3 3 2 1 5 5.5 Fig. 1 Multi-response performance indices for the data in Table 9 with
eigenvector [0.707,0.707]
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Therefore, yil1 is the kth largest value among the m points
on response Y(1), index iij

(0)=k,,where i=1, 2, 3,…, m, j=l1, l2,
l3, …, lp, k=1, 2, 3, …, m, as shown in Table 12.
Step 3: After performing PCA on the data, p eigenvectors

are obtained:

v1 ¼
v11
v12
⋮
v1p

0
BB@

1
CCA; v2 ¼

v21
v22
⋮
v2p

0
BB@

1
CCA; ⋯; vp ¼

vp1
vp2
⋮
vpp

0
BB@

1
CCA

and their corresponding eigenvalues are: λ1, λ2, …,
λp, with λ1≥λ2≥⋯≥λp.

Step 4: For the new coordinate system with
v1 v2 ⋯ vpð Þ axes, project original data

points onto a new coordinate system, as shown
in Table 13.

Next, assign indices 1, 2, 3, …, m to z1j
(1), z2j

(1),
…, zmj

(1), such that

i 1ð Þ
i j ¼ k; i ¼ 1; 2; 3; …; m; j

¼ 1; 2; 3; …; p; k ¼ 1; 2; 3; …; m

Therefore, zij
(1) is the k th largest value in the j th column of

Table 13. The indices are shown as in Table 14.
Then, calculate the differences between each pair of

indices; a pair of indices consisting of one from the origi-
nal data and its corresponding index from rotated data.
Then, find the sum of the absolute differences of the pairs
as follows:

d01 ¼ i 0ð Þ
1l1
−i 1ð Þ

11




 


þ i 0ð Þ
2l1
−i 1ð Þ

21




 


þ⋯þ i 0ð Þ
ml1

−i 1ð Þ
m1




 


þ i 0ð Þ
1l2
−i 1ð Þ

12




 



þ⋯þ i 0ð Þ

mlp
−i 1ð Þ

mp




 



Then, new coordinate system axes are updated to

−v1 v2 ⋯ vpð Þ, and the difference between the indices
of each pair (original data and rotated data) is calculated:

Fig. 2 Multi-response
performance indices for the data
of example in Table 9 with
eigenvector [−0.707,–0.707]

Table 10 A 2k experimental design with two response variables

Measurement
combination no.

Factor
levels

Normalized S/N
ratio

Principal
components

A B Y1 Y2 PC1 PC2

1 − − η11
(N) η12

(N) e11 e12
2 − + η21

(N) η22
(N) e21 e22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 11 Response variables sorted according to the variance

Experiment
combination no.

Factor levels Original coordinate system

A B C … Y(1) Y(2) … Y(p)

1 1 1 1 … y1l1 y1l2
… y1lp

2 2 1 1 … y2l1 y2l2
… y2lp

3 3 2 1 … y3l1 y3l2
… y3lp

m 3 3 3 … yml1 yml2
… ymlp

Variance
σ2
Y 1ð Þ ≥σ2

Y 2ð Þ ≥⋯≥σ2
Y pð Þ
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d02 ¼ i 0ð Þ
1l1
−i 2ð Þ

11




 


þ i 0ð Þ
2l1
−i 2ð Þ

21




 


þ⋯þ i 0ð Þ
ml1

−i 2ð Þ
m1




 


þ i 0ð Þ
1l2
−i 2ð Þ

12




 



þ⋯þ i 0ð Þ

mlp
−i 2ð Þ

mp




 




This step is repeated for all combinations of eigenvectors
with different +/− signs.
Step 5: The minimal d0h, where h=1, 2, …, 2p from the

comparisons of the original data set with the 2p ei-
genvector sets is identified, and its corresponding
eigenvector coordinate system is chosen as the opti-
mal eigenvector combination. This optimal eigen-
vector combination is used for determining the op-
timal factor-level combination in the WPCA multi-
response optimization method.

5.2 Mathematical programming form

Now, the above procedures are stated in mathematical pro-
gramming model. Let

Y ¼
y11 y12 ⋯ y1p
y21 y22 ⋯ y2p
⋮ ⋮ ⋮
ym1 ym2 ⋯ ymp

0
BB@

1
CCA

m�p

ð3Þ

V 0 ¼ v1 v2 ⋯ vpð Þ ¼
v11 v21 ⋯ vp1
v12 v22 ⋯ vp2
⋮ ⋮ ⋮
v1p v2p ⋯ vpp

0
BB@

1
CCA

p�p

ð4Þ

I0 ¼
i 0ð Þ
1l1

i 0ð Þ
1l2

⋯ i 0ð Þ
1lp

i 0ð Þ
2l1

i 0ð Þ
2l2

⋯ i 0ð Þ
2lp

⋮ ⋮ ⋮
i 0ð Þ
ml1

i 0ð Þ
ml2

⋯ i 0ð Þ
mlp

0
BBBB@

1
CCCCA

m�p

ð5Þ

The process of determining the optimal eigenvector com-

bination is to find the matrix X, such that Minimize d ¼
i 0ð Þ
1l1
−i11




 


þ⋯þ i 0ð Þ
ml1

−im1



 


þ i 0ð Þ

1l2
−i12




 


þ⋯þ i 0ð Þ
mlp

−imp



 




subject to

X ¼
x11 0 ⋯ 0
0 x22 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ xpp

0
BB@

1
CCA

p�p

ð6Þ

xii ¼ −1; 1; i ¼ 1; 2;…; p
V ¼ V 0X

ð7Þ

Table 12 Indices for original coordinate system

Experiment
combination no.

Factor levels Original coordinate system

A B C … Y(1) Y(2) … Y(p)

1 1 1 1 …
i 0ð Þ
1l1

i 0ð Þ
1l2

…
i 0ð Þ
1lp

2 2 1 1 …
i 0ð Þ
2l1

i 0ð Þ
2l2

…
i 0ð Þ
2lp

3 3 2 1 …
i 0ð Þ
3l1

i 0ð Þ
3l2

…
i 0ð Þ
3lp

m 3 3 3 …
i 0ð Þ
ml1

i 0ð Þ
ml2

…
i 0ð Þ
mlp

Table 13 New coordinate system with axes v1 v2 ⋯ vpð Þ

New coordinate system with axes v1 v2 ⋯ vpð Þ

Exp. no. Factor levels Axis

A B C … 1 2 … p

1 1 1 1 … z11
(1)=(y11, y12,⋯,y1p)v1 z12

(1)=(y11, y12,⋯,y1p)v2 … z1p
(1)=(y11, y12,⋯,y1p)vp

2 2 1 1 … z21
(1)=(y21,y22,⋯,y2p)v1 z22

(1)=(y21,y22,⋯,y2p)v2 … z2p
(1)=(y21,y22,⋯,y2p)vp

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
m 3 3 3 … zm1

(1) =(ym1,ym2,⋯,ymp)v1 zm2
(1) =(ym1,ym2,⋯,ymp)v2 … zmp

(1) =(ym1,ym2,⋯,ymp)vp

Table 14 Indices for new coordinate system with axes
v1 v2 ⋯ vpð Þ

Experiment combination no. Factor levels Original coordinate system

A B C … Y(1) Y(2) … Y(p)

1 1 1 1 … i11
(1) i12

(1) … i1p
(1)

2 2 1 1 … i21
(1) i22

(1) … i2p
(1)

3 3 2 1 … i31
(1) i32

(1) … i3p
(1)

m 3 3 3 … im1
(1) im2

(1) … imp
(1)
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Z ¼ YV ¼
z11 z12 ⋯ z1p
z21 z22 ⋯ z2p
⋮ ⋮ ⋮
zm1 zm2 ⋯ zmp

0
BB@

1
CCA

m�p

ð8Þ

I ¼
i11 i12 ⋯ i1p
i21 i22 ⋯ i2p
⋮ ⋮ ⋮
im1 im2 ⋯ imp

0
BB@

1
CCA

m�p

ð9Þ

where I is calculated based on Z, and ikh=m, where zkh is the
mth largest value in the hth column in Z, k=1, 2, …, m, h=
1, 2, …, p, and ikh=1, 2, …, m

IΔ ¼ I0−I

¼
i 0ð Þ
11 −i11 i 0ð Þ

12 −i12 ⋯ i 0ð Þ
1p −i1p

i 0ð Þ
21 −i21 i 0ð Þ

22 −i22 ⋯ i 0ð Þ
2p −i2p

⋮ ⋮ ⋮
i 0ð Þ
m1−im1 i 0ð Þ

m2−im2 ⋯ i 0ð Þ
mp−imp

0
BBB@

1
CCCA

m�p

ð10Þ

6 Numerical example

To verify the proposed method in “Section 5,” an experimen-
tal design example is developed in this section. The example is
based on an injection-molding process for friction properties
of fiber-reinforced polybutylene terephthalate carried out by
Fung and Kang [10]. Four response variables, FC_P, FC_AP,
SR_P, and SR_AP, are studied in this example: the S/N ratio
and normalized S/N ratio for the smaller the better are calcu-
lated first. Then, in order to determine the optimal eigenvector
combination, the variance of each response variable is calcu-
lated, and the response variables are ordered according to their
corresponding variances to form the original coordinate sys-
tem, as demonstrated in Table 15. Based on Eq. 3, the input
matrix Y for non-normalized S/N ratio data and YN for nor-
malized S/N ratio data are demonstrated in Table 15.

Next, the indices are assigned to the original input data, and
based on Eq. 5, the original index matrices for non-normalized
S/N ratio data and normalized S/N ratio data are

Table 15 S/N ratios for four response variables with their corresponding variances

Measurement combination no. Factor levels Response S/N ratio Y Normalized response S/N ratio YN

A B C D Y(1) SR_AP Y(2) SR_P Y(3) FC-P Y(4) FC_AP Y(1) SR_AP Y(2) FC_P Y(3) FC-AP Y(4) SR_P

1 1 1 1 1 −0.2567 4.8825 12.3958 11.7005 0.3465 0.3051 0.0000 0.8981

2 1 2 2 2 −1.6557 2.2702 11.7005 12.0412 0.2743 0.0000 0.2348 0.6953

3 1 3 3 3 7.9588 6.1961 13.9794 12.3958 0.7708 1.0000 0.4792 1.0000

4 2 1 2 3 −6.9661 −6.6891 12.3958 12.0412 0.0000 0.3051 0.2348 0.0000

5 2 2 3 1 11.7005 5.0362 11.7005 12.0412 0.9641 0.0000 0.2348 0.9100

6 2 3 1 2 −3.6369 2.3837 13.5556 12.7654 0.1719 0.8140 0.7339 0.7041

7 3 1 3 2 −0.8279 4.4370 12.0412 12.0412 0.3170 0.1495 0.2348 0.8635

8 3 2 1 3 −4.5577 5.6799 12.3958 13.1515 0.1244 0.3051 1.0000 0.9599

9 3 3 2 1 12.3958 5.0362 12.0412 11.7005 1.0000 0.1495 0.0000 0.9100

Variance 52.2074 15.6919 0.6282 0.2328 0.1393 0.1209 0.1106 0.0945

Table 16 PCA coefficients for
the new coordinate system with
axes v1 v2 v3 v4ð Þ

Data in new coordinate system with axes v1 v2 v3 v4ð Þ

Experiment combination no. Factor levels Axis

A B C D 1 2 3 4

1 1 1 1 1 1.1510 −6.1074 −14.7344 7.6633

2 1 2 2 2 −1.0801 −4.1524 −14.2554 8.2560

3 1 3 3 3 9.2766 −4.5944 −16.6425 8.1651

4 2 1 2 3 −9.2047 2.3238 −15.2506 8.3199

5 2 2 3 1 12.3915 −2.0772 −14.5460 8.6427

6 2 3 1 2 −2.9209 −5.0889 −16.1592 8.3707

7 3 1 3 2 0.4546 −5.9010 −14.4891 8.0861

8 3 2 1 3 −2.6246 −8.4623 −14.9290 8.8467

9 3 3 2 1 13.0474 −1.8240 −14.8072 8.2515
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I0 ¼

6 5 5 1
4 2 1 3
7 9 9 7
1 1 6 4
8 6 2 5
3 3 8 8
5 4 3 6
2 8 7 9
9 7 4 2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and

I0N ¼

6 5 1 5
4 1 3 2
7 9 7 9
1 6 4 1
8 2 5 6
3 8 8 3
5 3 6 4
2 7 9 8
9 4 2 7

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

respectively.

Table 17 Comparison of difference between indices of original data and the rotated data

Input data: S/N ratio Input data: normalized S/N ratio

Eigenvector combinations d Eigenvector combinations d

v1 v2 v3 v4ð Þ 90
v1 v2 v3 v4ð Þ 132

−v1 v2 v3 v4ð Þ 128
−v1 v2 v3 v4ð Þ 104

v1 −v2 v3 v4ð Þ 84
v1 −v2 v3 v4ð Þ 108

v1 v2 −v3 v4ð Þ 56
v1 v2 −v3 v4ð Þ 134

v1 v2 v3 −v4ð Þ 104
v1 v2 v3 −v4ð Þ 126

−v1 −v2 v3 v4ð Þ 122
−v1 −v2 v3 v4ð Þ 80

−v1 v2 −v3 v4ð Þ 94
−v1 v2 −v3 v4ð Þ 106

−v1 v2 v3 −v4ð Þ 142
−v1 v2 v3 −v4ð Þ 98

v1 −v2 −v3 v4ð Þ 50
v1 −v2 −v3 v4ð Þ 110

v1 −v2 v3 −v4ð Þ 98
v1 −v2 v3 −v4ð Þ 102

v1 v2 −v3 −v4ð Þ 70
v1 v2 −v3 −v4ð Þ 128

−v1 −v2 −v3 v4ð Þ 88
−v1 −v2 −v3 v4ð Þ 82

−v1 −v2 v3 −v4ð Þ 136
−v1 −v2 v3 −v4ð Þ 74

−v1 v2 −v3 −v4ð Þ 108
−v1 v2 −v3 −v4ð Þ 100

v1 −v2 −v3 −v4ð Þ 64
v1 −v2 −v3 −v4ð Þ 104

−v1 −v2 −v3 −v4ð Þ 102
−v1 −v2 −v3 −v4ð Þ 76

Table 18 Optimal eigenvector
combinations for data in Table 15 Optimal eigenvector combination

Input data: S/N ratio Input data: normalized S/N ratio

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

0.9358 −0.3486 0.0334 0.0396 0.7083 0.3845 −0.1910 0.5603

0.3517 0.9330 −0.0562 −0.0514 −0.3664 0.6105 −0.6770 −0.1866
−0.0060 0.0454 0.9623 −0.2680 −0.5189 0.4204 0.5107 0.5415

−0.0215 0.0769 0.2640 0.9612 0.3080 0.5502 0.4944 −0.5983
Eigenvalue 58.2589 9.7439 0.6456 0.1118 0.2097 0.1590 0.0713 0.0253
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Then, PCA is applied. From Eq. 4, the principal compo-
nents eigenvector matrices for non-normalized S/N ratio data
and normalized S/N ratio data are obtained as

V 0 ¼ v1 v2 v3 v4ð Þ

¼
0:9358 0:3486 −0:0334 0:0396
0:3517 −0:9330 0:0562 −0:0514
−0:0060 −0:0454 −0:9623 −0:2680
−0:0215 −0:0769 −0:2640 0:9612

0
BB@

1
CCA

and

V0N ¼ v1 v2 v3 v4ð Þ

¼
−0:7083 −0:3845 −0:1910 −0:5603
0:3664 −0:6105 −0:6770 0:1866
0:5189 −0:4204 0:5107 −0:5415
−0:3080 −0:5502 0:4944 0:5983

0
BB@

1
CCA

respectively.
Now, considering the non-normalized S/N ratios as input

data, the original data points are projected onto the new coor-
dinate system v1 v2 v3 v4ð Þ. From Eqs. 7, 8, and 9, and
as demonstrated in Table 13, a new coordinate system Z=YZ
with axes v1 v2 v3 v4ð Þ are obtained as shown on
Table 16:

Then, the indices of data in new coordinate system with
axes v1 v2 v3 v4ð Þ are assigned, and from Eq. 10, the

index matrix is obtained:

I ¼

6 2 6 1
4 6 9 5
7 5 1 3
1 9 3 6
8 7 7 8
2 4 2 7
5 3 8 2
3 1 4 9
9 8 5 4

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and from Eq. 10, the difference between indices of the original
data (non-normalized) and indices of rotated data is calculat-
ed:

IΔ ¼ I0−I ¼

0 3 −1 0
0 4 −8 −2
0 4 8 4
0 8 3 −2
0 −1 −5 −3
1 −1 6 1
0 1 −5 4
−1 7 3 0
0 −1 −1 −2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Table 19 Multi-response
performance indices for data in
Table 15

Measurement combination no. Factor levels MPI

A B C D Input: S/N ratio Input: normalized S/N ratio

1 1 1 1 1 1.9914 0.4674

2 1 2 2 2 −0.1795 0.3853

3 1 3 3 3 8.6806 0.6563

4 2 1 2 3 −7.9718 −0.0174
5 2 2 3 1 10.9442 0.7764

6 2 3 1 2 −1.5885 0.2937

7 3 1 3 2 1.3705 0.4563

8 3 2 1 3 −0.8702 0.4074

9 3 3 2 1 11.4659 0.7780

Table 20 Optimal factor-level combinations for example in Table 15

Factor level

Factors Input: S/N ratio Input: normalized S/N ratio

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

A 3.4975 0.4613 3.9887 0.5030 0.3509 0.5472

B −1.5366 3.2982 6.1860 0.3021 0.5230 0.5760

C −0.1558 1.1049 6.9984 0.3895 0.3820 0.6297

D 8.1338 −0.1325 −0.0538 0.6739 0.3784 0.3488

Optimal Factor/Level Combination A3-B3-C3-D1 A3-B3-C3-D1
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Then, the sum of absolute difference between indices of the
original data and indices of rotated data is calculated:

d ¼ 90

Similarly, the above procedures are continued for all com-
binations of eigenvectors with different +/− signs and also for
the normalized S/N ratios as the input data. The differences of
data index between original data and rotated data for non-
normalized and normalized S/N ratios are shown in Table 17.

From the smallest value of d, the optimal eigenvector com-
binations for the case with S/N ratio as input data and for the
case with normalized S/N ratio as input data are determined as
shown in Table 18.

Once the optimal eigenvector combination is determined,
following the steps 4 and 5 in “Section 2,” the multi-response
performance indices (MPIs) and then the optimal factor-level
combinations are obtained as shown in Tables 19 and 20.

Table 20 shows that both cases, with the S/N ratio as input
data and with the normalized S/N ratio as input data, lead to
the same result. The optimal factor-level combination for this
example is at level 3 for factors A, B, and C and at level 1 for
factor D.

7 Conclusions

In the process of performing principal component analysis for
a multi-response optimization problem, eigenvalues and ei-
genvectors are computed for transforming the original re-
sponse variables into uncorrelated principal components.
However, for each eigenvalue, there are more than one eigen-
vectors corresponding to it, and different choices of eigenvec-
tor will lead to different multi-response performance indices,
which consequently lead to different factor-level combina-
tions. To improve the multi-response optimization method
based on PCA, a new approach for determining the optimal
eigenvector combination is proposed. The procedure for this
approach is based on comparison of assigned indices and de-
termination of a set of eigenvectors which represents the new

coordinate axes, such that the relative magnitudes of the pro-
jections of data in the new coordinate system have minimal
total difference between each pair of indices (the original data
and the rotated ones). Based on the proposed method, only
one combination of eigenvectors leads to a unique optimal
factor-level combination in a multi-response optimization.
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