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Prediction of cabling shape during robotic manipulation
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Abstract The manufacturing assembly process includes the
manipulation of rigid and non-rigid parts. This paper discusses
a method for the estimation of the cables’ shape for robotic
manipulation. The paper uses methods that take into account
the mechanical behaviour of materials. More specifically, in
the framework of static analyses, a higher-order analytic mod-
el of cables is introduced and the need for model calibration is
pointed out. To this effect, analytical solutions are compared
against experimental data. In addition, the performance of
computational models is taken into consideration.

Keywords Flexible parts handling . Harness assembly . Dual
arm . Cable shape prediction

1 Introduction

Robot-based automation is widely used in automobile
manufacturing [1–3]. However, there are some processes that
are still carried out manually. The component assembly is a
part of such processes. The automated assembly, which needs
elaborated movements and a precautious procedure [4], lies in
its primary stages of implementation and yields great research
interest. When referring to deformable objects [5, 6] and ca-
bling, the latter are difficult to be manipulated and predicted in
terms of their shape, especially when these parts have a

complicated form and the strains are exerted dynamically
[7–9]. The cases illustrated below are indicative of the prob-
lems that industry is faced with, when collision avoidance is
desired in cabling manipulation—Fig. 1a, or when motion
control in the case of plugging sockets is required—Fig. 1b.

In order for collisions and other failures to be avoided, a
simplified cable model predicting its shape has been sug-
gested. The dynamic behaviour has been approached by a
quasi-static process, utilizing different phases of the cable,
under the constraint that the robotic manipulator travels in a
relatively smooth way. Recent studies on path planning for
assembling harnesses have been carried out [10, 11] in the
automotive industry. The Cosserat rods have been used for
the modelling of the harness which is a structure made of
complex cables. In a wire harness, there may be a component
containing multiple electrical wires with connectors, which
have to be attached to the various points of a circular rod.
Kyongmo Koo et al. [12] developed an automatic assembly
system using three manipulators of seven degrees of freedom
each. The harness has clamps and their covers with visual
markers attached. The three manipulators visually recognize
these markers and cooperate with them. A mass-spring-
dashpot model is used as a dynamic model of deformable
linear objects. In thesemodels, the cable is composed of a finite
number of nodes. The latter are considered as joints, in order to
be able to make a rotation around the three axes. The center of
the mass lies at the spherical position joint i and it has a mass
mi. These joints are connected to rotational springs, which are
massless and linear. Rope dynamics are discussed in [13], al-
though the case of the catenary curve may be simplistic.

Analytical methods [14] can be used to describe the bend-
ing and twisting states, although the functions are not ade-
quate enough to describe the shape of a cable.

Quasi-static Cosserat media and Kirchoff models [15, 16]
are used for predicting the mechanical behaviour of rods. In
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[15], they use a discrete model of an extensible Kirchhoff rod,
a special case of Cosserat model theory. In this case, approx-
imate solutions of the equilibrium equations are obtained by
means of energy minimization. The latter, as it might be ex-
pected, is not exclusively for this theory. It is one of the two
methods of obtaining an equilibrium/motion equation. The
other one derives from infinitesimal body considerations. In
this particular case, the potential energy is discretized and the
result is a discrete model of an extensible Kirchhoff rod hav-
ing a structure similar to that of the “mass and spring model,”
which can capture the coupling of bending and torsion
deformation.

The approach in [17] leads to a more complex form of the
kinetic energy. In view of the cable’s static solution, a simpli-
fied version of gradient elasticity, related to the strain and the
strain gradient tensor, is used based on the assumption of a
homogeneous and isotropic behaviour. The basic consider-
ation of Mindlin’s elastic theory that describes the linear elas-
tic behaviour of isotropic materials with microstructural ef-
fects [18–20] is that the potential energy density is a quadratic
form of strains, of a gradient of strains, whilst the kinetic
energy density is a quadratic form of both velocities and a
gradient of velocities. Nevertheless, simplified versions of this

theory have been proposed, as 16 intrinsic constants are re-
quired this way. Therefore, in the second form of Mindlin’s
gradient elastic theory, in the potential energy density, among
the classical terms, the second gradient of strains is also
included.

It is the analytical solution in the simplified strain gradient
elasticity theory that is used in the current work.

2 Cable equilibrium: shape prediction

2.1 Comments on models

Typically, a cable can be deformed under its own weight
whilst ideal cables cannot accept any moment. In this
work, the cable is being assumed as a continuum [21].
Depending on the loading condition, the equilibrium is
used in order for the corresponding differential equation
to be obtained. Next, the analytical solutions are used in
order for the inadequacies of certain models to be pointed
out. Cables in general are described by a second-order
differential equation [22] of horizontal direction (x in
Fig. 2). Moments cannot be accepted by the structure.

Fig. 1 The concept of automated
cabling assembly: collision
detection during manipulation (a)
and positioning (b). A dual-arm
robot is used here and the position
of the harness needs to be known
in both cases

Fig. 2 Grasping a simple cable
(and the physical case)
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Considering a cable accepting moments, own weight ap-
plied, and a non-constant distributed load, depending on
x, the appropriate general differential equation is the fol-
lowing, utilizing the second and fourth derivatives:

Hy″ xð Þ þ βy 4ð Þ xð Þ ¼ loads ð1Þ

with x being the horizontal dimension and y the deflection of
the cable. The constant β, depending on the model’s nature,
appears in the bibliography, in different versions; in the
Timoshenko beam (i.e. [23]), it has to do with bending, and
in cases of higher-order theory, such as Mindlin’s gradient
elasticity [19], it deals with size effects (microstructure affect-
ing macro-behaviour).

Note: The parameter H, which is the horizontal component
of the cables’ tension according to [22], is a free parameter to
be chosen in order for the cable’s length to equal its physical
length, L. Solving Eq. 1 analytically for the various values of
H, it is found that the solution obtained has differences in the
corresponding shape. The extra condition that could be used
to estimate H is

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y 02

q
dx ¼ L ð2Þ

Note: Distributed loads are functions of the x coordinate
indicating forces acting on the harness. Moreover, concentrat-
ed loads, in the case of a harness, can only be added with the
help of the Dirac delta distribution, as δ(x−w). However, w,
the position in x of the load can only be estimated approxi-

mately, as the condition is ∫w0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y 02

q
dx ¼ L, where w is its

location on a perfectly stretched cable. This results in a com-
plicated (coupled) form system, as the position of the forces is
a function of the cable’s shape, comprising the system’s
solution.

2.2 Prediction results in an industrial case

In Fig. 2, a simple, non-extensible cable grasped at both ends
is depicted. The objective is that the shape of the cable be
predicted. The solution giving the shape within the grasping
points (denoted in grey in Fig. 2) is an “interior” solution,
whilst the shape of the remaining cable, (usually) hanging
on the outside of this area, can be described as an “exterior”
solution. The difference between these two lies in the bound-
ary conditions (fixed end vs. free end). The solution to this is
well defined namely the catenary curve and it has only one
free parameter, driven by the length of the cable in between
the grasping points. Various shapes are given in Fig. 3, de-
pending on the position of the second grasping point. The
extra condition with reference to the length has been numeri-
cally solved with a Gaussian quadrature approximation of 5
points followed by a minimization that was performed, having
taken into consideration that the free parameter has to be pos-
itive. For the numerical solving of integrals, this method has
been used in computational studies [19], known to being exact
solutions to polynomial functions [24]. Moreover, for extra
simplification of the computational complexity, the cable’s
shape could be represented by a quadratic function, as it is
dictated by the classical cable approach.

In Fig. 4, a cable accepting moments has been taken
into consideration. This way, either due to microstructure
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Fig. 3 Simple cable shape prediction (catenary curve) for various
positions of robotic grasping point 2

Fig. 4 Grasping a cable
accepting moments and defining
inclination at the grasping points
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or to the Bernoulli-Euler approach, as mentioned above,
the inclination is defined at the two ends from the grasp-
ing points themselves. The classical model is not good
enough for the cable shape prediction, since the boundary
conditions are limited.

In Fig. 5, there are some solutions referring to this case (solu-
tion of Eq. 3). Two grasping positions have been considered, for
each one of the two values of the extra parameter s of Eq. 3. This
extra parameter has been proven to be having a limited effect on
the shape [19] and, to a great extent, defines the cable’s shape
near the grasping points, as it is affected by the inclination, found
at both ends of the shape. The inclination can be defined since
two more boundary conditions are required.

Hy″ xð Þ−sy 4ð Þ xð Þ ¼ rxþ β ð3Þ

The blue and the black curves correspond to the same
boundary conditions, and so do the green and the red ones.
Their difference lies in that the inclination, set at the bound-
aries, affects a greater region of high values of s (green and
blue curves), which is an intrinsic parameter of the cable and
needs to be calibrated. Higher values of s result in a more stiff
mechanical behaviour.

Finally, the solution, out of the grasping points, is tak-
en into consideration. The following figure, Fig. 6, indi-
cates the cable being grasped at one end, on the right, and
freed at the other.

This has been solved by minimizing the vertical position of
the free end, whilst imposing the length condition. The incli-
nation at the fixed end is set to be horizontal, whilst the incli-
nation at the other end is considered being a minimization
output. Its solution is demonstrated in Fig. 7, for various
values of the extra parameter s, denoting different materials
and/or configurations. The blue line indicates a high value for
s, the green line indicates a lower value, whilst the red line is
the solution of the case s=0 (classical cable). It is observed
that as this parameter approaches zero, the hanging cable tends

to be a vertical straight line, the result of a cable not accepting
moments.

3 A complex industrial case

3.1 Harness analytical model calibration

The above case referred to a simple cabling system, with-
out too many implications. However, a real harness is
much more complicated and it can even comprise a
multi-body system. Herein, such a cabling system is cap-
tured in two different positions, and a trial to approaching
its shape has been made. The equation used and analyti-
cally solved is Eq. 3. In this equation, there is a linear
distributed load. H is the horizontal component of the
cable’s tension, r and β denote the intensity of the distrib-
uted load, whilst δ(x−ki) (Dirac delta function) could be
used to represent a concentrated load, applied to the (x−
ki) point. The H value was estimated in order for the
cable’s shape to be as close to the real photo as possible,
whilst the value of the g parameter (characteristic micro-
structure length, estimations of which can be found in
[25]) in s=Hg2 was g ¼ ffiffiffi

s
H

p ¼ 8 cm. It is an effective

value, meaning that it can be affected by many factors
such as thickness and microstructure. One more aspect
that could affect this value is the covering of the harness
(duct tape like), a pattern of which can be found in detail
in Fig. 13(b). The results are shown in Figs. 8 and 9, for
the two different postures of the harness. The red line is
the 2D analytical solution, whilst the grid has been digi-
tally added, representing a grid (10×10 cm). To compare
it to a classical solution, that in green, an indicative cate-
nary curve has been added.

The results of the simulation are obviously worse in the
second case, and this is potentially due to local twisting (be-
cause of the hanging cables) and/or the plastic crease
appearing in such cases of deformations (also indicated in
Fig. 13(b)). These effects have been deliberately left out of
the equation because of their ambiguity.
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Fig. 5 Alternative cable solution (taking into account bending
moments—needs one more free parameter)

Fig. 6 Simple cable grasping detail
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Fig. 8 Equilibrium of a
harness—posture 1. Red line:
gradient cable, green line:
catenary

Fig. 9 Equilibrium of a harness—posture 2 Fig. 10 Equilibrium of a harness—posture 2—parametric model
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y [m]Fig. 7 Simple cable grasping
detail solution
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3.2 Introduction of higher-order terms in parametric
modelling

The physical parameter l, which measures the length of
the cable (l=0 for one grasping point and l=L for the
other, with L being the physical length of the cable), has
been taken into account. This leads to acquiring the para-
metric equations, which enable the formulation of their
own weight and the prediction of more complex geome-
tries that cannot be described through a simple function.
These equations are

x″ lð Þ−sxx 4ð Þ lð Þ ¼ 0 ð4Þ
y″ lð Þ−syy 4ð Þ lð Þ ¼ w ð5Þ

The extra parameter has been encapsulated in w. Taking
into account their analytical equations, the shape prediction
result in the case of Fig. 9 can be seen below in Fig. 10. The
prediction at the two ends is more justified.

Fig. 11 Equilibrium of a harness—posture 2—parametric model with
curvature term

Fig. 12 Equilibrium of a
harness—posture 1—parametric
model with curvature term

Fig. 13 Picture after folding the
cable (a) and detail after
stretching the cable (b)
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Fig. 14 Equilibrium of a
harness—posture 3—parametric
model

Fig. 15 Equilibrium of a
harness—posture 3—parametric
model with curvature term

Fig. 16 Equilibrium of a
harness—posture 4—parametric
model

Fig. 17 Equilibrium of a
harness—posture 4—parametric
model with curvature term
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The intuitive relationship between the bending moments
(strictly excluding twisting moments, though) and the
higher-order derivatives can be shown in equations of pure
bending of circular cross-section rods [22], where the para-
metric equations are given and a higher-than-second-order
derivative is included in the equations. The traditional cable
model, on the other hand, even in the parametric form, as
shown in [26] (simplified version of Eqs. 4 and 5), is strictly
of the second order. The fourth-order derivativemodel, having
been introduced at this point for cables of complex structure
and originally proposed for elastic structures [27], is a model
that predicts moment acceptance and requires two more
boundary conditions, namely those of the inclinations at each
end. The derivation of this equilibrium (or equivalently mo-
tion) equation can come from adding another quadratic term
of the second order to the elastic energy [19, 27]. Expanding
this methodology, it comes natural to add one more term thus,
resulting in the sixth-order equation. As proven below, this
allows a better shape prediction. Even more complex models
can be suggested, either in terms of the derivative order or that
allowing the existence of coupling terms in the equations (or
cross partial derivatives). This, however, would require even
more calibration experiments, since extra parameters would

be required. Moreover, it is imperative that the model re-
quire this way far more computational time, resulting in a
less efficient simulation. The physical interpretation of the
terms and the boundary conditions would also be a major
drawback.

Table 1 Cabling shape
prediction error Posture

ID
Left boundary
conditions

Right boundary
conditions

Prediction error
for the 4th-order
model

Prediction error
for the 6th-order
model

1 Position (0, 0)

Inclination 0 rad

Position (1.2 m, 0)

Inclination 0 rad

2.4 % 1.3 %

2 Position (0, 0)

Inclination 0 rad

Position (0.8 m, 0)

Inclination 0 rad

2.2 % 1.3 %

3 Position (0, −0.2 m)

Inclination 0 rad

Position (1.2 m, 0)

Inclination 0 rad

2.3 % 1.5 %

4 Position (0, −0.2 m)

Inclination 0 rad

Position (1.2 m, 0)

Inclination π/4 rad positive

2.8 % 1.5 %

Fig. 18 Implementation in a
simulation package

Fig. 19 Screenshot from commercial software
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So, by adding a sixth-order derivative term in Eqs. 4 and 5,
the curvature is affected and the following shape prediction
(Fig. 11) can be obtained for certain values of the constants.

Finally, in Fig. 12, the same model is proved to be able to
predict the first posture of the cable, simply by changing the
free H parameter and the second-order derivative boundary
condition.

The interpretation of the changing curvature-related bound-
ary condition is that the hanging pieces of the cables deform
the curvature of the cable’s main body locally in a different
way, depending on the angle formed at their connection point.
In order for the modelling restrictions and limitations to be
studied, the cable is folded as shown in Fig. 13(a) and unfold-
ed. This results in having different crease configurations (one
of them is shown in detail in Fig. 13(b)).

The prediction of two more postures is then attempted in
terms of shape, as shown in the following figures. Posture 3
regards lowering one end of the cable; Fig. 14 shows a pre-
diction using a model of the fourth order, whilst Fig. 15 illus-
trates the sixth-order model outcome. Posture 4 is different in
terms of inclination as boundary conditions, since the orienta-
tion of one gripper changes. The outcomes of the models
predicting the shape are given in Figs. 16 and 17, for a
fourth- and a sixth-order model, respectively.

The models are characterized by a shape prediction error.
This has been defined as the mean distance of the predicted
curve from the actual physical cable position, normalized by
the total length of the physical cable. The numbers in Table 1
indicate the supremacy (and imply the complexity) of the
sixth-order model.

4 The first step towards implementation

So far, the solutions refer to a 2D space. However, for the
needs of integrating the model in software, an extension has
been made to Eqs. 4 and 5, including also a third component
that results in a 3D system. The shape of the simulation is
computed in a remote routine and fed to the robotic simulation
software via sockets (Fig. 18).

The time required for the computation of a model is equal
to 96 ms for 150 points on the cable. The result of the simu-
lation, along with rendering a dual-arm robot cell that handles
the cable by utilizing two grippers, can be seen in Fig. 19. The
cable has been represented as a multi-body system, with the
positions of the bodies being the coordinates of the cable.

5 Conclusions and outlook

The automated assembly of cables utilizing dual-arm robots
requires models that can accurately predict, in a reasonable
amount of time, the shape of a manipulated cable. For this

reason, an analytical solution to a model of order greater than
two has been used. Its validity was checked against the photos
of a real cable. Furthermore, the model’s suitability was
checked against two different postures, in order to check if
the parameters used were constant throughout the changing
of ambient characteristics.

In a future study, more sophisticated models including oth-
er harness characteristics will be tested on. Furthermore, the
use of dynamic mechanical models will enhance the assembly
procedure in terms of time, since the pre-assumption of the
harness, being at equilibrium, will not have to be taken into
consideration.

The next step towards the cable and harness assembly, the
collision checking and the cable’s interaction with other ob-
jects, would then occur.
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